
Logic Programming and Model Checking?Baoqiu Cui, Yifei Dong, Xiaoqun Du, K. Narayan Kumar, C. R. Ramakrishnan,I. V. Ramakrishnan, Abhik Roychoudhury, Scott A. Smolka, David S. WarrenDepartment of Computer ScienceSUNY at Stony BrookStony Brook, NY 11794{4400, USAhttp://www.cs.sunysb.edu/�lmcAbstract. We report on the current status of the LMC project, whichseeks to deploy the latest developments in logic-programming technologyto advance the state of the art of system speci�cation and veri�cation. Inparticular, the XMC model checker for value-passing CCS and the modalmu-calculus is discussed, as well as the XSB tabled logic programming sys-tem, on which XMC is based. Additionally, several ongoing e�orts aimed atextending the LMC approach beyond traditional �nite-state model checkingare considered, including compositional model checking, the use of explicitinduction techniques to model check parameterized systems, and the modelchecking of real-time systems. Finally, after a brief conclusion, future re-search directions are identi�ed.1 IntroductionIn the summer of 1997, C.R. Ramakrishnan, I.V. Ramakrishnan, Smolka, and War-ren were awarded a four-year NSF Experimental Software Systems (ESS) grant1 toinvestigate the idea of combining the latest developments in concurrency researchand in logic programming to advance the state-of-the art of system speci�cationand veri�cation. This was the �rst year of the ESS program at NSF, and its goal isto support experimental investigations by research teams dedicated to making fun-damental progress in software and software engineering. The ESS program directoris Dr. William W. Agresti.The current primary focus of our ESS grant is model checking [CE81, QS82,CES86], the problem of determining whether a system speci�cation possesses aproperty expressed as a temporal logic formula. Model checking has enjoyed widesuccess in verifying, or �nding design errors in, real-life systems. An interestingaccount of a number of these success stories can be found in [CW96b].We call our approach to model checking logic-programming-based model check-ing , or LMC for short, and it is centered on two large software systems devel-oped independently at SUNY Stony Brook: the Concurrency Factory [CLSS96] and? Research supported in part by NSF grants CDA{9303181, CCR{9404921, CCR{9505562,CDA{9504275, CCR{9705998, CCR{9711386 and AFOSR grants F49620-95-1-0508 andF49620-96-1-0087.1 There are two additional co-Principal Investigators on the grant who are no longer atStony Brook: Y.S. Ramakrishna of Sun Microsystems and Terrance Swift located at theUniversity of Maryland, College Park.

XSB [XSB98]. The Concurrency Factory is a speci�cation and veri�cation envi-ronment supporting integrated graphical/textual speci�cation and simulation, andmodel checking in the modal mu-calculus [Koz83] temporal logic. XSB is a logic pro-gramming system that extends Prolog-style SLD resolution with tabled resolution.The principal merits of this extension are that XSB terminates on programs having�nite models, avoids redundant subcomputations, and computes the well-foundedmodel of normal logic programs.Veri�cation systems equipped with model checkers abound. For example,http://www.csr.ncl.ac.uk:80/projects/FME/InfRes/tools lists over 50 speci-�cation and veri�cation toolkits, most of which support some form of model check-ing. Although these tools use di�erent system-speci�cation languages and property-speci�cation logics, the semantics of these logics and languages are typically speci�edvia structural recursion as (least, greatest, alternating) �xed points of certain typesof functionals.It is therefore interesting to note that the semantics of negation-free logic pro-grams are given in terms of minimal models, and Logic Programming (LP) systemsattempt to compute these models. The minimal model of a set of Horn clauses isequivalent to the least �xed point of the clauses viewed as equations over sets ofatoms. Hence, model checking problems involving least �xed points can be nat-urally and concisely cast in terms of logic programs. Problems involving greatest�xed-point computations can be easily translated into least �xed-point computa-tions via the use of logical negation.However, Prolog-style resolution is incomplete, failing to �nd minimal modelseven for datalog (function-free) programs. Moreover, the implementation of nega-tion in Prolog di�ers from the semantics of logical negation in the model theory.Consequently, traditional Prolog systems do not o�er the needed support to di-rectly implement model checkers. As alluded to above, evaluation strategies such astabling [TS86, CW96a] overcome these limitations (see Section 2.2). Hence, tabledlogic programming systems appear to o�er a suitable platform for implementingmodel checkers. The pertinent question is whether one can construct a model checkerusing this approach that is e�cient enough to be deemed practical.The evidence we have accumulated during the �rst year of our LMC projectindicates that the answer to this question is most de�nitely \yes." In particular, wehave developed XMC [RRR+97], a model checker for Milner's CCS [Mil89] and thealternation-free fragment [EL86] of the modal mu-calculus. The full value-passingversion of CCS is supported, and a generalized pre�x operator is used that allowsarbitrary Prolog terms to appear as computational units in XMC system speci�ca-tions. Full support for value-passing is essential in a speci�cation language intendedto deal with real-life systems such as telecommunications and security protocols.XMC is written in approximately 200 lines of XSB tabled-logic-programmingProlog code, and is primarily intended for the model checking of �nite-state sys-tems, although it is capable of handling certain kinds of in�nite-state systems, suchas those exhibiting \data independence" [Wol86]. With regard to the e�ciency is-sue, XMC is highly competitive with state-of-the-art model checkers hand-coded inC/C++, such as SPIN [HP96] and the Concurrency Factory [CLSS96]. This per-formance can be attributed in part to various aspects of the underlying XSB im-plementation, including its extensive support of tabling and the use of trie data

