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Abstract—In this paper, we propose a pattern for decomposing
and structuring the model of a feature’s behavioural require-
ments, based on modes of operation (e.g., Active, Inactive, Failed)
that are common to features in multiple domains. Interestingly,
the highest-level modes of the pattern can serve as a generic
behavioural interface for all features that adhere to the pattern.
We have applied the pattern in modelling the behavioural
requirements of 19 automotive features that were specified in
5 production-grade requirements documents. We found that the
pattern was applicable to all 19 features, and that our proposed
generic feature interface was applicable to 50 out of 57 inter-
feature references.

Index Terms—requirements engineering; requirements pat-
terns

I. INTRODUCTION

Requirements patterns are reusable solutions that assist
the engineer by providing advice on how to decompose a
requirements problem into parts and how those parts interact
with one another. The main benefits of using patterns are effi-
ciency in eliciting or documenting the requirements problem,
and predictability, in knowing that the resulting requirements
specification should be nearly as good as previous specifica-
tions derived from the same patterns.

Our work investigates patterns in feature-oriented software
requirements, where each feature of a software system or
product line is specified as a separate module; otherwise, our
work is not specific to any particular domain. We propose a
pattern that decomposes and structures the behaviour model of
a feature, expressed as a state machine, according to modes
of operation that are common to features in all domains.
High-level modes include Active (which captures a feature’s
essential requirements), Inactive (which captures a feature’s
enabling and disabling requirements), and Failed (which cap-
tures a feature’s failure and recovery requirements). Figure 1
depicts the pattern’s high-level modes and their transitions.
Section III further decomposes the pattern into common sub-
modes of operation. When features are modelled according to
the pattern, all features have the same high-level behaviour
model. As a result, features have a common structure, which
eases the task of reading and reviewing the models of multiple
features. Moreover, the modes decompose the task of writing
the feature’s detailed requirements (e.g., separating a feature’s
enabling/disabling requirements from its active requirements).

Fig. 1. A pattern for feature behavioural requirements, based on their modes
of operation.

An important side effect of the pattern is that the common
modes can serve as a public interface of a feature. Tradi-
tionally, models of features do not have interfaces: features
are either modelled as if they have no knowledge of each
other and interact solely through their shared context (e.g.,
through common input/output signals or shared environmental
variables) [14], [19]; or features have complete knowledge
about each others’ details, such that they can monitor, extend,
or override one another [2], [4], [5], [25]. If features had inter-
faces [16], the interface could export useful information about
the feature without revealing detailed behaviour. Moreover, the
pattern’s modes could serve as a generic behavioural interface
for all features that adhere to the pattern. Such an interface
would ease the tasks of specifying and reviewing new features
because references to other features’ interface modes would be
guaranteed to be consistent with those features’ state-machine
models.

To assess the pattern, we performed a case study in which
we modelled the requirements of 19 automotive features,
as described in 5 requirements documents provided by a
major automotive manufacturer. The goal of the case study
was to determine whether the pattern is naturally applicable
in practice, and whether it is natural to use the pattern’s
modes as a generic feature interface. We were able to create
behaviour models of all 19 features according to the pattern,
with one minor deviation. Moreover, we were able to model
the vast majority of inter-feature references as references to
information provided in features’ interfaces.
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Fig. 2. State-machine notation.

The rest of this paper is organized as follows. Section II
provides a brief overview of the notation that we use to model
features. In Section III, we introduce the behaviour pattern and
sub-patterns that we have devised, as well as some variants
and a small example. In Section IV, we discuss how the
pattern’s modes can serve as a generic feature interface. We
present the results of our case study in Section V and discuss
perceived benefits in Section VI. We summarize related work
in Section VII and conclude in Section VIII.

II. BACKGROUND

Feature-oriented requirements decompose the require-
ments of a system or a product line into distinct feature
modules. Each feature is a “coherent and identifiable bundle
of system functionality” [27] that is specified in isolation, can
be developed as an independent increment to the system or
product line, and may be optional in the final product. The
context of a feature includes other features in the system, so
a feature model may reference other features. In this paper,
we are interested in behaviour models of individual features
that are expressed using hierarchical state machines (e.g.,
statecharts [11], UML State Machines [22]).

