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Abstract. We describe a technique for verifying the control logic of

pipelined microprocessors. It handles more complicated designs, and re-

quires less human intervention, than existing methods. The technique

automatically compares a pipelined implementation to an architectural

description. The CPU time needed for veri�cation is independent of the

data path width, the register �le size, and the number of ALU oper-

ations. Debugging information is automatically produced for incorrect

processor designs. Much of the power of the method results from an e�-

cient validity checker for a logic of uninterpreted functions with equality.

Empirical results include the veri�cation of a pipelined implementation

of a subset of the DLX architecture.

1 Introduction

The design of high-performance processors is a very expensive and competitive

enterprise. The speed with which a design can be completed is a crucial factor

in determining its success in the marketplace. Concern about design errors is a

major factor in design time. For example, each month of additional design time

of the MIPS 4000 processor was estimated to cost $3-$8 million, and 27% of the

design time was spent in \veri�cation and test" [13].

We believe that formal veri�cation methods could eventually have a signif-

icant economic impact on microprocessor designs by providing faster methods

for catching design errors, resulting in fewer design iterations and reduced simu-

lation time. For maximum economic impact, a veri�cation methodology should:

{ be able to handle modern processor designs,

{ be applicable to the aspects of the design that are most susceptible to errors,

{ be relatively fast and require little labor, and

{ provide information to help pinpoint design errors.

The best-known examples of formally veri�ed processors have been extremely

simple processor designs, which were generally unpipelined [7, 8, 15, 16]. The ver-

i�cation methods used rely on theorem-provers that require a great deal of very

skilled human guidance (the practical unit of for measuring labor in these studies

seems to be the person-month). Furthermore, the processor implementations that



were veri�ed were so simple that they were able to avoid central problems such

as control complexity. There are more recent veri�cation techniques [1, 17] that

are much more automatic, but they have not been demonstrated on pipelined

processors.

The veri�cation of modern processors poses a special problem. The natu-

ral speci�cation of a processor is the programmer-level functional model, called

the instruction set architecture. Such a speci�cation is essentially an operational

description of a processor that executes each instruction separately, one cycle

per instruction. The implementation, one the other hand, need not execute each

instruction separately; several instruction might be executing simultaneously

because of pipelining, etc. Formal veri�cation requires proving that the speci�-

cation and implementation are in a proper relationship, but that relationship is

not necessarily easy to de�ne.

Recently, there have been successful e�orts to verify pipelined processors

using human-guided theorem-provers [11, 19, 20, 22]. However, in all of these

cases, either the processor was extremely simple or a large amount of labor was

required.

Although the examples we have attacked are still much simpler than current

high-performance commercial processors, they are signi�cantly beyond the ca-

pabilities of automatic veri�cation methods reported previously. The method is

targeted towards errors in the microprocessor control, which, according to many

designers, is where most of the bugs usually exist (datapaths are usually not

considered di�cult, except for 
oating point operations). Labor is minimized,

since the procedure is automatic except for the development of the descriptions

of the speci�cation and implementation. When the implementation of the pro-

cessor is incorrect, the method can produce a speci�c example showing how the

speci�cation is violated.

Since we wish to focus on the processor control, we assume that the combi-

national logic in the data path is correct. Under this assumption (which can be

formally checked using existing techniques), the di�erences between the speci-

�cation and implementation behaviors are entirely in the timing of operations

and the transfer of values. For example, when the speci�cation stores the sum of

two registers in a destination register, the implementation may place the result

in a pipe register, and not write the result to its destination until after another

instruction has begun executing.

The logic we have chosen is the quanti�er-free logic of uninterpreted functions

and predicates with equality and propositional connectives. Uninterpreted func-

tions are used to represent combinational ALUs, for example, without detailing

their functionality. Propositional connectives and equality are used in describing

control in the speci�cation and the implementation, and in comparing them.