structures to encode tables. In [LRS98] we describe how XMC can be extended tothe full modal mu-calculus.Buoyed by the success of XMC, we are currently investigating ways in which theLMC approach can be extended beyond traditional �nite-state model checking. Inparticular, the following e�orts are underway.{ An LMC-style speci�cation of a model checker is given at the level of seman-tic equations, and is therefore not limited to any speci�c system-speci�cationlanguage or logic. For example, we have built a compositional model checker,simply by encoding the inference rules of the proof system as Horn clauses(Section 4.1).{ Traditionally, model checking has been viewed as an algorithmic technique, al-though there is a urry of recent activity on combining model checking withdeductive methods. Observe that (optimized) XSB meta-interpreters can beused to execute arbitrary deductive systems. Hence, the LMC approach o�ersa unique opportunity to fully and exibly integrate algorithmic and deduc-tive model checking, arguably the most interesting problem being currentlyresearched by the veri�cation community. To validate this claim, we have beenexperimenting with ways of augmenting XMC with the power of induction, withan eye toward the veri�cation of parameterized systems (Section 4.2).{ By using constraints (as in Constraint LP [JL87]) to �nitely represent in�nitesets and tabled resolution to e�ciently compute �xed points over these sets, weare looking at how tabled constraint LP can be used to verify real-time systems(Section 4.3).The rest of the paper is structured follows. Section 2 shows how model check-ing can be essentially viewed as a problem of �xed-point computation, and how�xed points are computed in XSB using tabled resolution. Section 3's focus is ourXMC model checker, and Section 4 describes ongoing work on extending the XMCtechnology beyond traditional �nite-state model checking. After a brief conclusion,Section 5 identi�es several promising directions for future research.2 PreliminariesIn this section we describe the essential computational aspects of model checkingand tabled logic programming. This side-by-side presentation exposes the primaryrationale for the LMC project.2.1 Model CheckingAs remarked in the Introduction, model checking is essentially a problem of �xed-point computation. To substantiate this view, consider an example. Suppose wehave a transition system T (transition systems are often used to model systems inthe model-checking framework) and we wish to check if the start state of T satis�esthe CTL branching-time temporal logic formula EFp. This will prove to be truejust in case there is a run of the system in which a state satisfying the atomicproposition p is encountered.Let S0 be the set of states of T that satisfy EFp. If a state s satis�es p, writtens ` p, then clearly it satis�es EFp. Further if s and t are states such that t ` EFp

and s has a transition to t, then s ` EFp as well. In other words, if S is a set ofstates each of that satis�es EFp and EFp : 2T ! 2T is the function given byEFp(S) = fs j s ` pg [fs j s! t ^ t 2 Sgthen EFp(S) � S0. As a matter of fact, S0 is the least �xed point of EFp. Thus,one way to compute the set of states that satisfy EFp is to evaluate the least �xedpoint of the function EFp. Assuming that T is �nite-state, by the Knaster-Tarskitheorem, it su�ces to start with the empty set of states and repeatedly apply thefunction EFp till it converges.There is a straightforward Horn-clause encoding of the de�ning equation ofEFp. Tabled LP systems can evaluate such programs e�ciently, and hence yieldan e�cient algorithm for model checking EFp. This observation forms the basis forthe XMC model checker (Section 3).Other temporal logic properties of interest may involve the computation of great-est �xed points. For example, consider the CTL formula AGp asserting that p holdsat all states and along all runs. The set of states satisfying this formula (whichturns out to be the negation of the formula EF:p) is the greatest �xed point of thefunction AGp given by:AGp(S) = fs j s ` pg \ fs j s! t) t 2 SgOnce again, using Knaster-Tarski, the set of states satisfying the property AGpmay be computed by starting with the set of all states and repeatedly applying thefunction AGp till it converges.More complicated properties involve the nesting of least and greatest �xed-pointproperties and their computation becomes a more complex nesting of iterations. Themodal mu-calculus, the logic of choice for XMC, uses explicit least and greatest�xed-point operators and consequently subsumes virtually all other temporal logicsin expressive power.2.2 The XSB Tabled Logic Programming SystemThe fundamental theorem of logic programming [Llo84] is that, given a set of Hornclauses (i.e., a \pure" Prolog program), the set of facts derivable by SLD resolution(the computational mechanism of Prolog) is the same as the set of facts logicallyimplied by the Horn clauses, which is the same as the set of facts in the least �xedpoint of the Horn clauses considered as set equations. From this result it mightseem obvious that logic programming is well suited to solving general �xed-pointproblems and could be directly applied to model checkingThis, however, is not the case. The foundational theorem on �xed points is weakin that it ensures only the existence of successful computations (SLD derivations);but there may be in�nitely many computations that do not lead to success. Thismeans that while a standard Prolog engine may be able to show that a particularfact is in the least �xed point of its rules, it can never show that a fact is notin the �xed point when there are in�nitely many unsuccessful computation paths,which is the case for the �xed points needed for model checking. And even if thefact is in the �xed point, Prolog's search strategy may not �nd it. So even though

the semantics of logic programming is a useful semantics for model checking, itscomputation mechanism of SLD is too weak to be practical.The XSB system implements SLG resolution [CW96a], which to a �rst approx-imation can be understood as a tabled version of SLD resolution. This means thatXSB can avoid rederiving a fact that it has previously tried to derive. (In the pro-cedural interpretation of Horn clauses, this means that XSB will never make twocalls to the same procedure passing the same arguments.) It is easy to see that fora system that has only �nitely many possibly derivable facts, as for example in a�nite-state model checking problem, XSB will always terminate.To see how this works in practice, consider the following logic program:reach(X,Y) :- trans(X,Y).reach(X,Y) :- trans(X,Int), reach(Int,Y).which de�nes reachability in a transition system. We assume that the predicatetrans(X,Y) de�nes a transition relation, meaning that the system can make a directtransition from state X to state Y. Given a de�nition of the trans relation, theserules de�ne reach to be true of a pair (X,Y) if the system can make a (nonempty)sequence of transitions starting in state X and ending in state Y. trans could bede�ned by any set of facts (and/or rules), but for our motivating example, we'llassume it is de�ned simply as:trans(a,b).trans(b,c).trans(c,b).Given a query of reach(a,X), which asks for all states reachable starting fromstate a, Prolog (using SLD resolution) will search the tree indicated in Figure 1. The
reach(a,X) :- reach(a,X)