Figure 2 shows a state-machine model that exhibits notation
worth reviewing. A state may contain sub-states; in this case,
the former is called a superstate (e.g., S2). A superstate may
be decomposed into one or more concurrent regions that are
separated by dashed lines (e.g., S1); regions model orthogonal
behaviour that can occur in parallel. A transition from a black
circle to a state designates the initial state of a machine or
sub-machine (e.g., S1, S11). If a transition’s destination is a
superstate (e.g., S2), then the next state is the initial state (e.g.,
S21) of the superstate’s sub-machine (or the initial states of
the superstate’s regions).

Transitions are annotated with an event; a guard condition,
normally on environmental conditions; and a set of actions
on environmental conditions — all of which are optional.*
Transition annotation when(c) [22] refers to the event of

*In this paper, most transition annotations are omitted to avoid revealing
proprietary information about features.

condition ¢ becoming true. Transition annotation [in(S)] [11]
is a condition that is satisfied when the system’s execution is
in state S; state S might refer to a state in another feature. The
Jjoin pseudo-state (modelled as a black bar) is used to aggregate
multiple transitions (e.g., the transitions from source states S11
and S13 to destination state S2). The join’s outgoing transition
executes only when all of its incoming transitions are enabled.

A state may be annotated with actions that are enabled
by events and guard conditions (e.g., S2). Such actions are
performed whenever their triggering event occurs while the
system’s execution is in the state and the guard condition is
true.

III. THE PATTERN

Our research group is collaborating with a major automotive
manufacturer on precise modelling and analysis of feature re-
quirements. Through this collaboration, we have been granted
access to production-grade requirements documents of several
automotive features. Over the course of creating formal models
of those features, we found that different features tend to
have the same major modes of operation and similar enabling
processes.

In the original requirements documents, a feature’s required
behaviour is primarily described in natural language accom-
panied by tables that provide information about environmental
variables and input/output signals. We consider a feature
to be complex if its enabling process progresses through
multiple stages, or if it has multiple conditional behaviours
once it is active. The description of a complex feature is often
supplemented with a state-machine that models the feature’s
high-level behaviour. Such state machines rarely specify the
active behaviour for the feature, and the transitions tend to
specify only a few of the enabling conditions and no actions.
We also found that there were slight differences in the notation
used to model different features (e.g., states and transitions
appear differently, and transitions were color-coded in some
features but not in others).

Consider the state machines in Figure 3. These are
anonymized versions of models found in the original require-
ments documents. Feature A, depicted in Figure 3a, initializes
in state Disabled and proceeds through its enabling process
(states Standby Disabled and Standby Enabled) to the Engaged
state, which represents all of the feature’s active behaviour.
Details of how the feature behaves when it is Engaged are
not modelled as a part of the state machine. Lastly, the
Disengaging state is entered when feature A is becoming
disabled, but is not yet fully disabled. Feature B, depicted
in Figure 3b, initializes in state 0 (On), indicating that the
feature immediately starts to affect the system’s behaviour.
Again, the feature’s behaviour while On is not included in the
state machine. The feature transitions from 0 (On) to 1 (Partial
On) if the user presses the disable button, at which point part of
the feature’s functionality is disabled. The feature transitions

TWe have removed all feature-identifying names and all transition labels,
and retained the original model structure and notation.
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Fig. 3. Two anonymized state-machine models from production-grade
requirements documents.

from 0 (On) to 2 (Off) if the user presses and holds the disable
button, at which point all of the feature’s behaviour is disabled.
The feature transitions from 2 (Off) to 1 (Partial On) under
certain environmental conditions, and transitions from 2 (Off)
to 0 (On) when the user enables the feature. The Intermediate
state provides the same behaviour as state 0 (On), and is used
as a temporary override that activates the feature in the event
of an emergency.

There are several interesting observations that can be made
about features A and B.

« It is not uncommon for documents to use slightly different
terminology, or for the same term to be used differently,
across multiple documents (e.g., an activated feature is
state On vs. Active vs. Engaged). This kind of incon-
sistent naming is not likely to be serious, but can lead
to minor ambiguities and confusion. Domain knowledge
gained from reading one feature’s requirements does not
ease the task of reading other features’ requirements.

o State-machine models tend to be simple and non-
hierarchical. Of the 19 feature requirements that we
examined, 9 included state-machine models, and of these,
4 used hierarchy to describe some aspect of the active
behaviour for the feature.

o The state machines often omit failures and recovery,
although the textual requirements mention how (or at
least that) the feature can fail. Of the 19 feature require-
ments, 11 requirements mention the possibility of the
feature failing, 8 requirements specify a feature’s failure
and recovery conditions, and 4 of the 9 state-machine
models include failure states. The feature-requirements
documents are sometimes light on failure requirements
because many features (and all safety-critical features)
have a separate safety-requirements document that de-
scribes how the feature behaves in the presence of fail-
ures. We did not have access to any safety-requirements
documents.

o Despite their many differences, the features have the
same basic modes of operation: (1) active, in which the
feature affects system behaviour; (2) becoming enabled;
and (3) failed. These similarities in the features’ be-
haviours prompted us to propose a pattern for structuring
a feature’s behaviour model in a way that explicates
the similarites. Further study of the feature requirements
suggested ways of decomposing and structuring the sub-
behaviour of how features become enabled.

