An Empirical Investigation to Understand the Difficulties and
Challenges of Software Modellers When Using Modelling Tools

Parsa Pourali
Department of Electrical and Computer Engineering
University of Waterloo, Canada
ppourali@uwaterloo.ca

ABSTRACT

Software modelling is a challenging and error-prone task. Existing
Model-Driven Engineering (MDE) tools provide modellers with
little aid, partly because tool providers have not investigated users’
difficulties through empirical investigations such as field studies.
This paper presents the results of a two-phase user study to identify
the most prominent difficulties that users might face when develop-
ing UML Class and State-Machine diagrams using UML modelling
tools. In the first phase, we identified the preliminary modelling
challenges by analysing 30 Class and State-Machine models that
were previously developed by students as a course assignment. The
result of the first phase helped us design the second phase of our
user study where we empirically investigated different aspects of
using modelling tools: the tools’ effectiveness, users’ efficiency,
users’ satisfaction, the gap between users’ expectation and experi-
ence, and users’ cognitive difficulties. Our results suggest that users’
greatest difficulties are in (1) remembering contextual information
and (2) identifying and fixing errors and inconsistencies.

CCS CONCEPTS

« General and reference — Empirical studies; - Software and
its engineering — Software usability; Software notations and
tools; « Human-centered computing — Empirical studies in
HCI;

KEYWORDS

Human-Centric Software Development, Empirical Study, UML,
Model-Easing, Modelling Tools.

ACM Reference Format:

Parsa Pourali and Joanne M. Atlee. 2018. An Empirical Investigation to
Understand the Difficulties and Challenges of Software Modellers When
Using Modelling Tools. In ACM/IEEE 21th International Conference on Model
Driven Engineering Languages and Systems (MODELS ’18), October 14-19,
2018, Copenhagen, Denmark, Jennifer B. Sartor, Theo D’Hondt, and Wolfgang
De Meuter (Eds.). ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3239372.3239400

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-4949-9/18/10...$15.00
https://doi.org/10.1145/3239372.3239400

Joanne M. Atlee
David R. Cheriton School of Computer Science
University of Waterloo, Canada
jmatlee@uwaterloo.ca

1 INTRODUCTION

Model-Driven Engineering (MDE) addresses software complexity
by raising the level of abstraction in software artifacts, and facili-
tating the automation of code generation and software verification
[19][32]. However, modellers often find it cognitively difficult to
create, edit, and debug models, and they expend a lot of effort on
these tasks [14][38][43].

Researchers investigate various tools and methods to reduce the
effort of editing and debugging models [13][32][37], but the tools
are not adopted because they do not meet the users’ needs. The
reasons are, in part, that tool designers:

(1) have not identified and understood the difficulties and chal-
lenges of users (e.g., through empirical observations);

(2) have not taken into account human-cognition factors that
can explain users’ difficulties and challenges; and

(3) have conducted few empirical evaluations of the effective-
ness of their tools in supporting human users.

We performed a formative user study to learn about modellers’
most-severe challenges when using modelling tools and to under-
stand some of the most-critical obstacles to tools adoption. Specifi-
cally, we focused on identifying the cognitive challenges that mod-
ellers face when designing structural and behavioural models of soft-
ware systems, as exemplified by the UML Class and State-Machine
diagrams. The goal of this work is to help tool researchers and
vendors to know where to focus their future tool-building efforts.

We conducted a two-phase user study. In the pre-study phase,
we analyzed 30 models (i.e., Class diagrams and State-Machine
diagrams) that had previously been developed as solutions to a
course assignment. We reviewed the assignments and looked for
modelling errors made by the students and looked for evidence of
challenges that they faced when doing the assignment. The results
obtained from the pre-study phase informed our design of a user
study, which investigated modellers’ usage of modelling tools, in-
cluding the tools’ effectiveness, users’ efficiency, users’ satisfaction,
the gap between users’ expectation and experience, and users’ cog-
nitive difficulties. We recruited 18 subjects and ensured that they
have sufficient knowledge about the Unified Modelling Language
(UML) and have experience of using at least one modelling tool. The
subjects were asked to perform seven modelling tasks consisting
of developing partial State-Machines of a parking lot system. For
each subject, we recorded various User eXperience (UX) metrics
such as the subjects’ performance and verbal expressions.