The validity problem for this logic is decidable. In practice, the complexity

is dominated by handling Boolean connectives, just as with representations for

propositional logic such as BDDs [2]. However, the additional expressiveness of

our logic allows veri�cation problems to be described at a higher level of abstrac-

tion than with propositional logic. As a result, there is a substantial reduction
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in the CPU time needed for veri�cation.

Corella has also observed that uninterpreted functions and constants can be

used to abstract away from the details of datapaths, in order to focus on control

issues [9, 10]. He has a program for analyzing logical expressions which he has

used for verifying a non-pipelined processor and a prefetch circuit. Although

the details are not presented, his analysis procedure appears to be much less

e�cient than ours, and he does not address the problems of specifying pipelined

processors.

Our method can be split into two phases. The �rst phase compiles operational

descriptions of the speci�cation and implementation, then constructs a logical

formula that is valid if and only if the implementation is correct with respect to

the speci�cation. The second phase is a decision procedure that checks whether

the formula is valid. The next two sections describe these two phases. We then

give experimental results and concluding remarks.

2 Correctness Criteria

The veri�cation process begins with the user providing behavioral descriptions

of an implementation and a speci�cation. For processor veri�cation, the speci-

�cation describes how the programmer-visible parts of the processor state are

updated when one instruction is executed every cycle. The implementation de-

scription should be at the highest level of abstraction that still exposes relevant

design issues, such as pipelining.

Each description is automatically compiled into a transition function, which

takes a state as its �rst argument, the current inputs as its second argument,

and returns the next state. The transition function is encoded as a vector of

symbolic expressions with one entry for each state variable. Any HDL could be

used for the descriptions, given an appropriate compiler. Our prototype veri�er

used a simple HDL based on a small subset of Common LISP. The compiler

translates behavioral descriptions into transition functions through a kind of

symbolic simulation.

Wewrite F

Spec

and F

Impl

to denote the transition function of the speci�cation

and the implementation, respectively. We require that the implementation and

the speci�cation have corresponding input wires. The processors we have veri�ed

have no explicit output wires since the memory was modeled as part of the

processor and we did not model I/O.

Almost all processors have an input setting that causes instructions already

in the pipeline to continue execution while no new instructions are initiated. This

is typically referred to as stalling the processor. If I

Stall

is an input combination

that causes the processor to stall, then the function F

Impl

( � ; I

Stall

) represents

the e�ect of stalling for one cycle. All instructions currently in the pipeline can

be completed by stalling for a su�cent number of cycles. This operation is called


ushing the pipeline, and it is an important part of our veri�cation method.

Intuitively, the veri�er should prove that if the implementation and speci-

�cation start in any matching pair of states, then the result of executing any

3



instruction will lead to a matching pair of states. The primary di�culty with

matching the implementation and speci�cation is the presence of partially ex-

ecuted instructions in the pipeline. Various parts of the implementation state

are updated at di�erent stages of the execution of an instruction, so it is not

necessarily possible to �nd a point where the implementation state and the

speci�cation state can be compared easily. The veri�er solves this problem by

simulating the e�ect of completing every instruction in the pipeline before doing

the comparison. The natural way to complete every instruction is to 
ush the

pipeline.

All of this is made more precise in �gure 1. The implementation can be in

an arbitrary state Q

Impl

(labeled \Old Impl State" in the �gure). To complete

the partially executed instructions in Q

Impl

, the pipeline is 
ushed, producing

\Flushed Old Impl State". Then, all but the programmer-visible parts of the im-

plementation state are stripped o� (we de�ne the function proj for this purpose)

to produce Q

Spec

, the \Old Spec State". Because of the wayQ

Spec

is constructed

from Q

Impl

, we say that Q

Spec

matches Q

Impl

.
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State

?

F

Impl

( � ; I)
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Fig. 1. Commutative diagram for showing our correctness criteria.