In the remainder of this section, we present the pattern, its

variants, and some examples.

A. High-Level Structure

A feature whose behaviour model adheres to the proposed
pattern is called an adherent feature. Figure 1 shows the high-
level structure of the pattern, which consists of three states and
their transitions. Each of the high-level states contains one or
more sub-machines that model the detailed behaviour for the
state.

The Inactive state captures all aspects of the feature as it
becomes enabled. As will be seen, we propose sub-patterns for
modelling complex enabling conditions. Normally, a feature
initializes in Inactive. When the feature is completely enabled,
it transitions to the Active state, in which the feature performs
its essential behaviour.

The Active state records all aspects of the feature actively
affecting the behaviour of the system. We hypothesize that
features’ Active behaviours are highly specific to the feature
and are not amenable to being clustered into reusable sub-
patterns. The transition from the Inactive state to the Active
state is defined by the pattern and depends on the variant of the
Inactive sub-pattern being used. The conditions that trigger the
transition from Active to Inactive are feature specific, and thus
are not part of the pattern. Normally, transitions to Inactive are
from the boundary of the Active superstate, meaning that the
enabling process starts from the initial state(s) of Inactive’s
sub-machine(s).

The Failed state captures all aspects of how the feature
behaves when it has failed. The exact conditions under which
a feature transitions to or recovers from the Failed state are
feature specific and are not part of the pattern. On recovery, the
feature transitions to the boundary of the Inactive superstate.
The pattern does not decompose the internal structure of the
Failed state because features typically do nothing more than
monitor the environment while failed (if a feature provides
degraded service under some failure conditions, we model that
behaviour within the Active state).

The pattern’s high-level states correspond to distinct major
modes of operation. Consider the different ways in which a
feature can interact with its environment:

« the feature monitors the environment

« the feature acts on the environment

« the environment monitors the feature

« the environment acts on the feature

Each state reflects different types of interaction (as depicted
in Figure 4 using colour). In restricted (red) states, the only
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Fig. 4. Feature pattern, where the modes are coloured with the degree to
which the feature’s interactions with its environment are restricted.

allowable interaction is that the feature can monitor the
environment — to determine if any of the state’s outgoing
transitions are enabled. For example, a feature that has Failed
can monitor the environment for signs that recovery conditions
have been met. In moderately restricted (yellow) states, the
feature can monitor the environment and the environment can
act on the feature. For example, it may be possible for a
user to manipulate feature settings when the feature is still
Inactive (e.g., a driver can set the cruising speed before the
cruise-control feature becomes Active). In unrestricted (green)
states, all four types of interactions are allowed. In this manner,
the pattern’s high-level states partition the features’ behaviours
into separate modes of operation.

B. Inactive Sub-Patterns

Sub-patterns for the Inactive mode provide advice on how
to decompose and structure the enabling process of a feature,
according to the type and order of enabling conditions. There
are two types of enabling conditions: user actions and envi-
ronmental conditions. A user action is an action performed
directly by the user or human operator (e.g., the user turning
on the feature). An environmental condition is a predicate
over properties of the operating environment of the system or
properties of the current state of the system (e.g., an automo-
bile’s speed or the state of another featuret). We believe that
a feature’s behaviour model should prominently distinguish
between user actions and environmental conditions because of
the types of constraints each places on the feature design: each
user action must have a corresponding user interface; whereas
monitored properties must have corresponding sensors, and
controlled properties must have corresponding actuators.

Because the conditions for transitioning among the high-
level states tend to be feature specific, the pattern says nothing
about the labels on those transitions. We have devised three
sub-patterns that are based on the degree to which a feature’s
enabling conditions are ordered:

o There is a sequential ordering on enabling conditions.
o There are no ordering constraints on enabling conditions.
« Enabling conditions are partially ordered.

