
Jo Atlee • FOSD • September 2014

David R. Cheriton School of Computer Science
University of Waterloo

Feature Modularity

feature-oriented software development

stakeholders’
mental model of system

feature-oriented
software system

Call Forwarding

Basic Call Service

Billing
Call

Forwarding

Basic
Call

Service

Billing

Call Forwarding

feature : a unit of functionality or added value in
the product

feature interactions
feature interaction: a feature behaves differently
in the presence of another feature than it behaves
in isolation

› unimplementable
› nondeterministic
› conflicting changes to shared context
› violate global correctness property
› emergent behaviours

anti-theft system
locks doors and windows
sounds alarm if vehicle is touched

accident response system
deploys airbags
deactivates fuel pump
disconnects battery
unlocks door
calls emergency personnel

not all interactions are bad!

unintended but harmless interactions
› call screening prevents activation of caller id

(planned) resolutions to conflicts
› brake override overrides (acceleration ⨁ braking)

intended interactions
› advanced cruise-control variants override basic cruise control
› prohibit navigation overrides navigation
› prohibit-navigation override overrides prohibit-navigation

fixing undesired interactions

• fix faulty feature

• disallow feature combination

• resolve interaction using exceptions

• resolve interaction through a new feature

feature interaction problem

• the number of potential interactions is
exponential in the number of features

• death by exceptions [Zave]

F1 = f1 + ef2 + ef3 + … + efn

• feature development is dominated by tasks
related to addressing interactions

lots of features
e.g., telephony has 1000+ features per system

a system of feature-rich systems
› features from multiple providers
› multiple active versions of the same feature

provider’s
features

device’s
features device’s

features

PBX
features

provider’s
features

lots of interactions
results of the second feature interaction contest

Call Forward
on Busy Call Number

Delivery

Terminal Call
Screening

Freephone
Billing

Freephone
Routing

Teen
Line

Three-Way
Calling

Call Forward
Universal

Call
Waiting

Charge
Call

Return
Call

Cellar
Phone
Billing

1
2
3
4
5
7

interations

one feature affects the flow of control in another feature

one feature affects (deletes, alters) a message destined for another feature

shared data read by one feature is modified by another feature

two features modify the same data

two features issue conflicting actions

one feature violates another feature's assertions or invariants

the supply of resources is inadequate, given the set of competing features

control-flow

data-flow

data modification

data conflict

control conflicts

assertion violation

resource contention

lots of types of interactions

FOSD emphasizes features, de-emphasizes interactions

• annotative approach
- interactions manifest as nested preprocessor directives
- which state how all features interact

• compositional approach
- interactions realized (implicitly) by composition
- fixes realized through new “feature” modules

feature-orientation vs. interactions

this is exactly the chore
that feature-orientation
was meant to avoid!

take aways
1. resolve interactions en masse outside of features

feature modules (no interfaces)

feature modules
features are modelled as hierarchical state machines

on

waitAccelerate

t3: Accelerate+(o) [o.to = myproduct] /
a1: car.acceleration := acceleration(car, o.inc)

off

waitSteer

t5: Steer+(o) [o.to = myproduct] /
a1: car.steerDirection := steerDirection(car,o.angle)

acceleration

steering

t1: IgniteOn+(o) [o.to = myproduct] /
a1: car.ignition := on

waitDecelerate

t4 > t3: Decelerate+(o) [o.to = myproduct] /
a1: car.acceleration := deceleration(car, o.dec)

deceleration

t2: IgniteOff+(o) [o.to = myproduct] /
a1: car.ignition := off

state machine main

let car = myproduct.Controls.car

CC{main.enabled.main.engaged}

main

disengaged

engaged

t1: EngageLCC+(o)
[o.to = myproduct and not driverOverrideLCC(BDS{car})]

t2: DisengageLCC+(o) [o.to = myproduct]

active inactive

t5: [timeoutLCC()] / a1: BDS{car}.steerDirection := steerDirection(BDS{car})
t3: Steer+(o)
[o.to = myproduct and driverOverrideLCC(BDS{car}, o.angle)]
t4: Steer+(o)
[o.to = myproduct and driverOverrideLCC(BDS{car}, o.angle)]