The results showed a substantial gap between users’ expectations
of tools’ abilities to alleviate the challenges and the users’ actual
experience of using the tools. Also, the results revealed modellers’
prevalent challenges when using modelling tools, among which 1)

https://doi.org/10.1145/3239372.3239400
https://doi.org/10.1145/3239372.3239400
https://doi.org/10.1145/3239372.3239400

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

remembering contextual information and 2) identifying and fixing
errors and inconsistencies are the most-critical and are most in
need of consideration from tool vendors.

The rest of this paper is organized as follows. Section 2 presents
the related works on empirical studies to evaluate MDE tools. In
Section 3 we describe the context of our experimental research. Sec-
tion 4 explains the design of our user study. Section 5 describes the
execution procedure and practical considerations of it. We present
the results of our study in Section 6, and discuss some important
issues in Section 7. In Sections 8 and 9, we discuss the threats to
validity of our user study and conclude our work, respectively.

2 BACKGROUND AND RELATED WORK

While the SE community has recently made efforts to narrow the
gap between SE and HCI [1] (e.g., by addressing the challenges of
creating usable programming IDEs [20]), the MDE community has
focused more on understanding the obstacles to MDE’s adoption
caused by factors other than tools (e.g., social, organizational, cost,
etc.)[17][30][42][47]. For example, Hutchinson et al. [17] use ques-
tionnaires and interview methods to survey many practitioners
to acquire knowledge on how technical, social and organizational
factors impact the adoption of MDE in industry. Similarly, Mo-
hagheghi et al. [30] discuss the challenges (e.g., risks and costs) that
companies may undergo to adopt MDE. Also, Whittle et al. [47]
put tool-related issues in a broader context of social and organiza-
tional factors and present its impacts on the MDE adoption. These
works provide insights into challenges that affect different levels
of the MDE process, but they do not target the difficulties of using
modelling tools as part of the process.

As per challenges of modelling, few works aim at understanding
the challenges of model comprehension. For instance, Kuzniarz
et al. [23] and Zayana et al. [48] investigate the effectiveness of
using stereotypes and examples in improving the comprehension
of UML models, respectively. Kutar et al. [22] test whether users’
understanding of information in Sequence diagrams differ from
their understanding of Collaboration diagrams. These works pro-
vide information on users’ difficulties in comprehending models,
rather than learning about challenges with modelling tools.

Some other works propose novel tooling techniques to help users
in developing models. As an instance, Alsuraihi and Rigas [5] em-
pirically evaluate how auditory techniques (e.g., voice input) can
ease the task of editing modelling. Furthermore, some works such
as ArgoUML [43], Yakindu [31], MagicDraw [18], Pati et al. [38]
and Dyck et al. [9] introduce heuristic tooling techniques such as
model assist, recommenders, graphical decorators and dialogue
boxes to reduce the cognitive loads of editing models. With re-
spect to easing the task of model-debugging, some researchers have
proposed tooling techniques for automatic detection and repair of
inconsistencies among related models. For example, Xlinkit [33]
is a tool that manages inconsistencies among different documents
that are developed in XML. Also, Egyed (UML/Analyzer) [10] and
Ramesh et al. (XRTSDIC) [40] propose instant consistency checkers
that detect model inconsistencies immediately by observing model
changes and checking the changes against a set of consistency rules.
Snoeck et al. (MERODE) [46] provides a formal definition of UML

Parsa Pourali and Joanne M. Atlee

diagrams and applies a few simple rules to the check a model’s com-
pleteness. These works propose useful features to reduce the effort
of developing models, but never assess the effectiveness of their
solutions on users. As such, it is unknown whether their features
have difficult-to-use user interfaces (Uls) for MDE tools, which is a
barrier to MDE adoption [1][32].

