CS 846: Model-Based Software Engineering
Winter 2012

Jo Atlee

David R. Cheriton School of Computer Science
University of Waterloo
January 16, 2012

Software Models

http://se.uwaterloo.ca/~jmatlee/teaching/846

What is Being Modelled?

o |

o (RN 1 makes 1 T adeseribes [
dor (s rson ayment (o 1| Paymentrype
7

1 1.+
<competes in .
. 1 Custnr

<<Domain Model>>
Copyrighl 2004 Scott W, Amier

<postal-address> ::= <name-part> <street-address> <zip-part>
<name-part> ::= <personal-part> <last-name> <opt-jr-part> <EOL>
| <personal-part> <name-part>

Customer Browser ‘AgentB OSI Model
N i HTML . HTML, data unit layers
e clients Tva Applet —
Corferncs | JavaSergt PR [data I application]
(2
Internet 0 .
3 cata [o.presenton |
]
Web Applcaton Server @ [data I o]
Call Manager
ACD Menager I e transport
Gateway Adaptor Seg End-to-End Connections
[network
i -
service components % [packetsI m ?mmlmqhé)]
H3 Gateay " [frames nmkzgdavﬁnlgl(rl}ll(.c&m:)]
Intelliswitch o -
Server g bits ph sll_
and ransmission

E-a KLOCP

Risks (Failure Modes)

Partcipant | Partcipant | Room with requied | System response | Important

doesnot | does notreply | equipmentisnot | istoocloseto | partiipant hasast | Overall single effect

read emails | torequests | available meeting inute change
Criticality (risk) 0264 0468 001 0297 0375
Email reminder sent 07 07 0 01 0 0542
Change the meeting,
increase time range 02 02 0 01 0 0176
System has access
o personal
e-agendas 03 02 01 02 03 0346
Change the meeing,
fewer constraints
(equipment) 0 0 09 0 0 009
Cancel ameeting
and send email
confirmation 08 08 1 07 08 144
Combined risk
reduction 0966 0962 1 0806 093

vituel it

S Mioge

saine /.

order

sevewine

orderfood

pickup

IR software EPrints: Format ID PRONOM-DROID Preserv partner TNA !

IR database
Userlauthor Preserv partners: ﬁ
Rauthor e-Prints Soton Aocess
interface Oxford University Machine interface| OAl

Conditions are
inputs

Verficatons
toperform

2

Test actions

outputs

Tests torun

keyless_entry — power_locks

%— Apply for a car insurance

N
Stakeholders
Archival storage
and admins storage media, media refreshing,
+ Heads of reformatting, backups and disaster
nstiutions recovery, environment, audt, security,
:Research presenvation stategy, migraton,
technology preservation, emulation,
records management,etc
Preservation service providers
Preserv partners: British Library, TNA
Explore alternatives

Input - decision point questions

Q1 : Number of accidents > N

Q2:Typeofcar= (...}

Q3: Age of the car > M

Output : test actions

=z =z ==

=l <[=]=]~
=

6
N
Y
N
4

= <| <|z|e

Check message “Refuse to insure”
- Return to the main menu

K=
xlal=<<[~

RE| =] =z| <|«

- Accept to insure

- Select standard rate
- Check price

- Display information

R e

wullfied |

~Acceptto insure

- Select specia rate
- Check price

- Display information

keyless
entry

power
locks

L0 P PUESLOH 2O

4 Bffce Home
O o

Reviews

Models as Views

Mason's
View

Carpenter's
View

Architect's

View Electrician's
\ / View
‘

Tax
Collector's [T F Plumber's

Landlord's / \ \ Interior

/ Tenant's Designer's

View - View
Zoning Law Interior
View Designer's
View

Every view
- obtained by a different projection, abstraction, translation
« may be expressed in a different notation (modelling language)
- reflects a different intent

[Example from J. Bezivin, J. Dingel]

Modelling Paradigms

Fundamental modelling paradigms, each emphasizing some basic
view of the software to be developed.