centerCar

BDS{main.t5}: / a1: myproduct.LCC.steerAngle = o.angle

t6: override(CC{t6})
[inState(main.engaged.centerCar.active) and safeSpeedExceeded(BDS{car})] /
a1: BDS{car}.acceleration := accelerationLCC(BDS{car}),
a2: myproduct.CC.goalAccel := accelerationLCC(BDS{car})

idle

overrideCC

disabled

disengaged

engaged

t3: SetCruiseSpeed+(o)
[o.to = myproduct and engageCnd(BDS{car})] /
a1: myproduct.CC.cruiseSpeed := BDS{car}.speed,
a2: myproduct.CC.goalAccel = 0

t4: Decelerate+(o) [o.to = myproduct]

t1: EnableCC+(o) [o.to = myproduct] t2: DisableCC+(o) [o.to = myproduct]

t5: [not engageCnd(BDS{car})]

inactiveactive

t8: Accelerate+(o)
[o.to = myproduct and driverOverride(BDS{car}, o.inc)]

t9: Accelerate+(o)
[o.to = myproduct and not driverOverride(BDS{car}, o.inc)]

enabled
main

main

BDS{main.on}
main

t6: [timeout()] /
a1: BDS{car}.accleration := accelerationCC(BDS{car}),
a2: myproduct.CC.goalAccel := accelerationCC(BDS{car})

t7: SetCruiseSpeed+(o) [o.to = myproduct] /
a1: myproduct.CC.cruiseSpeed := BDS{car}.speed

let active = inState(main.enabled.main.engaged.main.active)

strengthen transition BDS{main.t3} with s: not active or driverOverride(BDS{car}, o.inc)

CC{main.enabled.main.engaged}

t3: SetHeadway+(o) [o.to = myproduct] / a1: product.HC.headway := o.dist

main

active

t2: override(CC{t6}) [slowRoadObjectAhead(BDS{car})] /
a1: BDS{car}.acceleration := accelerationHC(BDS{car}),
a2: myproduct.CC.goalAccel := accelerationHC(BDS{car})

inactive

t1: SetHeadway+(o) [o.to = product] /
a1: myproduct.HC.headway := o.dist

additive evolution

• introduce behaviours
› via: new machines

intended interactions:
modelled as structural extensions (fragments)
at extension points in existing features

can also be expressed as
fragments:
new regions, new states,
new transitions,
weakened enabling conditions

• eliminate behaviours
› via: new or stronger enabling conditions on

existing actions or transitions

• substitute behaviours
› via: new pre-empting actions or transitions

a new feature may…

on

waitAccelerate

t3: Accelerate+(o) [o.to = myproduct] /
a1: car.acceleration := acceleration(car, o.inc)

off

waitSteer

t5: Steer+(o) [o.to = myproduct] /
a1: car.steerDirection := steerDirection(car,o.angle)

acceleration

steering

t1: IgniteOn+(o) [o.to = myproduct] /
a1: car.ignition := on

waitDecelerate

t4 > t3: Decelerate+(o) [o.to = myproduct] /
a1: car.acceleration := deceleration(car, o.dec)

deceleration

t2: IgniteOff+(o) [o.to = myproduct] /
a1: car.ignition := off

state machine main

let car = myproduct.Controls.car

extension points
state (new region,

new sub machine)

region (new states,
new transitions)

transition (new guard,
new action)

guard (new clause)

feature modules

new region

extension point

BDS

BDS{main.on}

features can be modelled as extensions to
existing features

Cruise Control (CC)

feature modules

Cruise Control (CC)

new guard clauseextension point

BDSfeatures can be modelled as extensions to
existing features

BDS{t3}

explicate interactions

new region

CC

extension point

intended interactions, overrides, priorities
should be explicit

Headway Control (HC)

explicate interactions

(new region includes
pre-empting transition)