The empirical evaluation by Hadar and Zamansky [12] and
Huang et al. [16] are the works most related to ours with respect
to understanding modellers’ challenges. Hadar and Zamansky [12]
interview several subjects to understand their perception of the
cognitive challenges in resolving inconsistencies and identify the
determining cognitive factors. However, they do not analyze the
subjects when using any tools. Huang et al. [16] take a systematic
approach to investigate users’ interactions and identify their chal-
lenges with MetaSketch tool [34]. The goal of their work is very
similar to ours, but we take a more comprehensive approach and
investigate on a broader subset of modelling tasks and tools.

Although all of the aforementioned works contribute to the MDE
ecosystem, they do not empirically analyse modellers and their
tasks when using tools to develop models. Much of the prior work
on identifying issues with modelling tools are based on surveys or
interviews rather than user studies (e.g., [47]). Our work aims at
improving the MDE ecosystem by identifying prominent modelling
challenges and proposing novel tool advances.

3 EXPERIMENTAL CONTEXT

Models can be developed in various modelling languages. Some
companies use their own Domain-Specific Language (DSL) whereas
others prefer to use more general-purpose languages such as the
Unified Modelling Language (UML) or Systems Modelling Language
(SysML). The majority of models that are being developed in in-
dustrial practice are based on the UML or UML-like notations as
the UML has become the de-facto standard for modelling software
systems [24] and is actively taught and used by academics.

The UML consists of several diagrams that can be partitioned into
two types: static and dynamic [35]. It would be too time-consuming
to cover all diagram types in a single user study, thus, we con-
fined the scope of our study to one important static diagram and
one important dynamic diagram [11], in particular Class diagrams
and State-Machine diagrams. Hereafter, the term modelling refers
specifically to Class diagram and State-Machine diagram modelling.

We investigated the following research questions:

e RQ.1: How effective are tools in communicating with users to
improve the experience of performing modelling tasks and the
correctness of models?

RQ.2: How efficient are modellers when using modelling tools?
RQ.3: How well do modelling tools meet users’ expectations?
RQ.4: Overall, how satisfied are users with modelling tools?
RQ.5: Which challenges are the most severe experienced by
modellers employing modelling tools?

The research questions were investigated by means of a two-
phase user study. In the first phase (referred to as the pre-study),
we conducted a lightweight analysis of a set of existing models
developed as part of a course assignment, and we looked for com-
mon modelling errors made by the modellers as well as evidence
of challenges that the modellers faced. Then in the second phase,

Difficulties and Challenges of Software Modellers

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

Table 1: Summary of the Results of the Pre-Study Analysis

Ctgry. ID Description No. of Errors No. of Subjects
Ctgry. 1 Incorrect use of the structure of UML models (e.g., a State-Machine without an initial pseudo-state). 7 4
Ctgry. 2 Referring to an undefined variable or entity. This includes misspelling the name of an existing variable 248 24
or entity, or writing incorrect paths in navigation expressions.
Ctgry. 3 Wrong or inconsistent use of UML notation and syntax. 27 8
Ctgry. 4 Type mismatch between the left-hand-side (LHS) and right-hand-side (RHS) of an assignment or condition. 42 9

we used the results of the pre-study to limit the scope of the user
study to model-editing and model-debugging tasks that were most
likely to be problematic. For example, we asked nothing in the user
study about the structure of a State-Machine or about setting the
names of the states because the results of our pre-study showed
that most of the subjects could successfully manage such tasks.