reach(a,X) :- trans(a,X)

reach(a,b) :- reach(a,X) :- reach(b,X)

reach(a,X) :- trans(a,Intb),reach(Intb,X)

reach(a,X) :- trans(b,X) reach(a,X) :- trans(b,Intc),reach(Intc,X)

reach(a,X) :- reach(c,X)

reach(a,X) :- trans(c,X) reach(a,.X) :- trans(c,Intd),reach(Intd,X)

reach(a,X) :- reach(b,X)reach(a,b) :-

reach(a,c) :-

o

o

o

oFig. 1. In�nite SLD tree for reach(a,X)

atoms to the left of the :- symbols in the tree nodes capture the answers; the list ofatoms to the right are waiting to be resolved away. Each path from the root to a leafis a possible SLD derivation, or in the procedural interpretation of Prolog programsare computation paths through the nondeterministic Prolog program. Notice thatthe correct answers are obtained, in the three leaves. However, the point of moreinterest is that this is an in�nite tree, branching in�nitely to the lower right. Noticethat the lower right node is identical to an ancestor four nodes above it. So thepattern will repeat in�nitely, and the computation will never come back to say ithas found all answers. A query such as reach(c,a) would go into an in�nite loop,never returning to say that a is not reachable from c.Now let us look at the same example executed using SLG resolution in XSB. Theprogram is the same, but we add a directive :- table reach/2. to indicate that allsubgoals of reach should be tabled. In this case during execution, an invocation of areach subgoal creates a new subtree with that subgoal at its root if there is no suchtree already. If there is such a tree, then the answers from that tree are used, and nonew (duplicate) tree is created. Figure 2 shows the initial partial computation of thesame query to the point where the subgoal reach(b,X) is about to be invoked, atthe lower right node of that tree. Since there is no subtree for this subquery, a new
reach(a,X) :- reach(a,X)

reach(a,X) :- trans(a,X)

reach(a,b) :- reach(a,X) :- reach(b,X)

reach(a,X) :- trans(a,Intb),reach(Intb,X)Fig. 2. Initial SLG subtree for reach(a,X)one is created and computation continues with that one yielding another subtree, asshown in Figure 3. Now here again a new subgoal, reach(c,X), is invoked, leading
reach(b,X) :- reach(b,X)

reach(b,X) :- trans(b,X)

reach(b,c) :-

reach(b,X) :- trans(b,Intc),reach(Intc,X)

reach(b,X) :- reach(c,X)Fig. 3. Partial SLG subtree for reach(b,X)to a new subtree, which is shown in Figure 4. Here again we have encountered asubgoal invocation, this time of reach(b,X), and a tree for this subgoal alreadyexists; it is in Figure 3. So no more trees are created (at least at this time.) Now wecan use answers in the subtrees to answer the queries in the trees that generatedthem. For example we can use the answer reach(c,b) in Figure 4 to answer thequery of reach(c,X) generated in the lower rightmost node of Figure 3. This resultsin another answer in Figure 3, reach(b,b). Now the two answers in the tree for

reach(c,X) :- reach(c,X)

reach(c,X) :- trans(c,X)

reach(c,b) :-

reach(c,X) :- trans(c,Intc),reach(Intc,X)

reach(c,X) :- reach(b,X)Fig. 4. Partial SLG subtree for reach(c,X)reach(b,X) can be returned to the call that is the lower rightmost node of Figure4, as well as to the lower rightmost node of Figure 2.After all these answers have been returned, no new subgoals are generated, andthe computation terminates, having reached a �xed point. The �nal state of the treeof Figure 2 is shown in Figure 5. The �nal forms of the other subtrees are similar.
reach(a,X) :- reach(a,X)

reach(a,X) :- trans(a,X)

reach(a,b) :- reach(a,X) :- reach(b,X)

reach(a,X) :- trans(a,Intb),reach(Intb,X)

reach(a,b) :-reach(a,c) :-Fig. 5. The �nal SLG subtree for reach(a,X)This very simple example shows how tabling in XSB terminates on computationsthat would be in�nite in Prolog. All recursive de�nitions over �nite sets will termi-nate in a similar way. Finite-state model checkers are essentially more complicatedversions of this simple transitive closure example.3 Model Checking of Finite-State SystemsIn this section we present XMC, our XSB-based model checker for CCS and themodal mu-calculus. We �rst focus on the alternation-free fragment of the modal mu-calculus, to illustrate the strikingly direct encoding of its semantics as a tabled logicprogram. The full modal mu-calculus is treated next using a sophisticated semanticsfor negation developed within the logic-programming community. Finally, we showhow the structural operational semantics of CCS, with full value-passing support,can also be naturally captured as a tabled logic program.3.1 Model Checking the Alternation-Free Modal Mu-CalculusThe modal mu-calculus [Koz83] is an expressive temporal logic whose semantics isusually described over sets of states of labeled transition systems. We encode the

