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Models as Views
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Every view
- obtained by a different projection, abstraction, translation
« may be expressed in a different notation (modelling language)
- reflects a different intent

[ Example from J. Bezivin, J. Dingel ]



Modelling Paradigms

Fundamental modelling paradigms, each emphasizing some basic
view of the software to be developed.
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Entity-Relationship Diagrams

An ER diagram is a structural model representing a software
system's data elements and relationships among them.

entity relationship attribute

/ N

name

title course enrolled student
course no. — id

- originally invented for model database design (Chen, 1976)

- emphasizes concepts/data

relationships can represent associations, navigability, containment,
dependencies, etc.



UML Class Diagrams

UML Class Diagrams are an elaborate form of ER diagram.
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[ Figure from Pfleeger, Atlee, 2009]



Software Architecture

A software architecture is high-level model of code structure.

Typically modelled as a "box and arrow" diagram, with a key
explaining the types of components (boxes) and connectors
(arrows).
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[ Figure from Pfleeger, Atlee, 2009]



UML "Software Architecture" Models

The closest that UML comes to a software architecture model are
UML Package Diagrams and UML Deployment Diagrams.
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Data Flow Diagrams (DFDs)

Descriptive model of functional decomposition of the system, and
the data dependencies between functions.
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DFDs model
- collection of functions
- sources and sinks of data
« data dependencies



Data Flow Diagrams (DFDs)

AIth_ough DFDs are good for communicating the big picture, they
are inherently incomplete, undetailed, and ambiguous.
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[ Figure from M. Jackson, 1995 ]



UML Use Case Diagrams

Use Case Diagrams are a very high-level data-flow diagram.
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Flowcharts

Flowcharts are an ancient modelling notation, for representing
behaviour in terms of steps of an algorithm.

Depict control flow rather than data flow
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UML Activity Charts

UML Activity Charts are a variation on flowcharts that support
concurrent flows of control. swimlanes
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[ Figure from M. Blaha, J. Rumbaugh, 2005 ]




Event Traces

Dynamic model of behaviour showing communication among

entities in one scenario (execution trace).

Shows a slice of behaviour, not complete behaviour.

entities, actors, systems, subsystems, objects

Visi'tor Turhstile Visitor
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UML Sequence Diagrams

UML Sequence Diagrams are elaborate event traces....

entities, objects, systems, subsystems, actors
event, method call
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UML Sequence Diagrams

... Including branches, loops, concurrency, optional subsequences,
references to other sequence diagrams.

sd AuthenticateUser /
'B :C
A B :C
I I
T I I . . | |
doX ! : : authentlcate(ld)>: :
o > doA | I | doM1 '
| > | | | 0 N
| |
: ! ! | doM2 N
| . . | |
| authenticate(id) )| ref /A inenticateUser | :
| |
: | |
| | |
: | |
: ref J DoFoo sd DoFoo )
| . .
| | |
'B :C
I I
interaction occurrence A 4 | doX »{
| |
| |
note it covers a set of lifelines | doY »)
| |
note that the sd frame it relates to | doZ >
has the same lifelines: B and C : :

Larman, Appliying UML and Patterns, 3ed



State Machines

Compact representation of all event traces.
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UML StateMachine Diagrams

UML StateMachine Diagrams borrow heavily from David Harel's statecharts.

VARIABLES

req1 : boolean := false (* outstanding request for floor1 *)
req2 : boolean := false (* outstanding request for floor2 *)
floor : {1, 2} (* current location of elevator *)
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but1 /req1 = true
but2 / req2 = true
butUp / req1 = true
butDown / reg2 = true




Logic
Logic is the basis for a number of languages that express
constraints on allowable interpretations of other models.
- allowable instantiations of data models
* Invariants among attribute values in data models
 pre/post conditions of functions
 event conditions in event traces

 guard conditions in state machines



Object Constraint Language

OCL was designed for expressing constraints on UML diagrams.

Customer
4 . . | name: String
0.." | FrequentFlyer | O.. title: String
program Program program . address: String

' dateOfBirth: Date =~
. Utility Class
0..*| partner owner

Membership

- - i 0.* N
P o1 [senmea), o - e -
Lname  oting I provider  L28ne ol oints : Integer ate
' % card | 1.* today : Date
: 1 11 = (d : Date) : Boolean

— CustomerCard isBefore (d : Date) : Boolean
valid: Boolean

validFrom: Date isAfter (d : Date) : Boolean

goodThru: Date -dlf‘fﬂ : Duration

colour : enum {gold, sliver}

card

Service
description: String
condition : Boolean
pointsEarned: Integer

ointsBurned: Integer rintedName. Strin
0.*
1 [ Transaction
0. I"unitPurchases: Integer

points: Integer
date : Date

context CustomerCard inv
self.printedName = (self.owner.title.concat(self.ownername))

context CustomerCard inv
(self.valid and self.colour=gold) implied self.membership.serviceLevel = "gold"



UML: 13 Different Diagram Types

Structural Behavioural

 Class Diagrams - Interaction Overview Diagrams
+ Object Diagrams - Activity Diagrams

- Composite Structure Diagrams - Sequence Diagrams

- Component Diagrams « Communication Diagrams

- Package Diagrams - State Machine Diagrams

* Deployment Diagrams » Timing Diagrams

Functional

- Use Case Diagrams

OCL is a separate language that was invented for writing
constraints on UML models



Next Week

3 Prominent Modelling Languages
- Alloy
- Statecharts
+ Scala
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