Let I be an arbitrary input combination to the pipeline (recall that the

speci�cation and the implementation are required to have corresponding input

wires). Let Q

0

Impl

= F

Impl

(Q

Impl

; I), the \New Impl State", and let Q

0

Spec

=

F

Spec

(Q

Spec

; I), the \New Spec State". We consider the implementation to sat-

isfy the speci�cation if and only if Q

0

Spec

matches Q

0

Impl

. To check this, 
ush and

project Q

0

Impl

, then see if the result is equal to Q

0

Spec

, as shown at the bottom

of �gure 1.

It is often convenient to use a slightly di�erent (but equivalent) statement

of our correctness criteria. In �gure 1, there are two di�erent paths from \Old

Impl State" to \New Spec State". The path that involves F

Impl

( � ; I) is called

the implementation side of the diagram; the path that involves F

Spec

( � ; I) is

called the speci�cation side. For each path, there is a corresponding function

that is the composition of the functions labeling the arrows on the path. We

say that the implementation satis�es the speci�cation if and only if the function

corresponding to the implementation side of the diagram is equal to the func-
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tion corresponding to the speci�cation side of the diagram. More succinctly, the

diagram must commute.

The reader may notice that �gure 1 has the same form as commutative di-

agrams used with abstraction functions. In our case, the abstraction function

represents the e�ect of 
ushing an implementation state and then applying the

proj function. Typical veri�cation methods require that there exist some abstrac-

tion function that makes the diagram commute. In contrast, we require that our

speci�c abstraction function makes the diagram commute.

In some cases, it may be necessary during veri�cation to restrict the set

of \Old Impl States" considered in �gure 1. In this case, an invariant could

be provided (the invariant must be closed under the implementation transition

function). All of the examples in this paper were proved correct without having

to use an invariant.

Notice that the same input I is applied to both the implementation and the

speci�cation in �gure 1. This is only appropriate in the simple case where the

implementation requires exactly one cycle per instruction (once the pipeline is

�lled). If more than one cycle is sometimes required, then on the extra cycles it

is necessary to apply I

Stall

to the inputs of the speci�cation rather than I. An

example of this is discussed in section 4.2.

3 Checking Correctness

As described above, to verify a processor we must check whether the two func-

tions corresponding to the two sides of the diagram in �gure 1 are equal. Each

of the two functions can be represented by a vector of symbolic expressions. The

vectors have one component for each programmer-visible state variable of the

processor. These expressions can be computed e�ciently by symbolically simu-

lating the behavioral descriptions of the implementation and the speci�cation.

The implementation is symbolically simulated several times to model the e�ect

of 
ushing the pipeline.

Let hs

1

; . . . ; s

n

i and ht

1

; . . . ; t

n

i be vectors of expressions. To verify that the

functions they represent are equal, we must check whether each formula s

k

= t

k

is valid, for 1 � k � n. Before describing our algorithm for this, we de�ne the

logic we use to encode the formulas.

3.1 Uninterpreted Functions with Equality

Many quanti�er-free logics that include uninterpreted functions and equality

have been studied. Unlike most of those logics [18, 21], ours does not include

addition or any arithmetical relations. For our application of verifying micropro-

cessor control, there does not appear to be any need to have arithmetic built

into the logic (although the ability to declare certain uninterpreted functions to

be associative and/or commutative would be useful).

We begin by describing a subset of the logic we use. This subset has the

following abstract syntax (where ite denotes the if-then-else operator):
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hformulai ::= ite(hformulai; hformulai; hformulai)

j (htermi = htermi)

j hpredicate symboli(htermi; . . . ; htermi)

j hpropositional variablei j true j false

htermi ::= ite(hformulai; htermi; htermi)

j hfunction symboli(htermi; . . . ; htermi)

j hterm variablei:

Notice that the ite operator can be used to construct both formulas and

terms. We included ite as a primitive because it simpli�es our case-splitting

heuristics and because it allows for e�cient construction of transition functions

without introducing auxiliary variables.