logic in an equational form, the syntax of which is given by the following grammar:F �! Z j tt j ff j F _ F j F ^ F j diam(A, F) j box(A, F)D �! Z += F (least �xed point)j Z -= F (greatest �xed point)In the above, Z is a set of formula variables (encoded as Prolog atoms) and Ais a set of actions; tt and ff are propositional constants; _ and ^ are standardlogical connectives; and diam(A, F) (possibly after action A formula F holds) andbox(A, F) (necessarily after action A formula F holds) are dual modal operators.For example, a basic property, the absence of deadlock, is expressed in this logic bya formula variable deadlock free de�ned as:deadlock_free -= box(-, deadlock_free) /\ diam(-, tt)where the `-' in box and diam formulas stand for any action. The formula states,essentially, that from every reachable state (box(-,deadlock free)) a transition ispossible (diam(-,tt)).We assume that the labeled transition system corresponding to the process spec-i�cation is given in terms of a set of facts trans(Src, Act, Dest), where Src, Act,and Dest are the source state, label and target state, respectively, of each transi-tion. The semantics of the modal mu-calculus is speci�ed declaratively in XSB byproviding a set of rules for each of the operators of the logic, as follows:models(State_S, tt).models(State_S, (F1 \/ F2)) :- models(State_S, F1).models(State_S, (F1 \/ F2)) :- models(State_S, F2).models(State_S, (F1 /\ F2)) :- models(State_S, F1), models(State_S, F2).models(State_S, diam(A, F)) :- trans(State_S, A, State_T),models(State_T, F).models(State_S, box(A, F)) :- findall(T, trans(State_S, A, T), States_L),map_models(States_L, F).Consider the rule for diam. It declares that a state State S (of a process) satis�esa formula of the form diam(A, F) if State S has an A transition to some stateState T and State T satis�es F.The semantics of logic programs are based on minimal models, and accordinglyXSB directly computes least �xed points. Hence, the semantics of the modal mu-calculus's least �xed-point operator can be directly encoded as:models(State_S, Z) :- Z += F, models(State_S, F).To compute greatest �xed points in XSB, we exploit its capability to handlenormal logic programs: programs with rules whose right-hand side literals may benegated using XSB's tnot, which performs negation by failure in a tabled environ-ment. In particular, we make use of the duality �X:F (X) = :�X::F (:X), andencode the semantics of greatest �xed-point operator as:

models(State_S, Z) :- Z -= F, negate(F, NF),tnot(models(State_S, NF)).The auxiliary predicate negate(F, NF) is de�ned such that NF is a positive formulaequivalent to (:F).For alternation-free formulas, the encoding yields dynamically strati�ed pro-grams (i.e., a program whose evaluation does not involve traversing loops withnegation), and has a two-valued minimal model. In [SSW96] it was shown thatthe evaluation method underlying XSB correctly computes this class of programs.Tabling ensures that each explored system state is visited only once in the evaluationof a modal mu-calculus formula. Consequently, the XSB program will terminate un-der XSB's tabling method when there are a �nite number of states in the transitionsystem.3.2 Model Checking the Full Modal Mu-CalculusIntuitively, the alternation depth of a modal mu-calculus formula [EL86] f is thelevel of nontrivial nesting of �xed points in f with adjacent �xed points being ofdi�erent type. When this level is 1, f is said to be \alternation-free". When thislevel is greater than 1, f is said to \contain alternation." The full modal mu-calculusrefers to the class of formulas of all possible alternation depths.In contrast to the alternation-free fragment of the modal mu-calculus, when aformula contains alternation, the resultant XSB program is not dynamically strat-i�ed, and hence the well-founded model may contain literals with unknown val-ues [vRS91]. For such formulas, we need to evaluate one of the stable models ofthe resultant program [GL88], and the choice of the stable model itself depends onthe structure of alternation in the formula. Such a model can be computed by ex-tending the well-founded model. When the well-founded model has unknown values,XSB constructs a residual program which captures the dependencies between thepredicates with unknown values.We compute the values of these remaining literals in the preferred stable modelby invoking the stable model generator smodels [NS96] on the residual program.The algorithm used in smodels recursively assigns truth values to literals untilall literals have been assigned values, or an assignment is inconsistent with theprogram rules. When an inconsistency is detected, it backtracks and tries alternatetruth assignments for previously encountered literals. By appropriately choosingthe order in which literals are assigned values, and the default values, we obtain analgorithm that correctly computes alternating �xed points.Initial experiments indicate that XMC computes alternating �xed points verye�ciently using the above strategy, even outperforming existing model checkerscrafted to carry out the same kind of computation. Details appear in [LRS98].3.3 On-the-Fly Construction of Labeled Transition SystemsThe above encoding assumes that processes are given as labeled transition systems.For processes speci�ed using a process algebra such as CCS [Mil89], we can con-struct the labeled transition system on the y, using CCS's structural operational

semantics. In e�ect, we can treat trans as a computed (IDB) relation instead ofas a static (EDB) relation, without changing the de�nition of models. Below, wesketch how the trans relation can be obtained for processes speci�ed in XL (a syn-tactically sugared version of value-passing CCS), the process speci�cation languageof XMC.The syntax of processes in our value-passing language is described by the fol-lowing grammar:E �! PN j in(A) j out(A) j code(C) j if(C, E, E)E o E j E '||' E j E # E j E n L j E @ FDef �! (PN ::= E)�In the above, E is a process expression; PN is (parameterized) process name, rep-resented as a Prolog term; C is a computation, (e.g., X is Y+1); Process in(a(t))inputs a value over port a and uni�es it with term t; out(a(t)) outputs term t overport a. Process if(C, E1, E2) behaves like E1 if computation C succeeds andotherwise like E2. Operator o is generalized pre�xing. The remaining operators arelike their CCS counterparts (modulo occasional changes in syntax to avoid clasheswith Prolog lexicon). For example, # is nondeterministic choice; '||' is parallelcomposition; @ is relabeling, where F is a list of substitutions; and `n' is restriction,where L is a list of port names. Recursion is provided by a set of de�ning equations ,Def, of the form PN ::= E.The formal semantics of our language is given using structural operational se-mantics, closely paralleling that of CCS [Mil89]. Due to space limitations, we presenthere the axioms and inference rules for only a few key constructs. In order to em-phasize the highly declarative nature of our encoding, these are presented exactlyas they are encoded in the Prolog syntax of XSB.trans(in(A), in(A), nil).trans(out(A), out(A), nil).trans(code(X), _, code) :- call(X).trans(P1 o P2, A, Q) :- trans(P1, A, Q1),(Q1 == code -> trans(P2, A, Q);(Q1 == nil -> Q = P2 ; Q = Q1 o P2))).trans(if(X, P1, P2), A, Q) :- call(X) -> trans(P1, A, Q) ; trans(P2, A, Q).trans(P '||' Q, A, P1 '||' Q) :- trans(P, A, P1).trans(P '||' Q, A, P '||' Q1) :- trans(Q, A, Q1).trans(P '||' Q, tau, P1 '||' Q1) :- trans(P, A, P1),trans(Q, B, Q1), comp(A, B).comp(in(A), out(A)).comp(out(A), in(A)).trans(P, A, Q) :- P ::= R, trans(R, A, Q).In the above, A -> B ; C is Prolog syntax for if A then B else C. The transpredicate is of the form trans(P, A, Q) meaning that process P performs an A