Functionality

Structure Data System
Schema Functionality
Software
Architecture \\ / Use Cases
e \ Algorithms
Constraints / \ SER S

Constraints

System
Behaviour

System
Interactions

Behaviour

Entity-Relationship Diagrams

An ER diagram is a structural model representing a software
system's data elements and relationships among them.

entity relationship attribute

/ N

name

title course enrolled student
course no. — id

- originally invented for model database design (Chen, 1976)

- emphasizes concepts/data

relationships can represent associations, navigability, containment,
dependencies, etc.

UML Class Diagrams

UML Class Diagrams are an elaborate form of ER diagram.

association
C|aSS —_ Patron * \ Publication *
patron ID:integer 0.1 borrows 0..*
name : strin ; . :
| ddress : str("?ng borrower title : string

[}
[}
. value : real
_—"| fines : real :

! depreciation : real

call number : string

. , e L. loan period : Duration
attl‘lbutes Fheckﬁne§() : {fine, no.ﬁne},. Loan fine rate : real
Increase fines@mount:real) reserve Ioan period : Duration
pay fines@amount:real); due date : Date reserve fine r[::lte real
recallNotify(pub:Publication) overdue fine : real recall period : Duration
calc due date(operation:string) loan state: {inlibrary, onloan}
calc overdue fine() reserve state : {stacks, reserve}
renew()) . I L
recall) find(title : string) : Publication
buy()
Lose A ()
1 orrow(patron:Patron
operations return()
reserve()
unreserve()
aSSOC|at|On decreasevalue()

class 4

I)]
Book Periodical
editor: string
volume : integer
number : integer
loan period : Duration
fine rate : real

author : string

Article
author : string

[Figure from Pfleeger, Atlee, 2009]

Software Architecture

A software architecture is high-level model of code structure.

Typically modelled as a "box and arrow" diagram, with a key
explaining the types of components (boxes) and connectors
(arrows).

KEY - - -
Web Web Desktop Client Application
Browser Browser Application and Presentation
server \ i /
; Web Server-side
repository Server Presentation
F—F publish/subscribe / \
—> request/reply Apghccm'on Apglicmion Business
_> database queries, erver erver Logic
transactions t X t
Enterpris
Application Application Infg,fﬁ{.'hf,n
Database Database Systems

[Figure from Pfleeger, Atlee, 2009]

UML "Software Architecture" Models

The closest that UML comes to a software architecture model are
UML Package Diagrams and UML Deployment Diagrams.

1

«Layer»
Presentation

ﬁ :

«Layer»
User Interface

—1

«Layer»
Business Logic

Workstation

orf _ Web browser

i Keyboard/monit

User

=

/ \
/ \\
/
] \oo l AY)
«Layer» «Layer»
Data Access Services

T
I
|

|
o

«Layer»
Persistence

UML Package Diagram

Database Server

TCP/IP
br local socke

HTTP/HTTPS connection

Web Server

Presentation laye
(web interface)

A HH

[;b Database interfac

MySQL database|

-

% Log file

UML Deployment Diagram

Data Flow Diagrams (DFDs)

Descriptive model of functional decomposition of the system, and
the data dependencies between functions.

actor process

/ data flow
air temp
Thermometer —>

Thermostat

on/off
commands
—»| Furnace

data store

/

set
air temp

thermostat settings

DFDs model
- collection of functions
- sources and sinks of data
« data dependencies

Data Flow Diagrams (DFDs)

AIth_ough DFDs are good for communicating the big picture, they
are inherently incomplete, undetailed, and ambiguous.

Payment Invoice and
/~ Quoting Find Payment Details
Invoice No invoice
by No Invoice by Compare
Customers Invoice No Amount
Full . ——>
Payment Invoice and
Request Produce Payment Details Eull
<« N Full /M /| |Payment
Payment Part
Request Payment
Invoice by
Verify Payment Search Name &
Payments Without for Invoice
Invoice No
vy

Untraced Receivables

Payments

Payment

Record

Produce

Payment Explanation

Details & Request

Request
¢ Payment
Untraced Detglls
Payments for Banking

s+ Customers

Payment

Create
Payment
Record

[Figure from M. Jackson, 1995]

UML Use Case Diagrams

Use Case Diagrams are a very high-level data-flow diagram.