There is no explicit quanti�cation in the logic. Also, we do not require speci�c

interpretations for function symbols and predicate symbols. A formula is valid

if and only if it is true for all interpretations of variables, function symbols and

predicate symbols.

Although the ite operator, together with the constants true and false, is

adequate for constructing all Boolean operations, we also include logical nega-

tion and disjunction as primitives in our decision procedure. This simpli�es the

rewrite rules used to reduce our formulas, especially rules involving associativity

and commutativity of disjunction.

Verifying a processor usually requires reasoning about stores such as a reg-

ister �le or main memory. We model stores as having an unbounded address

space. If a processor design satis�es our correctness criteria in this case, then

it is correct for any �nite register �le or memory. If certain conventions are fol-

lowed, the above logic is adequate for reasoning about stores. However, we found

it more e�cient to add two primitives, read and write, for manipulating stores.

These primitives are essentially the same as the select and store operators used

by Nelson and Oppen [18]. If reg�le is a variable representing the initial state of

a register �le, then

write(reg�le; addr ; data)

represents the store that results from writing the value data into address addr

of reg�le. The value at address addr in the original state of the register �le is

denoted by

read(reg�le; addr):

Any expression that denotes a store, whether it is constructed using variables,

write's or ite's, can be used as the �rst argument of a read or a write operation.
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3.2 Validity Checking Algorithm

Pseudo-code for a simpli�ed version of our decision procedure for checking va-

lidity, along with a description of its basic operation, is given in �gure 2. This

procedure is still preliminary and may be improved further, so we will just sketch

the main ideas behind it.

Our decision procedure di�ers in several respects from earlier work [18, 21].

Arithmetic is not a source of complexity for our algorithm, since it is not included

in our logic. In our applications, the potentially complex Boolean structure of

the formulas we check is the primary bottleneck. Thus, we have concentrated on

handling Boolean structure e�ciently in practice.

Another di�erence is that we are careful to represent formulas as directed

acyclic graphs (DAGs) with no distinct isomorphic subgraphs. For this to reduce

the time complexity of the validity checker, it is necessary to memoize (cache)

intermediate results. As shown in �gure 2, the caching scheme is more compli-

cated than in standard BDD algorithms [2] because formulas must be cached

relative to a set of assumptions.

The �nal major di�erence between our algorithm and previous work is that

we do not require formulas to be rewritten into a Boolean combination of atomic

formulas. For example, formulas of the form e

1

= e

2

, where e

1

and e

2

may

contain an arbitrary number of ite operators, are checked directly without �rst

being rewritten.

Detlefs and Nelson [12] have recently developed a new decision procedure

based on a conjunctive normal form representation that appears to be e�cient

in practice. We have not yet been able to do a thorough comparison, however.

As check does recursive case analysis on the formula p, it accumulates a set of

assumptionsA that is used as an argument to deeper recursive calls (see �gure 2).

This set of assumptions must not become inconsistent. To avoid such inconsis-

tency, we require that if p

0

is the �rst result of simplify(p;A

0

), then neither

choose splitting formula(p

0

) nor its negation is logically implied by A

0

. We call

this the consistency requirement on simplify and choose splitting formula.Main-

taining the consistency requirement is made easier by restricting the procedure

choose splitting formula to return only atomic formulas (formulas containing no

ite, or , not or write operations).

As written in �gure 2, our algorithm is indistinguishable from a propositional

tautology checker. Dealing with uninterpreted functions and equality is not done

in the top level algorithm. Instead, it is done in the simplify routine. For example,

given the assumptions e

1

= e

2

and e

2

= e

3

, it must be possible to simplify the

formula e

1

6= e

3

to false; otherwise, the consistency requirement would not be

maintained. As a result, simplify and associated routines require a large fraction

of the code in our veri�er.

