
Configuring Software Product Lines
using Clafer and multi-objective

optimization
Rafael Olaechea

1
Thursday, 5 April, 12

Outline

Background.

Methodology including Research Problem.

Tool

Evaluation.

Future Work.

Conclusions.

2
Thursday, 5 April, 12

Software Product Lines
Create family of software systems to be used in a
specific domain.

Domain Model.

Reusable Assets.

Configuration Model:

Feature Model.

Product Derivation Process

Examples: Medical Imaging Systems Software.
3

Thursday, 5 April, 12

Product Derivation Process

Variability
Modelling Measurement

Product
Derivation

Feature Model
Annotated

Feature Model with Quality
requirements values

Configured
Product

4
Thursday, 5 April, 12

Berkeley DB Annotaed
Feature Model with Quality

Requirements 11

Fig. 4 Product-line model of Berkeley DB with assigned properties. Footprint represents
the actually measured binary size per feature. The up-arrow visualizes an improvement for a
qualitative property.

requires additional code (e.g., using nested #ifdefs). Additionally, feature interactions
can cause deadlocks and bus overloads. In Berkeley DB, there is an exhaustive use
of nesting a feature’s code in another feature’s code (e.g., to implement statistics for
the hash search index; cf. Figure 2) resulting in different binary sizes depending on a
certain feature combination. In Berkeley DB, we identified a feature interaction between
features Replication and Statistics. We measured the influence of this interaction on
footprint: A product with both features in combination has an increased binary size
of 80KB in addition to sum of the feature’s sizes. Such feature interactions occur for
many non-functional properties.

4 SPL Conqueror: A Holistic Approach for the Optimization of

Non-functional Properties

With SPL Conqueror, we propose a holistic approach to integrate measurement and
optimization of non-functional properties in the product derivation process. With holis-
tic we mean that we support the whole product derivation process starting from the
definition of desired non-functional properties, over the measurement of properties, to
the concrete feature selection and optimization by means of an objective function. We
support the different kinds of non-functional properties described in Section 3.1. A
stakeholder (i.e., an SPL vendor or domain expert) can assign properties to features
to describe the influence of a feature on a specific property. In addition, a stakeholder
can specify measurements and metrics in SPL Conqueror to measure either a single
feature (e.g., the source-code complexity) or a whole variant. Once the measurement
procedure is defined the process of selecting features and generating and measuring
features is automatically performed.

The results of measurements are stored in the SPL’s product-line model, which we
described in Section 3.2. We use this model including all assignments and measurements
during the product derivation phase to provide multiple optimization possibilities. Cus-
tomers can define non-functional constraints (e.g., a footprint limit of 200KB) as well

5
Thursday, 5 April, 12

Methodology

Goal: Improve the product derivation process in
Software Product Lines.

1. Collect SPL feature model examples.

2. Build on existing solutions (Clafer, Moolloy,
Alloy partial instances)

 3. Create extension to Clafer translator.

4. Evaluate Performance of tooling.

6
Thursday, 5 April, 12

SPL Annotated Feature
Models

Annotate feature models with Quality
Requirements:

Binary Footprint.

Performance

Code Complexity

Reliability

7
Thursday, 5 April, 12

Tooling Pipeline

Sat

Moolloy
Ext

Alloy

Partial
Instances

Ext

Clafer

Objective
Ext

Clafer
Translator

Partial
Instance

Ext

KodKod

Moolloy
Ext

Feature Model +Quality Objectives

Alloy +
Objective +

 Partial Instance +

8
Thursday, 5 April, 12

Berkeley DB Annotaed
Feature Model

11

Fig. 4 Product-line model of Berkeley DB with assigned properties. Footprint represents
the actually measured binary size per feature. The up-arrow visualizes an improvement for a
qualitative property.

requires additional code (e.g., using nested #ifdefs). Additionally, feature interactions
can cause deadlocks and bus overloads. In Berkeley DB, there is an exhaustive use
of nesting a feature’s code in another feature’s code (e.g., to implement statistics for
the hash search index; cf. Figure 2) resulting in different binary sizes depending on a
certain feature combination. In Berkeley DB, we identified a feature interaction between
features Replication and Statistics. We measured the influence of this interaction on
footprint: A product with both features in combination has an increased binary size
of 80KB in addition to sum of the feature’s sizes. Such feature interactions occur for
many non-functional properties.

4 SPL Conqueror: A Holistic Approach for the Optimization of

Non-functional Properties

With SPL Conqueror, we propose a holistic approach to integrate measurement and
optimization of non-functional properties in the product derivation process. With holis-
tic we mean that we support the whole product derivation process starting from the
definition of desired non-functional properties, over the measurement of properties, to
the concrete feature selection and optimization by means of an objective function. We
support the different kinds of non-functional properties described in Section 3.1. A
stakeholder (i.e., an SPL vendor or domain expert) can assign properties to features
to describe the influence of a feature on a specific property. In addition, a stakeholder
can specify measurements and metrics in SPL Conqueror to measure either a single
feature (e.g., the source-code complexity) or a whole variant. Once the measurement
procedure is defined the process of selecting features and generating and measuring
features is automatically performed.