Inactive
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Enabled (1)

Environment
Enabled (2)

User
Enabled (1)

Inactive

User Enabled

Environment Enabled

’

User
Enabled (n)
Active Active

(a) (b)

Fig. 5. The Ordered Enabling sub-pattern: (a) one of the default sub-patterns,
(b) a multi-stage example of the sub-pattern.

1) Ordered Enabling: This sub-pattern applies when a
feature becomes enabled in stages. The Inactive sub-machine
is a sequence of user actions and environmental conditions that
must be satisfied in the specified order. Figure 5a shows the
default sub-pattern where user actions precede environmental-
condition checks. There is a second default sub-pattern (not
shown) where environmental conditions must hold before user
actions are recognized. In the sub-patterns, each transition can
be triggered by a combination (i.e., conjunctions, disjunctions,
negations) of user actions or a combination of environmental
conditions. When the final state in the sequence is reached,
the feature transitions to the Active state.

The Inactive state in Figure 5b uses the Ordered Enabling
sub-pattern to specify a multi-stage enabling process. The
name of each state is the type of the most recent combination
of enabling conditions (user action or environmental condi-
tions) and the sequence number for that type of condition.
The enabling sequence may include back transitions from later
states in the sequence to earlier states, if enabling conditions
became unsatisfied and cause the feature to revert to a less-
enabled state. As in the default sub-pattern, when the final
state in the sequence is reached, the feature transitions to the
Active state.

2) Unordered Enabling: 1t often does not matter in what
order a feature’s enabling conditions become true; as soon
as they all hold, the feature becomes Active. The Unordered
Enabling sub-pattern applies in these situations (shown in
Figure 6). The concurrent regions separate user actions (on
the left) from the environmental conditions (on the right). A
transition can be triggered by a combination of user actions

fRecall that a feature’s environment includes other features in the system.
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Fig. 6. The Unordered Enabling sub-pattern.

or a combination of environmental conditions. When all of
the regions are simultaneously in their most-enabled state,
the feature transitions to the Active state. We model this
behaviour using a join pseudo-state whose source states are
User Enabled and Environment Enabled and whose destination
state is Active.

We recommend using the Unordered Enabling sub-pattern
when a feature’s enabling process includes only user actions
or only environmental conditions, and not both. In such a case,
the region that has no enabling conditions simply initiates in its
enabled sub-state. This makes it explicit that the user actions
or environmental conditions have been considered, but that
none exist.

3) Hybrid Enabling: This sub-pattern applies when only
part of the enabling process is ordered. The sub-pattern uses a
mixture of concurrent regions and state sequencing to model
the absence and presence, respectively, of ordering constraints.
A simple example would be a variant of the Unordered
Enabling sub-pattern, where the user-action region or the
environmental-condition region, or both, comprise a sequence
of enabling sub-states.

A more complicated example is given in Figure 7. In this
example, the enabling process is primarily ordered, but at one
point in the sequence, there are enabling conditions whose
orderings are not important. The transition from Environment
Disabled to Environment Enabled can not take place until after
the first user action has occurred. As well, the transition from
User Enabled (2) to User Enabled (3) can not take place until
the environmental conditions are all valid.

C. Example: Cruise Control

Consider a simplified version of the Cruise Control (CC)
feature that, once activated, will maintain the speed of the
vehicle at a driver-specified value. We present in Figure 8 a
behaviour model of CC that uses the pattern. In this figure,
events are modelled using upper-case and all other conditions
are lower-case. This example is not based on any production
or academic feature description. We do not claim that the
modelled behaviour is complete or correct; we simply use it
as a pedagogical example.

Inactive

Disabled
User Enabled (1)

User Environment
Disabled

Enabled (1)

L T 11

User Environment
Enabled (2) Enabled

User Enabled (2) /
Environment Enabled

User Enabled (3)

Active

Fig. 7. The Hybrid Enabling sub-pattern.

We model CC using a variant of the Ordered Enabling sub-
pattern. When the vehicle is powered on, the feature enters
the Inactive state. The feature waits in sub-state Disabled
until the user presses the CC On button. The feature then
waits in sub-state User Enabled (1) until the vehicleSpeed is
greater than or equal to 30 km/h. The feature then waits in
sub-state Environment Enabled (1) until the user presses the
CC Set button, setting the cruiseSpeed of the feature (i.e.,
the speed that CC will maintain) to the current vehicleSpeed.
At this point, the feature transitions to User Enabled (2) and
immediately activates.