In spite of the consistency requirement, there is signi�cant latitude in how

aggressively formulas are simpli�ed. It may seem best to do as much simpli�-

cation as possible, but our experiments indicate otherwise. We see two reasons

for this. If simplify does the minimal amount of simpli�cation necessary to meet

the consistency requirement, then it may use less CPU time than a more aggres-
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check(p : formula, A: set of formula): set of formula;

var

s, p

0

, p

1

: formula;

A

0

, A

1

, U

0

, U

1

, U : set of formula;

G: set of set of formula;

begin

if p � true then return ;;

if p � false then

print \not valid";

terminate unsuccessfully;

G := cache(p);

if 9U 2 G such that U � A then return U ; /* cache hit */

/* cache miss */

s := choose splitting formula(p); /* prepare to case split */

/* do s false case */

A

0

:= A [ f:sg;

(p

0

, U

0

) := simplify(p, A

0

);

U

0

:= U

0

[check(p

0

, A

0

); /* assumptions used for s false case */

/* do s true case */

A

1

:= A [ fsg;

(p

1

, U

1

) := simplify(p, A

1

);

U

1

:= U

1

[check(p

1

, A

1

); /* assumptions used for s true case */

U := (U

0

� f:sg) [ (U

1

� fsg); /* assumptions used */

cache(p) := G [ fUg; /* add cache entry */

return U ;

end;

Fig. 2. The procedure check terminates successfully if the formula p is logically implied

by the set of assumptions A; otherwise, it terminates unsuccessfully. Not all of the

assumptions in A need be relevant in implying p; when check terminates successfully

it returns those assumptions that were actually used. The set of assumptions used

need not be one of the minimal subsets of A that implies p. Checking whether p is

valid is done by letting A be the emptyset. Initially, the global lookup table cache

returns the emptyset for every formula p. Later, cache(p) returns the set containing

those assumption sets that have been su�cient to imply p in previous calls of check.

The procedure choose splitting formula heuristically chooses a formula to be used for

case splitting. The call simplify(p;A

0

) returns as its �rst result a formula formed by

simplifying p under the assumptions A

0

. The second result is the set of formulas in A

0

that were actually used when simplifying p.
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sive simpli�cation routine. Thus, even if slightly more case splitting is needed

(resulting in more calls to simplify), the total CPU time used may be reduced.

The second reason is more subtle. Suppose we are checking the validity of a

formula p that has a lot of shared structure when represented as a DAG. Our

hope is that by caching intermediate results, the CPU time typically needed

for validity checking grows with the size of the DAG of p, rather than with

the size of its tree representation. This can be important in practice; for the

DLX example (section 4.2) it is not unusual for the tree representation of a

formula to be two orders of magnitude larger than the DAG representation. The

more aggressive simplify is, the more the shared structure of p is lost during

recursive case analysis, which appears to result in worse cache performance. We

are continuing to experiment with di�erent kinds of simpli�cation strategies in

our prototype implementation.

Unlike the algorithm in �gure 2, our validity checker produces debugging

information for invalid formulas. This consists of a satis�able set of (possibly

negated) atomic formulas that implies the negation of the original formula.When

verifying a microprocessor, the debugging information can be used to construct

a simulation vector that demonstrates the bug.

There is another important di�erence between our current implementation

and the algorithm in �gure 2. Let (p

0

; U

0

) be the result of simplify(p;A

0

). Con-

trary to the description in �gure 2, in our implementation U

0

is not required

to be a subset of A

0

. All that is required is that all of the formulas in U

0

are

logically implied by A

0

, and that the equivalence of p and p

0

is logically implied

by U

0

. As a result, something more sophisticated than subtracting out the sets

fsg and f:sg must be done to compute a U that is weak enough to be logi-

cally implied by A (see �gure 2). A second complication is that �nding a cache

hit requires checking su�cient conditions for logical implication between sets of

formulas, rather than just set containment. However, dealing with these com-

plications seems to be justi�ed since the cache hit ratio is increased by having

simplify return a U

0

that is weaker than it could be if it had to be a subset of A

0

.