transition to become process Q. The axiom for input says that in(A) can executean in(A) transition and then terminate; similarly for the output axiom. The axiomfor internal computation forces the evaluation of X and then terminates (without ex-ercising any transition). The rule for generalized pre�x states that P1 o P2 behaveslike P1 until P1 terminates; at that point it behaves as P2. The conditional processif(X, P1, P2) behaves like P1 if evaluation of X succeeds, and like P2 otherwise.Finally, the rules for parallel composition state that P '||' Q can perform an au-tonomous A transition if either P or Q can (the �rst two rules), and P '||' Q canperform a synchronizing tau transition if P and Q can perform \complementary"actions (the last rule); i.e., actions of the form in(A) and out(A). The �nal ruleabove captures recursion: a process P behaves as the process expression R used inits de�nition.To illustrate the syntax and semantics of XL, our value-passing language, con-sider the following speci�cation of a channel chan (with input port get and outputport give) implemented as a bounded bu�er of size N.chan(N, Buf) ::= code(length(Buf, Len)) oif((Len == 0), receive_only(N, Buf), if((Len == N), send_only(N, Buf), receive_only(N, Buf) # send_only(N, Buf))).receive_only(N, Buf) ::= in(get(Msg)) o chan(N, [Msg|Buf]).send_only(N,Buf) ::= code(rm_last(Buf,Msg,RBuf)) oout(give(Msg)) o chan(N,RBuf).In the above de�nition rm last(Buf,Msg,RBuf) is a computation, de�ned inProlog, that removes the last message Msg from Buf, resulting in a new (smaller)bu�er RBuf.3.4 Implementation and PerformanceThe implementation of the XMC system consists of the de�nition of two predicatesmodels/2 and trans/3; in addition, it contains a compiler to translate input XL rep-resentation to one with smaller terms that is more appropriate for e�cient runtimeprocessing. Overall the system consists of less than 200 lines of well-documentedtabled Prolog code.Preliminary experiments show that the ease of implementation does not penalizethe performance of the model checker. In fact, XMC has been shown (see [RRR+97])to consistently outperform the Concurrency Factory's model checker [CLSS96] andvirtually match the performance of SPIN [HP96] on a well-known set of benchmarks.We recently obtained results from XMC on the i-protocol, a sophisticated sliding-window protocol used for �le transfers over serial lines, such as telephone lines. Thei-protocol is part of the protocol stack of the GNU UUCP package available fromthe Free Software Foundation, and consists of about 300 lines of C code.Table 1 contains the execution-time and memory-usage requirements for XMC,SPIN, COSPAN [HHK96], and SMV [CMCHG96] applied to the i-protocol to detect

a non-trivial livelock error that can occur under certain message-loss conditions.This livelock error was �rst detected using the Concurrency Factory.Version Tool Completed? Memory Time(MB) (min:sec)W=1 ~�xed COSPAN Yes 4.9 0:41SMV Yes 4.0 41:52SPIN Yes 749 0:10XMC Yes 18.4 0:03W=1 �xed COSPAN Yes 116 24:21SMV Yes 5.3 74:43SPIN Yes 820 1:02XMC Yes 128 0:46W=2 ~�xed COSPAN Yes 13 1:45SMV No 28 >35 hrsSPIN Yes 751 0:12XMC Yes 68 0:11W=2 �xed COSPAN Yes 906 619:49SMV No | |SPIN Yes 1789 6:23XMC Yes 688 3:48Table 1. i-protocol model-checking results.Run-time statistics are given for window sizes W = 1 and W = 2, with thelivelock error present (~�xed) and not present (�xed). All results were obtained onan SGI IP25 Challenge machine with 16 MIPS R10000 processors and 3GB of mainmemory. Each individual execution of a veri�cation tool, however, was carried outon a single processor with 1.8GB of available main memory.As can be observed from Table 1, XMC performs exceptionally well on thisdemanding benchmark. This can be attributed to the power of the underlying Prologdata structuring facility (the i-protocol makes use of non-trivial data structures suchas arrays and records), and the fact that data structures in XSB are evaluated lazily.4 Beyond Finite-State Model CheckingIn Section 3 we provided evidence that �nite-state model checking can be e�cientlyrealized using tabled logic programming. We argue here that tabled LP is also apowerful and versatile vehicle for verifying in�nite-state systems. In particular, threeapplications of tabled logic programming to in�nite-state model checking are con-sidered. In Section 4.1, we show how an XMC-style model checker can be extendedwith compositional techniques. Compositional reasoning can be used to establish