We have modelled a simple Active behaviour for CC.
The Active sub-machine initializes in the Maintaining Speed
state. If the vehicle speed exceeds or becomes less than the
cruiseSpeed, the feature will transition to Decelerating or
Accelerating, respectively. If the user presses on the brake,
turns off CC, or if the vehicleSpeed drops below 30 km/h,
then the feature deactivates. Depending on the deactivating
condition, the feature may transition back to a partially enabled
state within the Inactive state.

We have modelled two reasons why CC may fail: (1) if
the Electronic Brake Control (EBC) feature fails, and (2) if
the sensors detecting the vehicle’s speed fail. The machine
transitions to Inactive when the reason for the failure no longer
exists.

IV. A GENERIC BEHAVIOURAL INTERFACE FOR FEATURES

The primary purpose of the proposed pattern is to ease the
elicitation, documentation, and review of behavioural require-
ments of individual features. However, an important side effect
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is that the pattern can be used to define a generic behavioural
interface to any adherent feature.

There has been little research on interfaces for features.
In feature-oriented software development, work on feature
modularity has focused on features as a criterion for sys-
tem decomposition and assembly, such as in product-line
development [15]; and on the cohesion of features [5], [16],
including language or modelling support for coalescing all
information related to a feature into a single module [21].
There is no information hiding among features, and one
feature can directly refer to or override the details of other
features. Alternatively, in the feature-interaction literature,
feature modules are black boxes that have inputs and outputs,
but otherwise share no information with each other [14], [19].
Such extreme information hiding facilitates parallel and third-
party development of features, but makes it very difficult to
specify intended interactions, such as when a new feature
extends or overrides the behaviour of an existing feature, or
when a feature ought to behave differently in the presence of
other features.

We propose a compromise, in which features share a limited
amount of information with each other by means of a feature
interface. Our ideas are based on our initial analysis of the pro-
vided requirements documents: in most instances where one
feature’s requirements refer to another feature, the reference is
an inquiry as to whether the other feature is active, has failed,
or is even present in the system (since many features in a

R Accelerating
Maintaining
Speed

do / accel()

when(vehicleSpeed >=
cruiseSpeed)

An example application of the Ordered Enabling sub-pattern, used in a simplified model of Cruise Control.

software product line are optional). Thus, we put forward our
pattern’s high-level modes as a generic behavioural interface
for features, whereby a feature reveals whether its current
execution state lies within Inactive, Active, or Failed. The
interface exports information that can be viewed by observing
features; it does not provide hooks that modifying features can
use to directly affect the feature’s behaviour. We hypothesize
that such an interface reveals useful information about features,
and would be sufficient in most cases where one feature needs
to know the current state of another feature. Moreover, because
the modes are common to all adherent features, the interface
does not reveal any details of a feature’s specification that is
not already known to specifiers.

For example, consider again the behaviour model of our
simple Cruise Control (CC) feature in Figure 8. CC fails
if the Electronic Brake Control (EBC) feature fails, and we
model this failure condition by labelling transitions to and
from CC’s Failed mode with in(EBC.Failed) guard conditions
that monitor whether EBC is in its Failed mode.

Not all feature cross-references are references to interfaces.
If two features are tightly coupled, they may refer to one
another’s internal details. For example, one feature’s behaviour
may depend on a related feature’s current detailed state (e.g.,
there are limited autonomous driving features that depend on
whether the driver is attentive). Alternatively, a new feature
might override some detailed behaviour of an existing feature.
We would expect such references to another feature’s detailed



behaviour to be relatively rare, and limited to tightly coupled
features that are part of the same sub-system, developed by the
same team, and specified in the same requirements document.
We would deem our generic feature interface to be useful if
references to features’ interfaces were the norm.

V. CASE STUDY

We performed a case study in which we analyzed the
requirements of 19 automotive features, described in 5
production-grade requirements documents, and we created
behaviour models using our mode-based pattern. Five of the
features were modelled over the course of defining the pattern,
and the other fourteen were modelled after the pattern had
stabilized. The purpose of the case study was to assess:

« How well the pattern could be applied to features
o How well the pattern’s modes could serve as a public
interface for features

In all cases, we created behaviour models from scratch
rather than refactor existing state-machines, either because the
requirements documents included no state-machine models or
because the machine was missing too many details.