We are still experimenting with ideas for balancing these issues more e�ciently.

4 Experimental Results

In this section, we describe empirical results for applying our veri�cation method

to a pipelined ALU [5] and a subset of the DLX processor [14].

4.1 Pipelined ALU

The 3-stage pipelined ALU we considered (�gure 3) has been used as a bench-

mark for BDD-based veri�cation methods [3, 4, 5, 6]. A natural way to compare

the performance of these methods is to see how the CPU time needed for veri-

�cation grows as the pipeline is increased in size by (for example) increasing its

datapath width w or its register �le size r. For Burch, Clarke and Long [4] the

CPU time grew roughly quadratically in w and cubically in r. Clarke, Grumberg
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and Long [6], using a simple abstraction provided by the user, demonstrated lin-

ear growth in both w and r. Sublinear growth in r and subquadratic growth in

w was achieved by Bryant, Beatty and Seger [3].

Control

Register file

A
L

U

O
p2

Read ports Write port

O
p1

In
st

ru
ct

io
n 

in
pu

ts

Fig. 3. 3-stage pipelined ALU. If the stall input is true, then no instruction is loaded.

Otherwise, the src1 and src2 inputs provide the address of the arguments in the register

�le, the op input speci�es the ALU operation to be performed on the arguments, and

the dest input speci�es were the result is to be written.

In our veri�cation method, the width of the data path and the number of

registers and ALU operations can be abstracted away. As a result, one veri�ca-

tion run can check the control logic of pipelines with any combination of values

for these parameters. A total of 370 milliseconds of CPU time (running compiled

Lucid Common LISP on a DECstation 5000/240) is required to do a complete

veri�cation run, including loading and compiling behavioral descriptions, au-

tomatically constructing the abstraction function and related expressions, and

checking the validity of the appropriate formula. The validity checking itself,

the primary bottleneck on larger examples, only required 50 milliseconds for the

pipelined ALU.

4.2 DLX Processor

Hennessy and Patterson [14] designed the DLX architecture to teach the basic

concepts used in the MIPS 2000 and other RISC processors of that generation.
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The subset of the DLX that we veri�ed had six types of instructions: store word,

load word, unconditional jump, conditional branch (branch when the source

register is equal to zero), 3-register ALU instructions, and ALU immediate in-

structions. As with the pipelined ALU described earlier, the speci�cs of the ALU

operations are abstracted away in both the speci�cation and the implementa-

tion. Thus, our veri�cation covers any set of ALU operations, assuming that the

combinational ALU in the processor has been separately veri�ed.

Our DLX implementation has a standard 5-stage pipeline. The DLX archi-

tecture has no branch delay slot; our implementation uses the \assume branch

not taken" strategy. No pipelining is exposed in the DLX architecture or in our

speci�cation of it. Thus, it is the responsibility of the implementation to provide

forwarding of data and a load interlock.

The interlock and the lack of a branch delay slot mean that the pipeline ex-

ecutes slightly less than one instruction per cycle, on average. This complicates

\synchronizing" the implementation and the speci�cation during veri�cation,

since the speci�cation executes exactly one instruction per cycle. We address

the problem in a manner similar to that used by Saxe et al. [20]. The user must

provide a predicate on the implementation states that indicates whether the

instruction to be loaded on the current cycle will actually be executed by the

pipeline. While this predicate can be quite complicated, it is easy to express

in our context, using internal signals generated by the implementation. In par-

ticular, our pipeline will not execute the current instruction if and only if one

or more of the following conditions holds: the stall input is asserted, the signal

indicating a taken branch is asserted, or the signal indicating that the pipeline

has been stalled by the load interlock is asserted.