3.1 Pre-Study Phase

In the pre-study phase, we examined 30 models that had been sub-
mitted as solutions to a modelling assignment in an upper-year
undergraduate course on Software Requirements: Specification and
Analysis at the University of Waterloo. The students were asked to
design a State-Machine diagram for a parking-lot system based on a
given domain description and domain model. Student could develop
their models using a modelling tool or a drawing tool. There were
no time constraints except the assignment deadline. The course
lectures and readings covered the necessary knowledge on the rele-
vant UML modelling, especially Class and State-Machine diagrams.
Moreover, students could seek help from the course instructor if
they faced any problems understanding the course materials, and
they could consult UML resources and documentation.

We assessed the models based on the marking scheme set by
the course instructor. The marking scheme helped us evaluate the
models from two aspects:

(1) Information Content — detecting inconsistencies between the
given textual description of the system and the submitted
model. We used this as a guideline to estimate how much
of the modellers’ difficulties actually laid in expressing the
domain/system description in the modelling notation.

(2) Model Quality — detecting errors related to the well-formedness,
correctness, and consistency of the models. To be more rigor-
ous, we also assessed the models with respect to a taxonomy
of error types proposed by Lange et al. [24].

3.1.1 Pre-Study Results. Evaluation of the models’ Information
Content determined that only four students submitted models that
were incomplete with respect to the provided domain description.
This suggests that most students were able to represent the problem
description as a basic UML State-Machine that informally captured
all of the described behaviour.

However, the evaluation of Model Quality suggests that students
had difficulty creating correct and consistent models at the expected
level of detail and precision. We grouped Model-Quality errors into
different categories, listed in Table 1. The Table presents the number
of subjects that committed errors of each error type, and how many
instances of each error type were made in the 30 models. In some
cases, such as Ctgry. 2, a large number of mistakes were made —

Table 2: Modelling Challenges Identified in the Pre-Study

Name Description

Order Performing a sequence of actions in the right order.

Context Remembering contextual information (e.g., consulting re-
lated diagrams to remember names and associations).

Navigation Writing navigation expressions (navigating correctly from
one model element to a related model element).

Syntax Remembering the keywords and syntax of the language.

Type- Matching the types of the LHS expression and RHS in an

Matching assignment (=) or a condition (==).

Debugging Locating, understanding, and resolving errors. This in-

cludes switching back and forth among multiple diagrams
to fix an inconsistency.

often the same mistake was made multiple times. For example, a
student would refer to an undefined element over and over without
noticing that there was no such element in the Class diagram.
The outcome of the Pre-Study was a preliminary list of modelling
challenges referred to as pre-study challenges (see Table 2). Because
students made few Category1 errors (structural errors), we did not
consider these to be a significant modelling challenge. In contrast,
a quarter of the students or more made errors in Categories 2-4,
thus we deemed these to be significant enough to include a pre-
study challenge. In addition to these challenges, Reason [41] notes
that some errors can be in the form of slips or lapses, which result
from failing to execute all steps in a sequence of model edits (e.g.,
creation of a new state machine should be followed by creation of
an initial state, a pseudo-state that refers to the initial state, at least
one transition, etc.). Accordingly, we include Order in our list of
challenges. We added Debugging as a significant challenge because
we observed that some errors could be simply avoided if a student
invoked the tool’s debugging feature. Subsequently, we scoped the
tasks in our main study to focus on these suspected challenges.

4 EXPERIMENTAL DESIGN

In order to analyze and learn about the challenges that modellers
face, we conducted a formative empirical study rather than a sum-
mative one. We explain the design of our study in this section.

4.1 Recruitment Procedure

We emailed a recruitment letter! to invite interested subjects to
fill out a questionnaire using SurveyMonkey. The questionnaire
asked subjects about their demographic, professional and academic
backgrounds. The letter went to all the students in the programs
of Software Engineering, Computer Science, and Electrical and
Computer Engineering; we considered these students a good fit

! All of the materials regarding the user study can be found at [39].