A. Utility of the Pattern

The results of the case study are promising. Of the 14
features that were modelled after the pattern was determined,
11 conformed perfectly to the pattern. The other three features
deviated from the pattern by starting in the Active state rather
than in the Inactive state. We could have forced the features
to start in the Inactive state and immediately transition to the
Active state. However, we believe that the models in which
these features start in the Active state are clearer, and that the
pattern should allow some flexibility in a feature’s initial state.
Of the 19 features, 3 used the Ordered Enabling sub-pattern,
15 used the Unordered Enabling sub-pattern, and 1 used the
Hybrid Enabling sub-pattern.

Examples: We highlight two of the case-study features. To
avoid revealing proprietary information, we have abstracted
away many details of each feature: the internal details of the
Active state are omitted, and transition labels are replaced by
the numbers of conditions on the transitions. In the models,
events are represented in upper-case, the number of conditions
are in bold, and all other conditions are lower-case.

The feature in the case study with the most complex
enabling process is the Traction Control System (TCS). The
TCS helps to limit tire slippage during acceleration on slippery
surfaces by applying the brake and changing the amount of
throttle applied to each wheel. The TCS is one of the features
that activates immediately when the vehicle is powered on;
it can be deactivated by manually disabling the feature or by
environmental conditions.

Our model of the TCS employs the Hybrid Enabling sub-
pattern (see Figure 9). Normally, re-enabling the TCS requires
both a user action and an environmental condition to hold.
However, the TCS can also activate in emergency situations
without the user manually enabling the feature. This is mod-
elled by having a transition directly from the unordered stage
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Fig. 9. The Traction Control System feature.
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Fig. 10. Adaptive Cruise Control feature.

of the enabling process to state Environment Enabled (2) that
is labelled with the emergency-override conditions. The failure
conditions for the TCS are not specified in the requirements
documents that we were provided, so we have not attempted
to label the transitions to and from the Failed state.

The feature in the case study with the largest number of
enabling conditions is Adaptive Cruise Control (ACC). Once
activated, the ACC feature will maintain the vehicle’s speed
at a driver-set value and will maintain a safe distance from
the preceding vehicle. The ACC feature can be deactivated by
either environmental conditions or user actions. Depending on
the deactivating condition, the feature may transition back to
a partially enabled state within the Inactive state.

Our model of ACC employs a variant of the Ordered En-
abling sub-pattern (see Figure 10). Enabling the ACC feature
is a multi-stage process: the user turns on the ACC feature,
after which several environmental conditions are checked, and



finally the user must perform one of two possible actions
to complete the enabling process. There are three transitions
from state Active back to state Inactive because, depending
on the deactivation conditions, ACC will either deactivate
completely and the enabling process will begin anew, or ACC
will transition to a partially enabled state. The ACC failure
conditions are not specified in the requirements documents
that we were provided, so we have not attempted to label the
transitions to and from the Failed state.

B. Examining Modularity

To check if the pattern would be viable as a public interface,
we specifically examined: (1) how many features reference
other features, (2) how often the references are to elements of
the public interface, and (3) whether references are between
tightly coupled features.

Each of the 5 features that were modelled while the pattern
was being designed has between 1 to 14 references to other
features. These features are primarily interested in whether
other features are Inactive, Active or have Failed. However,
three of the features have a small number of references to other
features’ detailed states (discussed in more detail below).

Of the 14 features that we modelled after the pattern
stabilized, only 7 of the features have references to other
features and all references are to high-level states in the other
features’ public interface. The seven features each have one
to six references to other features. We hypothesize that the
reason the latter features have fewer inter-feature references
is that they are low-level features, whereas the features that
we modelled as the pattern was being designed are complex,
high-level features that build on the behaviour of lower-level
features. We need more data to confirm this hypothesis.

We mentioned that there are three features that reference
information not made available in other features’ interfaces. In
total, there are seven such references: four that read informa-
tion and three that override some behaviour. Of the references
that read information, three are to features in the same sub-
system. The remaining reference is to a feature outside of its
sub-system, to obtain information that is required to perform
an algorithmic calculation. The references that override be-
haviour are all to features in the same sub-system and occur
in cases where the feature is also reading information from
the other feature.

In total, there are 57 inter-feature references. Of these, 50
are references to interface data, and 6 are references to internal
details of tightly coupled features. Only one reference violates
our convention of how features ought to behave and accesses
private information from a feature outside of the sub-system.

VI. DISCUSSION

A. Expected Benefits

Based on the known benefits of using patterns, interfaces,
and information hiding, we expect that the use of our feature
pattern and generic feature interface would improve the pro-
ductivity of specifiers and reviewers of requirements models.

We discuss these expected benefits below, though they must
be confirmed empirically through user studies.