When internal signals are used in this way, it is possible for bugs in the

pipeline to lead to a false positive veri�cation result. In particular, the pipeline

may appear correct even if it can get into a state where it refuses to ever execute

another instruction (a kind of livelock). To avoid the possibility of a false positive,

we automatically check a progress condition that insures that livelock cannot

occur. The CPU time needed for this check is included in the total given below.

Our speci�cation has four state variables: the program counter, the register

�le, the data memory and the instruction memory. If the data memory and the

instruction memory are combined into one store in the speci�cation and the

implementation, then the veri�er will detect that the pipeline does not satisfy

the speci�cation for certain types of self-modifying code (this has been con�rmed

experimentally). Separating the two stores is one way to avoid this inappropriate

negative result.

For each state variable of the speci�cation, the veri�er constructs an appro-

priate formula and checks its validity. Since neither the speci�cation nor the

implementation write to the instruction memory, checking the validity of the

corresponding formula is trivial. Checking the formulas for the program counter,

the data memory and the register �le requires 15.5 seconds, 34 seconds and 9.5

seconds of CPU time, respectively. The total CPU time required for the full

veri�cation (including loading and compiling the behavioral descriptions, etc.)
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is less than 66 seconds.

In another test, we introduced a bug in the forwarding logic of the pipeline.

The veri�er required about 8 seconds to generate 3 counter-examples, one each

for the three formulas that had to be checked. These counter-examples provided

su�cient conditions on a initial implementation state where the e�ects of the

bug would be apparent. This information can be analyzed by hand, or used to

construct a start state for a simulator run that would expose the bug.

5 Concluding Remarks

The need for improved debugging tools is now obvious to everyone involved

in producing a new processor implementation. It is equally obvious that the

problem is worsening rapidly: driven by changes in semiconductor technology,

architectures are moving steadily from the simple RISCmachines of the 1980s to-

wards very complex machines which aggressively exploit concurrency for greater

performance.

Although we have demonstrated that the techniques presented here can verify

more complex processors with much less e�ort than previous work, examples

such as our DLX implementation are still not nearly as complex as commercial

microprocessor designs. We have also not yet dealt with memory systems and

interrupts, which are rich source of bugs in practice.

It will be very challenging to increase the capacity of veri�cation tools as

quickly as designers are increasing the scale of the problem. Clearly, the com-

putational e�ciency of logical decision procedures (in practice, not in the worst

case) will be a major bottleneck. If decision procedures cannot be extended

rapidly enough, it may still be possible to use some of the same techniques for

partial veri�cation or in a mixed simulation/veri�cation tool.
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A Illustrative Example

In this appendix, we give a more detailed description of how we veri�ed the

pipelined ALU in �gure 3. The user must provide behavioral descriptions of

13



the speci�cation and the implementation (�gures 4 and 5). The pseudo-code in

�gures 4 and 5 is generated by simple syntactic transformations from the LISP-

like description language that is used with our prototype veri�er. Notice that the

pipelining of the ALU is completely abstracted away in the speci�cation, but is

quite explicit in the description of the implementation.

The two behavioral descriptions are automatically compiled into transition

functions (�gures 6 and 7). The transition functions are encoded by associating

each state variable with an expression that represents how that state variable is

updated each cycle. The expressions are in the logic of uninterpreted functions

and equality described earlier. The concrete syntax for expressions in �gures

6 through 10 is that used in our prototype veri�er, which is implemented in

LISP.