Online Book Store

function _
_ Kactor>
Making Credit
Purchase Authorization
- Service
T anaging
Shoppin
Customer\ Czrr)t 9 | «actor»
Bookseller
- Inventory
anaging

Customer

actor i

/

Administrator

Managing
Inventory

data roW

Flowcharts

Flowcharts are an ancient modelling notation, for representing
behaviour in terms of steps of an algorithm.

Depict control flow rather than data flow

M=M+ 1

START | =veememenanannnn start / stop
!
ReadN =~ input / OUtpUt
|
M activity
|
F=F*M
|
B branch

UML Activity Charts

UML Activity Charts are a variation on flowcharts that support
concurrent flows of control. swimlanes

(assign actlvmes to person / roIe)

s —
Customer Sales Stockroom

aCtIVIty ------------- (Request Service)
Order
[Placed]

fork --...... / 3
______________ J
Take Order
— Order

[Entered)

Order - |
[Filled)
/
ObjeCt __________________ %dlgr ’ (/,,_§ Deliver Order)
ﬂOW elv;ere]

\‘
Collect Order
N /

[Figure from M. Blaha, J. Rumbaugh, 2005]

Event Traces

Dynamic model of behaviour showing communication among

entities in one scenario (execution trace).

Shows a slice of behaviour, not complete behaviour.

entities, actors, systems, subsystems, objects

Visi'tor Turhstile Visitor

Turnstile
event, message
coin > slug >
|« buzzer slug >
push > slug > life line of
Time .~ participant
< rotated g

UML Sequence Diagrams

UML Sequence Diagrams are elaborate event traces....

entities, objects, systems, subsystems, actors
event, method call

:PurchaseOrder :Product :Product :Product
Time I | | !
| | | |
| | | |
! | '
printReceipt() _ | | |
print) . .
: > |
print() | |
- | oprint) i
< -----m-mm - - | I |
\ result \ | | '
! | !
l ' 1
return message \ execution occurrence

lifeline of object

UML Sequence Diagrams

... Including branches, loops, concurrency, optional subsequences,
references to other sequence diagrams.

sd AuthenticateUser /
'B :C
A B :C
I I
T I I . . | |
doX ! : : authentlcate(ld)>: :
o > doA | I | doM1 '
| > | | | 0 N
| |
: ! ! | doM2 N
| . . | |
| authenticate(id))| ref /A inenticateUser | :
| |
: | |
| | |
: | |
: ref J DoFoo sd DoFoo)
| . .
| | |
'B :C
I I
interaction occurrence A 4 | doX »{
| |
| |
note it covers a set of lifelines | doY »)
| |
note that the sd frame it relates to | doZ >
has the same lifelines: B and C : :

Larman, Appliying UML and Patterns, 3ed

State Machines

Compact representation of all event traces.

input event output event

N

coin/buzzer

Ty T

locked unlocked

initial state transition

/rotated push

rotating

state

UML StateMachine Diagrams

UML StateMachine Diagrams borrow heavily from David Harel's statecharts.

VARIABLES

req1 : boolean := false (* outstanding request for floor1 *)
req2 : boolean := false (* outstanding request for floor2 *)
floor : {1, 2} (* current location of elevator *)

N\

/req1 = false Elevator
/req2 = false
/ floor = 1

[req1 A floor=1]

Stopped

after (5 sec) [floor=1]

[inState(Closed) A

MovingU
req2 A floor=1] 9rp

after (5 sec) [floor=]
/reg2 = false

Open

entry /dir=up
Closed /

entry /open entry /close

~_"

[reg2 A floor=2]

blockage

closed

[inState(Closed) A

reqi A floor=2] stopped

MovingDown arriving1 Slowing

/ floor=1

entry /dir=down
entry /move

entry /stop

Requests

but1 /req1 = true
but2 / req2 = true
butUp / req1 = true
butDown / reg2 = true

Logic
Logic is the basis for a number of languages that express
constraints on allowable interpretations of other models.
- allowable instantiations of data models
* Invariants among attribute values in data models
 pre/post conditions of functions
 event conditions in event traces

 guard conditions in state machines

Object Constraint Language

OCL was designed for expressing constraints on UML diagrams.