Improved consistency of models: In the original require-
ments documents, there is significant variability among the
state-machines included with features (e.g., notation, struc-
ture and vocabulary all varied). In contrast, features that are
modelled with the pattern tend to vary only in three ways:
the sub-pattern used, the conditions on transitions, and the
internal details of Active. This benefit is particularly useful
for readers of requirements documents. A common structure
and style for modelling features would prepare readers to
review multiple feature requirements with increasing efficiency
(this is particularly important when working on feature-rich
systems). For requirements specifiers, the pattern provides a
consistent state-machine framework that should simplify the
requirements elicitation and formalization process.

Separation of concerns: The pattern clusters the three
behavioural modes (Inactive, Active, and Failed) in a way that
is consistent for all features. The clustering can be applied
to the document description as well as the state-machine
model. We hypothesize that readers and reviewers would
benefit from such a separation in that they could more easily
locate within a requirements document mode-specific details
about a feature’s behaviour (e.g., how a feature becomes
enabled versus its active monitoring and controlling of the
environment). Likewise, specifiers can separate the tasks of
defining the different modes of a feature’s behaviour.

Standardized vocabulary for feature behaviour: Stan-
dardized vocabulary is one of the widely regarded benefits of
design patterns [10]. Ambiguities can arise when vocabulary
is used inconsistently among multiple documents. The pattern
addresses mode-based ambiguities by standardizing the names
of features’ modes and by basing a feature’s public interface on
these modes, so that a feature’s references to another feature’s
modes also use standard vocabulary. We expect that readers
would benefit from the improved consistency of vocabulary.
Model specifiers would benefit from the generic feature inter-
face because they know the names of other features’ modes
(and can reference those modes in their models) without
having to look up the names.

Feature modularity: Interfaces to features have a number
of expected benefits [23]: (1) They provide an immediate
benefit to requirements engineers by reducing their cognitive
load: an engineer need study only the interfaces of existing
features to understand how a new feature fits into the system.
(2) Once their interfaces are defined, new features can be
modelled in parallel, by engineers working independently.
(3) If designed with sufficient care and foresight, a feature’s
interface exports only information that is unlikely to change as
the feature evolves. Such interfaces provide a deferred benefit
of easing future feature evolution, in that changes to a feature’s
internal details are less likely to affect the specifications of
related features. The second and third benefits listed above
seem particularly realizable because our feature interface is
predefined and is constant.



Compositional verification: It is also possible that our
notion of feature interfaces could be used to facilitate compo-
sitional verification of features. In compositional verification,
each feature is verified separately within its respective context
(which includes the other features in the system). Composi-
tional verification is effective if the effort to verify all of the
features individually is smaller than the effort to verify a model
of the whole system. We are currently investigating whether
features’ interfaces can be used to construct abstract feature
contexts that significantly reduce the problem of verifying
individual features.

B. Generality

Although the case study involved only automotive features,
we expect that this work will generalize to other feature-
oriented requirements in which the behaviour of each feature
is modelled as a separate state machine. The pattern should
be especially applicable to safety-critical systems, in which
features have complex enabling/disabling conditions and fail-
ure/recovery conditions, in addition to their core functionality.

C. Threats to Validity

The requirements documents to which we had access were
for older versions of features. According to the requirements
engineers, current requirements of the same features include
additional conditions for enabling/disabling/failing. Because
of this, it is possible that our pattern may not apply to the
current requirements, but we do not have any reason to think
this is the case. The updated requirements documents use
state names like Inactive, Active and Failed more consistently.
However, to our knowledge, the requirements models still
do not employ patterns, make use of hierarchy, or have a
consistent terminology for the enabling conditions of a feature.

We have modelled a relatively small number of features,
which may not be representative of all features. In particular,
many of the documents we have examined omit details regard-
ing failure and recovery conditions, thus the evaluation of that
part of the pattern is weaker than that of other parts of the
pattern.

There is potential for experimenter bias because the primary
author performed both the pattern design and the case-study
analysis. Experimenter bias is unlikely to affect the results of
the modelling exercises, but our claims of improved readability
and writeability are vulnerable and need to be validated with
user studies.

Lastly, although we have presented our work to the en-
gineers who provided the original requirements documents,
they have not verified that our models are correct. That said,
the engineers have seen enough value in our work to look at
incorporating our pattern into their requirements-management
system.