properties of in�nite-state systems that depend only on some �nite subpart. Sec-tion 4.2 treats parameterized systems. Finally, in Section 4.3, the application oftabled LP to real-time systems is discussed.4.1 Compositional Model CheckingConsider the XL process A o nil. Clearly it satis�es the property diam(A,tt).We can use this fact to establish that (A o nil) # T also satis�es diam(A,tt),without consideration of T. This observation forms the basis for compositional modelchecking , which seeks to solve the model checking problem for complex systems ina modular fashion. Essentially, this is accomplished by examining the syntacticstructure of processes rather than the transition relation. (Recall, that the XMCmodel checker, presented in Section 3, does exactly the latter in its computationof the predicate trans/3.) Besides yielding potentially signi�cant e�ciency gains,the compositional approach is intriguing also when one considers that the T in ourexample may well have been in�nite-state or even unde�ned.Andersen, Stirling and Winskel [ASW94] present an elegant compositional proofsystem for the veri�cation of processes de�ned in a synchronous process calculussimilar to Milner's SCCS [Mil83] with respect to properties expressed in the modalmu-calculus. A useful feature of their system is the algorithmic nature of the rules.The only nondeterminism in the choice of the next rule to apply arises from thedisjunction operator in the logic and the choice of action in the process. Both ofthese sources of nondeterminism are unavoidable. In this respect, it di�ers frommany systems reported in literature which require a clever choice of intermediateassertions to guide the choice of rules.Andersen et al. in [ASW94] also present an encoding of CCS into their syn-chronous process calculus and consequently it is possible to use their proof systemto verify CCS processes. This encoding, however, has two disadvantages. First, thesize of the alphabet increases exponentially with the number of parallel components,and, secondly, the translation of the CCS parallel composition operator is achievedvia a complex nesting of synchronous parallel, renaming, and restriction operators.To mitigate the problems with their proof system in the context of CCS, we haveadapted it to work directly for CCS processes under the restriction that relabelingoperators use only injective functions. Our system retains the algorithmic natureof their system, yet incorporates the CCS parallel composition operator and avoidsthe costly alphabet blowup.This adaptation is achieved by providing rules at three levels as opposed to twoin [ASW94]. The �rst level deals with processes that are not in the scope of a parallelcomposition operator, the second for processes in the scope of a parallel compositionoperator, and the third for processes appearing in the scope of relabeling and parallelcomposition operators.A Level-1 Rule:models(P1 # P2, box(A,F)) :- models(P1, box(A,F)),models(P2, box(A,F)).

A Level-2 Rule:models((P1 # P2) '||' P3, box(A,F)) :-models(P1 '||' P3, box(A, F)),models(P2 '||' P3, box(A, F)).A Level-3 Rule:models((B o P1) @ R '||' P2, box(A,F)) :-maps(R,B,C), models(C o (P1 @ R) '||' P2, box(A,F)).Our system is sound for arbitrary processes and complete for �nite-state pro-cesses. It has been implemented using XSB in the same declarative fashion as ourXMC model checker. The compositional system is expected to improve on XMC'sspace e�ciency by avoiding the calculation of intermediate states and by reusingsubproofs, though worst-case behavior is unchanged. Performance evaluation is on-going.Our compositional system can indeed provide proofs for properties of partiallyde�ned processes as illustrated by the following example from [ASW94]. Let p ::=(tau o p) # T and q ::= (tau o q) # T where T is an unspeci�ed process. Theformula x += box(tau, x) expresses the impossibility of divergence. The followingis a proof that p '||' q may possibly diverge.models(p '||' q, x)?- models(p '||' q, box(tau, x))?- models((tau o p) # T) '||' q, box(tau, x))?- models((tau o p) '||' q, box(tau, x))?- models(p '||' q, x)?- fail.4.2 Model Checking Parameterized Systems using InductionWe have thus far described how inference rules for a variety of veri�cation systemscan be encoded and evaluated using XSB. These inference systems specify proce-dures that are primarily intended for model checking �nite-state systems. We nowsketch how more powerful deductive schemes o�er (albeit incomplete) ways to verifyproperties of parameterized systems . A parameterized system represents an in�nitefamily of �nite-state systems; examples include an n-bit shift register and a tokenring containing an arbitrary number of processes.An in�nite family of shift registers can be speci�ed in XL as follows:reg(0) :== bitreg(s(N)) :== (bit @ [get/temp] || reg(N) @ [give/temp]) \ {temp}bit :== in(get) o out(give) o bitIn the above speci�cation, natural numbers are represented using successor notation(0, s(0), s(s(0)), : : :) and reg(n) de�nes a shift register with n+ 1 bits.Now consider what happens when the query models(reg(M), �), for some non-trivial property � and M unbound (thereby representing an arbitrary instance of thefamily), is submitted to an XMC-style model checker. Tabled evaluation of thisquery will attempt to enumerate all values of M such that reg(M) models the for-mula �. Assuming there are an in�nite number of values of M for which this is the

case, the query will not terminate. Hence, instead of attempting to enumerate theset of parameters for which the query is true, we need a mechanism to derive answersthat compactly describe this set.For this purpose, we exploit XSB's capability to derive conditional answers:answers whose truth has not yet been (or cannot be) independently established.This mechanism is used already in XSB for handling programs with non-strati�ednegation under well-founded semantics. For instance, for the program fragment p:- q. q :- tnot r. r :- tnot q. XSB generates three answers: one for p that isconditional on the truth of q, and one each for q and r, both conditional on thefalsity of the other. Now, if r can be proven false independently, conditional answersfor q and p can be simpli�ed : both can be marked as unconditionally true.Our approach to model checking parameterized systems is to implement ascheme to uncover the inductive structure of a veri�cation proof based on the abovemechanism for marking and simplifying conditional answers. Consider, again, thequery models(reg(M), �). When resolving this query, we will encounter two cases,corresponding to the de�nition of the reg family: (i) M = 0, and (ii) M = s(N), cor-responding to the base case and the recursive case, respectively. For the base case,the model checking problem is �nite-state and the query models(reg(0), �) canbe completely evaluated by tabled resolution.For the recursive case, we will eventually encounter a subgoal of the formmodels(reg(N), �0), where �0 is some subformula of �. For simplicity of exposi-tion, consider the case in which � = �0. Under tabled resolution, since this subgoalis a variant of one seen before, we will begin resolving answers to models(reg(N),�) from the table of models(reg(M), �), and eventually add new answers tomodels(reg(M), �). This naive strategy leads to an in�nite computation. However,instead of generating (enumerating) answers for models(reg(N), �) for adding an-swers to models(reg(M), �), we can generate one conditional answer, of the form:models(reg(M), �) :- M = s(N), models(reg(N), �).which captures the dependency between the two sets of answers. In e�ect, we haveevaluated away the �nite parts of the proof, \skipping over" the in�nite partswhile retaining their structure. For instance, in the above example, we skippedover models(reg(N), �) (i.e., did not attempt to establish its truth indepen-dently), and retained the structure of the in�nite part by marking the truth ofmodels(reg(s(M)), �) as conditional on the truth of models(reg(N), �). Usingthis mechanism, we are left with a residual program, a set of conditional answersthat reects the structure of the inductive proof. The residual program, in fact,computes exactly the set of instances of the family for which the property holds,and hence compactly represents a potentially in�nite set.Resolution as sketched above, by replacing instances of heads (left-hand sides) ofrules by the corresponding bodies (right-hand sides) unfolds the recursive structureof the speci�cation. In order to make the structure of induction explicit, it is oftennecessary to perform folding steps, where instances of rule bodies are replaced bythe corresponding heads. In [RRRS98] we describe how tabled resolution's abilityto compute conditional answers, and folding mechanisms can be combined to revealthe structure of induction.It should be noted that although we have a representation for the (in�nite) set