The results of measurements are stored in the SPL’s product-line model, which we
described in Section 3.2. We use this model including all assignments and measurements
during the product derivation phase to provide multiple optimization possibilities. Cus-
tomers can define non-functional constraints (e.g., a footprint limit of 200KB) as well

9
Thursday, 5 April, 12

Berkeley DB Feature Model
in Clafer

abstract BerkeleyDbC
 STATISTICS : IMeasurable ?
 [this.footprint = 285]
 CRYPTO : IMeasurable ?
 [this.footprint = 19]
 INDEXES : IMeasurable
 [this.footprint = 0]
 xor BTREE
 [this.footprint = 0]
 BTREE_SMALL : Imeasurable
 [this.footprint = 340]
 BTREE_FAST : IMeasurable
 [this.footprint = 1800]
 HASH : IMeasurable ?
 [this.footprint = 113]
 QUEUE : IMeasurable ?
 [this.footprint = 58]
 REPLICATION : IMeasurable ?
 [this.footprint = 89]

(...)

10
Thursday, 5 April, 12

Optimizing Quality
Requirements Workflow

Annotated
Feature
Model

User selects
some features

System selects other
features based on

such objectives

User sets objective
function over quality

requirements

11
Thursday, 5 April, 12

Evaluation on Sample
Feature Models

SPL Features Time (s) Binary
Footprint (kB)

LinkedList 18 71 4.43

LinkedList
[Print and

Measurement]
18 21 10.64

SQLite 80 32278 1200

Berkeleydb 8 23.6 1804

12
Thursday, 5 April, 12

Other Feature Models
Violet UML - UML Diagramming Tool, ~ 200
features.

ZipMe - Zipping program.

Prevayler - Java Persistence framework.

PKJab - Instant Messenger Application.

Apache - Web Server.

BerkeleyDB Java Version - Database.

13
Thursday, 5 April, 12

Extending Clafer with
Objectives: LinkedList Feature
abstract LinkedList
 xor AbstractElement : IMeasurable
 [this.footprint = -12]
 ElementA : IMeasurable
 [this.footprint = 12]
 ElementB : IMeasurable
 [this.footprint = 0]

(...)
 xor AbstractSort : IMeasurable ?
 [this.footprint = 57]
 BubbleSort : IMeasurable
 [this.footprint = 17]
 MergeSort : IMeasurable
 [this.footprint = 32]

(...)
 print : IMeasurable ?
 [this.footprint = 44]
 Measurement : IMeasurable ?
 [AbstractSort]
 [this.footprint = 484]

(...)
 total_footprint :integer =
sum(IMeasurable .footprint)

abstract IMeasurable
 footprint : integer

config : LinkedList
[print && Measurement]

<< min config.total_footprint >>
<< max config.total_performance>>

14
Thursday, 5 April, 12

Extending Clafer with
Objectives

LL_Configuration: LinkedList_FeatureModel

[print && Measurement]

<< min LL_Configuration.total_footprint >>

<< max LL_Configuration.performance >>

15
Thursday, 5 April, 12

Optimizing Footprint +
Performance

objectives o_global { minimize
[c229_simpleConfig.@r_c121_total_footprint.
@c121_total_footprint_ref] , maximize
[c229_simpleConfig.@r_c122_total_performa
nce.@c122_total_performance_ref] }

Get a set of solutions in the optimal front
between performance and footprint.

16
Thursday, 5 April, 12

Reasoning Optimization:
Partial Instances in Alloy

- Alloy Extension to express scope in terms of
concrete instances.

-Clafer translator generates a partial instance
block to improve performance of reasoning in
alloy.

inst partialinstance {
 12 int, // bitwidth
 relation_footprint in ...
}

17
Thursday, 5 April, 12

Optimizing Footprint
Translate Clafer Objectives into Alloy:

objectives o_global { minimize
[c229_simpleConfig.@r_c121_total_footprint.
@c121_total_footprint_ref] }

Execute using Multi-Objective Alloy:
Found base solution. At time: 3, Improving on [586]
Found a better one. At time --: 3, Improving on [586]
Found a better one. At time --: 6, Improving on [467]
Found a better one. At time --: 27, Improving on [444]
Found a better one. At time --: 43, Improving on [443]
GIA ----: [443]

18
Thursday, 5 April, 12

Future Work

Integrate Sparse Integer Support from Alloy.

Breadth-Width Search could create set of all
reachable integers.

Integrate partial non-optimal results from the
alloy solver before reaching the optimal answers.

For Sqlite it took 13 hours, but last 7 hours
gave only marginal improvement.

19
Thursday, 5 April, 12

Challenges

Partial Instances in Alloy:

Ongoing work from Vajih Montaghami.

Getting Realistic Software Product Line Models

Wrote translator to get real models from
SPLConqueror work by Norbert Siegmund et
al.

20
Thursday, 5 April, 12

Conclusions

Product Configuration in Clafer

Explore Space of Product Configurations

Helps Stakeholders consider quality
properties.

Quality of Annotated Feature Models.

21
Thursday, 5 April, 12

References

SPL Conqueror: Toward optimization of Non-functional Properties in
Software Product Lines. N. Siegmund et Al. Software Quality Journal.

Extending Alloy with Partial Instances. V. Montaghami, D. Rayside.

Scalable Prediction of Non-functional Properties in Software Product
Lines. N. Siegmund et Al. SPLC 2011.

The Guided Improvement Algorithm for Exact, General-Purpose, Many-
Objective Combinatorial Optimization. Rayside et al.

Feature and Meta-Models in Clafer: Mixed, Specialized and Coupled. K.
Bak, K. Czarnecki, Andrzej Wasowski.

22
Thursday, 5 April, 12