VII. RELATED WORK

Fatterns for Easing Requirements Elicitation: Early work
on requirements patterns includes domain abstractions or
clichés [24] and domain models [3], [26], which record general

domain knowledge. The Requirements Apprentice [24] em-
ploys a library of clichés that can be reused in the specification
of multiple systems, where a cliché is a set of roles — such as a
repository, its contents, and its users — and constraints between
roles. Clichés are normally documented using semi-structured
text rather than graphical models. Sutcliffe and Maiden [26]
extended these ideas to a catalogue of generic reusable domain
models that encode structural and behavioural requirements of
domain entities. More generally, Jackson introduced problem
frames [13] as a way of classifying problems and sub-problems
according to desired changes to or constraints on environment
phenomena (e.g., a transformation problem, or a workpieces
problem). A problem frame depicts a context diagram that
relates the proposed machine, distinct domains of the envi-
ronment (4 la domain models [26]), and desired requirements
among domains (e.g., a transformation requirement relating an
input domain and an output domain). Clichés, domain models,
and problem frames help the engineer to elicit an accurate and
complete set of requirements; and the use of domain terms
improves the consistency of vocabulary in requirements docu-
mentation. Our work on feature patterns is complementary in
that it aids in the structuring and documentation of behavioural
requirements after they have been elicited and decomposed
into feature modules.

The Software Cost Reduction (SCR) requirements
model [12] decomposes a system’s behaviour into mode
classes and modes, and our use of the term mode comes from
their work. A mode class in an SCR model is comparable to
a feature or a sub-system of tightly coupled features in our
work. However, SCR does not propose any reusable pattern
for decomposing behaviour into modes, does not employ
hierarchy for organizing a mode class’s modes, and does not
have any concept like an interface for mode classes.

Domain-Specific Patterns: Domain experts have collected
and codified patterns for modelling specific types of require-
ments, such as business problems (e.g., accounts, transactions,
plans, contracts) [8], embedded-system requirements (e.g.,
controllers, fault handling, watchdogs) [7], [18], information
systems (e.g., information, presentation, access control) [28],
security requirements [6], and nonfunctional requirements [9].
Most of these patterns focus on how to structure inter-related
components, though Douglass [7] and Konrad et al. [18]
include behaviour models of interactions among components.
Our concept of a feature could be analogous to the behaviour
of a single component in these other approaches, or could
be analogous to some system-level functionality that involves
multiple components. In either case, our pattern for mod-
elling a feature’s behaviour would be complementary to these
domain-specific requirements patterns.

Feature Interfaces: Much has been written about modu-
larity, interfaces, and information hiding [23]. We focus our
discussion on feature modularity. Within the feature-oriented
software-development community, the emphasis of feature
modularity is on cohesion and locality of feature informa-
tion [5], [16], [21]. There is no concept of feature interfaces or
support for information hiding, so features refer to and directly



override the details of other features. At the other extreme,
the feature-interaction community often models features as
distinct modules that have no knowledge of each other [14],
[19]. There is no need for feature interfaces because each
feature’s information is completely hidden. The downside of
total information hiding is that it is hard to specify and manage
intended feature interactions (e.g., enhanced or overriding be-
haviour). The aspect-oriented community has proposed aspect-
aware interfaces that advertise a module’s pointcuts as well
as its public data attributes and methods [1], [17], thereby
providing limited means by which other modules can use,
extend, or override the module’s services. However, such
interfaces are not stable, as a module’s set of public pointcuts
tends to change as new aspects are introduced or evolve [17].
In contrast, we propose a feature interface that provides
limited information about a feature’s current execution state
(information that is useful in the modelling of other features),
such that the interface is stable and generic for all features.
There is also work on deriving feature interfaces to support
compositional verification [20], however such interfaces do not
aid in the specification or evolution of feature models.

VIII. CONCLUSION

We have presented a pattern for structuring the behaviour
model of a feature, and have introduced a generic behavioural
interface for features based on the common modes of our
pattern. The results of our case study show that automotive
features conform well to the pattern, and that most inter-feature
references are to information that would be available in a
feature’s interface. Although the pattern was extracted from
and evaluated using automotive requirements, there is nothing
inherently automotive-specific about the pattern and it should
be generally applicable to feature-oriented requirements.

We continue to evaluate our pattern on more complex
automotive features, and we plan to use it to model feature-
oriented requirements in other domains (e.g., the Pacemaker
challenge?®). We also plan to conduct a user study to determine
whether use of the pattern and proposed feature interface
improves the productivity of requirements reviewers and spec-
ifiers, as expected. Finally, we plan to provide tool support for
creating and editing feature models that adhere to the pattern.
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