of instances for which the property holds, the proof is not yet complete; we stillneed to show that the set of instances we have computed covers the entire family.What we have done is to simply evaluate away the �nite parts, leaving behind thecore induction problem, which can then be possibly solved using theorem provers.In many cases, however, the core induction problem is simple enough that the proofcan be completed by heuristic methods that attempt to �nd a counter example, i.e.,an instance of the family that is not generated by the residual program. For example,we have successfully used this counter-example technique to verify certain livenessproperties of token rings and chains (shift registers), and soundness properties ofcarry look-ahead adders.4.3 Model Checking Real-Time SystemsAnother kind of in�nite-state system we are interested in is real-time systems . Mostembedded systems such as avionics boxes and medical devices are required to sat-isfy certain timing constraints, and real-time system speci�cations allow a systemdesigner to explicitly capture these constraints.Real-time systems are often speci�ed as timed automata [AD94]. A timed au-tomaton consists of a set of locations (analogous to states in a �nite automaton),and a set of edges between locations denoting transitions. Locations as well astransitions may be decorated with constraints on clocks . An example of a timedautomaton appears in Figure 6. A state of a timed automaton comprises a loca-tion and an assignment of values to clock variables. Clearly, since clocks range overin�nite domains, timed automata are in�nite-state automata.Real-time extensions to temporal logics, such as timed extensions of the modalmu-calculus [ACD93, HNSY94, SS95], are used to specify the properties of interest.Traditional model-checking algorithms do not directly work in the case of real-time systems since the underlying state-space is in�nite. The key then is to consideronly �nitely many regions of the state space. In [AD94] it is shown that when theconstraints on clocks are restricted to those of the form X < Y + c where X and Yare clock variables and c is a constant, the state space of a timed automaton canbe partitioned into �nitely many stable regions|sets of indistinguishable elementsof the state space.For example, in the automaton of Figure 6, states hL0; t = 3i and hL0; t = 4i areindistinguishable. States hL0; t = 4i and hL0; t = 6i, however, can be distinguished,since only from the latter can we make a transition to hL1; t = 6i, where an a-transition is enabled.In [SS95], we presented a local algorithm for model checking real-time systems,where the �nite discretization of the state space is done on demand, and only to theextent needed to prove or disprove the formula at hand. We can encode the essenceof this algorithm with three predicates: models/2, which expresses when a regionsatis�es a timed temporal formula, refinesto/2, which relates a region with itspartitions (obtained during �nite discretization), and edge/3, which captures thetransitions between regions.Re�nement adds a new inference rule to models:R refinesto fRig;8i Ri ` FR ` F

L L

b
a

L2

0 1

cda

t>1

t>2

reset t

t<8

t>5Fig. 6. Timed Automatonwhich is captured by the following Horn clause:models(R, F) :- refinesto(R, Refinements), map_models(Refinements, F).Re�nement creates new regions, and hence introduces new edges. The presenceor absence of such edges may force further re�nement. Therefore, refinesto andedge are mutually recursive predicates. Regions themselves are represented as a setof linear constraints, and operations on regions (such as splitting, which is neededwhen two points in a region can be distinguished) manipulate these constraints.Thus the resultant program is a tabled constraint logic program. Such programscan be evaluated in XSB using a meta interpreter, without modifying XSB's SLG-resolution engine. For better performance, however, we plan to directly augmentthe engine with a constraint-handling facility.5 ConclusionsWe have surveyed the current state of the LMC project, which seeks to use the latestdevelopments in logic-programming technology to advance the state of the art ofsystem speci�cation and veri�cation. In particular, the XMC model checker wasdiscussed as well as several directions in which we are extending the LMC approachbeyond traditional �nite-state model checking.Additional e�ciency and ease-of-use issues are worthy of future investigation.First, since model checkers are speci�ed at the level of semantic equations, equationsof abstract semantics [CC77] can be encoded with equal ease. These can be usedto incorporate process and formula abstractions, which have been used successfullyto ameliorate state explosion in model checking [Dam96], into an LMC-style modelchecker. Secondly, the programmability of an LP system allows for direct encoding oftraditional model-checking optimizations, such as partial order reduction [HPP96].Finally, the high level at which model checking is speci�ed correspondingly elevatesthe level at which erroneous system speci�cations can be diagnosed and debugged.References[ACD93] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems.Information and Computation, 104(1):2{34, 1993.