CC

extension point

intended interactions, overrides, priorities
should be explicit

Headway Control (HC)

take aways
1. resolve interactions en masse outside of features

2. feature modularity to ease complexity, promote
parallel development
› express fragments wrt extension points
› explicate intended interactions

feature interfaces

interfaces and information hiding

interface advertises what
services a module
provides to the rest of the
system, and how they can
be accessed

information hiding
encapsulates a design
decision inside a module,
whose interface reveals
only externally visible
properties [Parnas’72]

interfaces

feature interface would define what services a
feature provides to the rest of the system and
how other features can access those services

less
expressive

more
expressive

inputs /
outputs accessors mutators

extension
points

public interface
family

interface

generic feature interface

Inactive

Failed

Active private

ControllingMonitoring

Monitoring Monitoring

most inter-feature references are to high-level common
modes of operation

public
interface

example

Text: [FeatureX_Fail] flag shall be set to true when FeatureY is in fail state…

Failed

ActiveInactive

Failed

ActiveInactive

in(FeatureY.Failed)

Feature X Feature Y

in(FeatureY.Failed)

generic feature interface

generic feature interface (2)

take aways
1. resolve interactions en masse outside of features

2. feature modularity to ease complexity, promote
parallel development
› express fragments wrt extension points
› explicate intended interactions

3. (public) feature interfaces hide implementation
details
› expose feature’s inputs/outputs, accessors
› generic interface exposes behaviour modes

feature composition

BDS FST

terminal node

non-terminal node

feature structure trees (FSTs)

compose feature modules by superimposing
their feature structure trees (FSTs)

composition is commutative and associative
because terminal nodes are not merged

a

a b a

a

c a

a

a b c a
superimposition“wx” “yz” “wxyz”… … … … … …

superimposition

superimposition

partial BDS FST

superimposition

partial CC FST

superimposition

partial HC FST

resulting composition (product)
composition is a collection of parallel machines that have
been extended with fragments

+ resolves unknown conflicts
- undesired resolutions
- analyze multiple orderings
- recompute order for new feature
- implicit intended interactions

+ explicit intended interactions
+ only specify desired resolutions
+ analyze single feature order
+ ease of adding new feature
- detect unknown conflicts

non-commutative:
intended interactions realized by

implicit total order
(e.g., DFC, AHEAD)

commutative:
intended interactions specified by

explicit partial order
(e.g., transition and action priorities)

commutativity

take aways
1. resolve interactions en masse outside of features

2. feature modularity to ease complexity, promote
parallel development
› express fragments wrt extension points
› explicate intended interactions

3. feature (public) interfaces hide implementation
details
› expose feature’s inputs/outputs, accessors, mutators
› generic interface exposes behaviour modes

4. commutative composition

resolving unintended interactions

feature coordination

› fixed set of features

› pre-determined
selection of features

› static integration

› perfect coordination
possible

› fixed set of features

› semi-configurable
selection of features

› set of static integrations

› perfect coordination
possible, but impractical

› unlimited features

› user-defined
selection of features

› dynamic integration

› loose coordination

feature coordination
composition is a collection of parallel machines that
have been extended with fragments

each machine’s interface is simply its inputs and
outputs

outputs

inputs

serializing features
Distributed Feature Composition [Jackson, Zave, TSE’98]

pipeline architecture

+ features make no assumptions about other features
+ avoids simultaneous reactions to the same event
+ conflicts are resolved through serialization
+ feature ordering realizes a priority scheme
- resolution is implicit

parallel execution (resolution modules)

+ features make no assumptions about other features
+conflicting actions are resolved by resolution modules
+all actions are considered in resolution
+resolution strategies can be variable-specific

Resolve
r o1

Resolve
r o2

Resolve
r o3

output

output

output

inputs

summary

[HC]

[CC]

[CC implies

[CC]

[CC]

[CC and

[CC and

[HC] and

modular features
› extension points
› intended interactions

generic public interfaces
›mode of operation

composition
› of feature families
› commutative

[HC]

[CC]

[CC implies

[CC]

[CC]

[CC and

[CC and

[HC] and

[HC]

[CC]

[CC implies

[CC]

[CC]

[CC and

[CC and

[HC] and

Resolve
r O1

Resolve
r On

coordination
› of compositions
› relax “correctness”
› focus on safety

=+

+ …