The veri�er automatically produces an expression for the appropriate ab-

straction function (�gure 8). The abstraction function and the transition func-

tions are used to automatically produce expressions (�gures 9 and 10) that cor-

respond to the two sides of the commutative diagram in �gure 1. The imple-

mentation is correct if and only if these expressions are equivalent, which can be

automatically veri�ed using the validity checker described earlier.

if stall

then regfile' := regfile;

else

regfile' :=

write(regfile, dest,

alu(op, read(regfile, src1)

read(regfile, src2)));

Fig. 4. Speci�cation for the pipelined ALU in �gure 3. Primed variables refer to next

state values; unprimed variables refer to current state values. Notice that pipelining is

not apparent at the level of abstraction of the speci�cation.
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if bubble-wb

then regfile' := regfile;

else regfile' := write(regfile, dest-wb, result);

bubble-wb' := bubble-ex;

dest-wb' := dest-ex;

result' := alu(op-ex, arg1, arg2);

bubble-ex' := stall;

dest-ex' := dest;

op-ex' := op;

if (not bubble-ex) and (dest-ex = src1)

then arg1' := result';

else arg1' := read(regfile', src1);

if (not bubble-ex) and (dest-ex = src2)

then arg2' := result';

else arg2' := read(regfile', src2);

Fig. 5. Implementation of the pipelined ALU. The �rst three lines of code specify how

the register �le is updated by the �nal (\write back" or \wb") stage of the pipeline. The

next three lines specify how three pipe registers are updated by the second (\execute"

or \ex") stage. The remaining code speci�es how �ve additional pipe registers are

updated by the �rst stage of the pipeline. Notice that arg1 is updated with the next

state (rather than the current state) value of either result or reg�le; this is necessary

for data forwarding to work properly in the pipeline.

regfile: (ite stall

regfile

(write regfile

dest

(alu op

(read regfile src1)

(read regfile src2))))

Fig. 6. Since the register �le is the only state variable in the speci�cation, the transi-

tion function has only one component, which is represented by the above expression.

This expression is automatically compiled from a LISP-like version of the pseudo-code

in �gure 4.
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regfile: (ite bubble-wb

regfile

(write regfile dest-wb result))

arg1: (ite (or bubble-ex

(not (= src1 dest-ex)))

(read

(ite bubble-wb

regfile

(write regfile dest-wb result))

src1)

(alu op-ex arg1 arg2))

Fig. 7. The transition function for the pipeline has nine components, two of which are

represented by the above expressions. These expressions are automatically compiled

from a LISP-like version of the pseudo-code in �gure 5.

(ite bubble-ex

#1=(ite bubble-wb

regfile

(write regfile dest-wb result))

(write #1#

dest-ex

(alu op-ex arg1 arg2)))

Fig. 8. This expression represents the abstraction function from a pipeline state to a

speci�cation state (only one expression is necessary since the register �le is the only

component of a speci�cation state). The \#1#" notation denotes the use of a subterm

that was de�ned earlier in the expression by the \#1=" notation. This expression is

computed automatically from the transition function of the pipeline; the user need

only specify how many times to iterate the transition function to 
ush the pipeline

(two times, for this example).
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(ite stall

#1=(ite bubble-ex

#2=(ite bubble-wb

regfile

(write regfile dest-wb result))

(write #2#

dest-ex

(alu op-ex arg1 arg2)))

(write #1#

dest

(alu op

(read #1# src1)

(read #1# src2))))

Fig. 9. This expression represents the functional composition of the abstraction func-

tion and the transition function of the speci�cation. The veri�er can compute this

composition automatically. The resulting function corresponds to the speci�cation side

of the commutative diagram in �gure 1.

(ite stall

#1=(ite bubble-ex

#2=(ite bubble-wb

regfile

(write regfile dest-wb result))

(write #2#

dest-ex

#3=(alu op-ex arg1 arg2)))

(write #1#

dest

(alu op

(ite (or bubble-ex

(not (= src1 dest-ex)))

(read #2# src1)

#3#)

(ite (or bubble-ex

(not (= dest-ex src2)))

(read #2# src2)

#3#))))

Fig. 10. This expression represents the functional composition of the transition func-

tion of the implementation and the abstraction function. The veri�er can compute this

composition automatically. The resulting function corresponds to the implementation

side of the commutative diagram in �gure 1.
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