[AD94] R. Alur and D. Dill. The theory of timed automata. Theoretical ComputerScience, 126(2), 1994.[AH96] R. Alur and T. A. Henzinger, editors. Computer Aided Veri�cation (CAV'96), volume 1102 of Lecture Notes in Computer Science, New Brunswick,New Jersey, July 1996. Springer-Verlag.[ASW94] H. R. Andersen, C. Stirling, and G. Winskel. A compositional proof systemfor the modal mu-calculus. In Proceedings of the Ninth Annual IEEE Sym-posium on Logic in Computer Science, pages 144{153, Paris, France, July1994.[CC77] P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice model forstatic analysis of programs by construction or approximation of �xpoints. InACM Symposium on Principles of Programming Languages, pages 238{252.ACM Press, 1977.[CE81] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronizationskeletons using branching-time temporal logic. In D. Kozen, editor, Proceed-ings of the Workshop on Logic of Programs, Yorktown Heights, volume 131of Lecture Notes in Computer Science, pages 52{71. Springer-Verlag, 1981.[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation of�nite-state concurrent systems using temporal logic speci�cations. ACMTOPLAS, 8(2), 1986.[CLSS96] R. Cleaveland, P. M. Lewis, S. A. Smolka, and O. Sokolsky. The ConcurrencyFactory: A development environment for concurrent systems. In Alur andHenzinger [AH96], pages 398{401.[CMCHG96] E. M. Clarke, K. McMillan, S. Campos, and V. Hartonas-GarmHausen.Symbolic model checking. In Alur and Henzinger [AH96], pages 419{422.[CW96a] W. Chen and D. S. Warren. Tabled evaluation with delaying for general logicprograms. Journal of the ACM, 43(1):20{74, January 1996.[CW96b] E. M. Clarke and J. M. Wing. Formal methods: State of the art and futuredirections. ACM Computing Surveys, 28(4), December 1996.[Dam96] D. Dams. Abstract Interpretation and Partition Re�nement for Model Check-ing. PhD thesis, Eindhoven University of Technology, 1996.[EL86] E. A. Emerson and C.-L. Lei. E�cient model checking in fragments of thepropositional mu-calculus. In Proceedings of the First Annual Symposium onLogic in Computer Science, pages 267{278, 1986.[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic program-ming. In International Conference on Logic Programming, pages 1070{1080,1988.[HHK96] R. H. Hardin, Z. Har'El, and R. P. Kurshan. COSPAN. In Alur and Hen-zinger [AH96], pages 423{427.[HNSY94] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic modelchecking for real-time systems. Information and Computation, 111(2), 1994.[HP96] G. J. Holzmann and D. Peled. The state of SPIN. In Alur and Henzinger[AH96], pages 385{389.[HPP96] G. Holzmann, D. Peled, and V. Pratt, editors. Partial-Order Methods in Ver-i�cation (POMIV '96), DIMACS Series in Discrete Mathematics and Theo-retical Computer Science, New Brunswick, New Jersey, July 1996. AmericanMathematical Society.[JL87] J. Ja�ar and J.-L. Lassez. Constraint logic programming. In ACM Sympo-sium on Principles of Programming Languages, pages 111{119, 1987.[Koz83] D. Kozen. Results on the propositional �-calculus. Theoretical ComputerScience, 27:333{354, 1983.

[Llo84] J. W. Lloyd. Foundations of Logic Programming. Springer, 1984.[LRS98] X. Liu, C. R. Ramakrishnan, and S. A. Smolka. Fully local and e�cient eval-uation of alternating �xed points. In Proceedings of the Fourth InternationalConference on Tools and Algorithms for the Construction and Analysis ofSystems (TACAS '98), Lecture Notes in Computer Science. Springer-Verlag,1998.[Mil83] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Sci-ence, 25:267{310, 1983.[Mil89] R. Milner. Communication and Concurrency. International Series in Com-puter Science. Prentice Hall, 1989.[NS96] I. Niemela and P. Simons. E�cient implementation of the well-founded andstable model semantics. In Joint International Conference and Symposiumon Logic Programming, pages 289{303, 1996.[QS82] J. P. Queille and J. Sifakis. Speci�cation and veri�cation of concurrentsystems in Cesar. In Proceedings of the International Symposium in Pro-gramming, volume 137 of Lecture Notes in Computer Science, Berlin, 1982.Springer-Verlag.[RRR+97] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka,T. W. Swift, and D. S. Warren. E�cient model checking using tabled resolu-tion. In Proceedings of the 9th International Conference on Computer-AidedVeri�cation (CAV '97), Haifa, Israel, July 1997. Springer-Verlag.[RRRS98] A. Roychoudhury, C. R. Ramakrishnan, I. V. Ramakrishnan, and S. A.Smolka. Tabulation-based induction proofs with applications to automatedveri�cation. In Workshop on Tabulation in Parsing and Deduction, 1998.[SS95] O. Sokolsky and S. A. Smolka. Local model checking for real-time systems.In Proceedings of the 7th International Conference on Computer-Aided Veri-�cation. American Mathematical Society, 1995.[SSW96] K. Sagonas, T. Swift, and D. S. Warren. An abstract machine to compute�xed-order dynamically strati�ed programs. In International Conference onAutomated Deduction (CADE), 1996.[TS86] H. Tamaki and T. Sato. OLDT resolution with tabulation. In InternationalConference on Logic Programming, pages 84{98. MIT Press, 1986.[vRS91] A. van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics forgeneral logic programs. Journal of the ACM, 38(3), 1991.[Wol86] P. Wolper. Expressing interesting properties of programs in propositionaltemporal logic. In Proc. 13th ACM Symp. on Principles of Programming,pages 184{192, St. Petersburgh, January 1986.[XSB98] XSB. The XSB logic programming system v1.8, 1998. Available fromhttp://www.cs.sunysb.edu/�sbprolog.
This article was processed using the LATEX macro package with LLNCS style