Customer
4 . . | name: String
0.." | FrequentFlyer | O.. title: String
program Program program . address: String

' dateOfBirth: Date =~
. Utility Class
0..*| partner owner

Membership

- - i 0.* N
P o1 [senmea), o - e -
Lname oting I provider L28ne ol oints : Integer ate
' % card | 1.* today : Date
: 1 11 = (d : Date) : Boolean

— CustomerCard isBefore (d : Date) : Boolean
valid: Boolean

validFrom: Date isAfter (d : Date) : Boolean

goodThru: Date -dlf‘fﬂ : Duration

colour : enum {gold, sliver}

card

Service
description: String
condition : Boolean
pointsEarned: Integer

ointsBurned: Integer rintedName. Strin
0.*
1 [Transaction
0. I"unitPurchases: Integer

points: Integer
date : Date

context CustomerCard inv
self.printedName = (self.owner.title.concat(self.ownername))

context CustomerCard inv
(self.valid and self.colour=gold) implied self.membership.serviceLevel = "gold"

UML: 13 Different Diagram Types

Structural Behavioural

 Class Diagrams - Interaction Overview Diagrams
+ Object Diagrams - Activity Diagrams

- Composite Structure Diagrams - Sequence Diagrams

- Component Diagrams « Communication Diagrams

- Package Diagrams - State Machine Diagrams

* Deployment Diagrams » Timing Diagrams

Functional

- Use Case Diagrams

OCL is a separate language that was invented for writing
constraints on UML models

Next Week

3 Prominent Modelling Languages
- Alloy
- Statecharts
+ Scala

References

[BIRUOS] M. Blaha, J. Rumbaugh, Object-Oriented Modeling and Design
with UML, 2ed, Prentice hall, 2005.

[BRJO5] G. Booch, J. Rumbaugh, I. Jacobson. UML User Guide. 2nd
Edition. Addison Wesley. 2005.

[EJO9] S. Easterbrook, T. Johns, "Engineering the Software for
Understanding Climate Change," Computing in Science and Engineering,
pp. 65-74, November/December, 2009

[Jac95] M. Jackson, Software Requirements and Specifications, ACM
Press, 1995.

[Kra07] J. Kramer. "Is Abstraction the key to Computing?"
Communications of the ACM. April 2007/Vol. 50, No. 4.

[KSLBO0S3] G. Karsai, J. Sztipanovits, A. Ledeczi, T. Bapty. "Model-
Integrated Development of Embedded Software.", Proc. IEEE, Jan 2003,
pp 145-164.

References

[KTO8] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full
Code Generation. Wiley 2008.

[Lud04] Ludewig, J. 2004. "Models in software engineering--an introduction".
Software and Systems Modeling 2, 5-14.

[PfAt09] S. Pfleeger, J. Atlee, Software Engineering: Theory and Practice,
Prentice Hall, 2009.

[RJBO5] Rumbaugh, Jacobson, Booch, The Unified Modeling Language
Reference Manual, 2nd ed., Addison-Wesley, 2005.

[Sch06] D.C. Schmidt. "Model-Driven Engineering." IEEE Computer, vol. 39, no.
2, Feb. 2006. Page(s):25 - 31

[Sei03] Ed Seidewitz. "What Models Mean." IEEE Software, vol. 20, no. 5, pp.
26-32, Sep./Oct. 2003.

[Sel03] Bran Selic, "The Pragmatics of Model-Driven Development," IEEE
Software, vol. 20, no. 5, pp. 19-25, Sep./Oct. 2003.

[Sta73] H. Stachowiak, Allgemeine Modelltheorie, Springer-Verlag, 1973.