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

Table 3: Subjects’ Demographics and Backgrounds

Category Sub-Category Count
Oceupation Graduate Student 14
P Post-Doc Researcher 2
Software Engineer (Industry) 2
Fairly Familiar (Novice) 1
[Familiar 6
UML Familiarity Very Familiar 8
Strongly Familiar (Experienced) 3
One to six months 6
Experience with Tools Seven to 12 months 4
One year to two years 2
More than two years 6
Table 4: Number of subjects per tool.
IS4
%So
v & ¢
& I
SEEFS N 8 I
§ & & g & F & F
& ¥ & N SRS v
3 3 3 3 1 2 2 1

for our study because they take modelling courses as part of their
program. The letter also went to graduate students with experience
in software engineering research including modelling. Additionally,
we distributed flyers around campus to reach possible non-student
subjects such as post-docs, alumni, or even subjects from industry.

The Screening Procedure: To help ensure that our subjects
were representative of the larger population of UML modellers, we
designed a screening questionnaire to collect information about
their knowledge of the UML. This questionnaire included multiple-
choice questions that asked subjects to rank on a Likert scale [28]
their familiarity with UML Class and State-Machine diagrams. In
addition, it included 10 UML-specific questions selected from online
sample practice tests such as the Sun Certified Java Associate exams.
Only those respondents who expressed some familiarity with the
UML and who passed all 10 test questions were considered eligible
for the study and were invited to schedule a study session. The other
respondents were contacted and informed of their ineligibility.

Population: We aimed for a study with 20 subjects [4],[21],[44].
However, after almost six months of recruiting, we enlisted 18
subjects. An overview of the subjects’ occupation, UML familiarity
and tool experience is provided in Table 3.

4.2 The Application Domain

To minimize the effects of domain knowledge on the subjects’ per-
formance on tasks, we designed the study around a fairly simple
application domain: a gated parking-lot system. Moreover, to fa-
miliarize the subjects with the application domain, we asked the
subjects to study a textual description of the domain as well as the
Class diagram of the system before starting the study’s tasks.

Parsa Pourali and Joanne M. Atlee

4.3 Treatment Allocation

To guard against the threat to validity that poor performance could
be due to unfamiliarity with a specific modelling tool, we allowed
the subjects to use the modelling tool of their choice. Table 4 shows
a summary of the distribution of the tools amongst subjects. It is
notable that most of the tools that were chosen by our subjects
are among the list of most-heavily used tools reported in a recent
survey by Anger and Lethbridge [2].

4.4 Tasks

Each subject was given a textual description and a partial Class
diagram of a parking lot system, and was asked to edit and de-
bug variants of a State-Machine diagram. The names used in all
the diagrams (e.g., class attributes’ names) were chosen to ease
comprehension of the model. Also, the researcher was present dur-
ing the study to answer the subject’s questions about the domain
description, or clarify the tasks, if needed.

The experiment comprised seven tasks. The first four tasks were
designed to gauge the effort of editing models (e.g., developing
State-Machines and editing transition expressions), whereas the
last three tasks were designed to understand the challenges of
users when debugging models (i.e., finding and fixing errors and
inconsistencies in the models). We designed simple tasks mainly for
two reasons: 1) to increase the size of the pool of potential eligible
subjects, and 2) to ascertain whether challenges exist even for such
simple tasks, let alone for complicated tasks.

Model-Editing Tasks: In each of the first four tasks (i.e., Task1,
Task2, Task3, and Task4), the subjects were given a structured tex-
tual description of a transition and were asked to use the modelling
tool to set the triggering event, guard, and action of the transition.
Below is an example of a model-editing task.

Task1: Please develop the transition that is labelled as T1 in the dia-
gram (based on the following description).

o Event: No triggering event is required for this transition.

o Guard: If the gate id is B.

o Action: The Gate will go to the closed state; that is, the gate
position should be set to down.

Model-Debugging Tasks: For each of the three debugging
tasks, we introduced a few inconsistencies in the diagrams and
asked the subjects to locate and fix them. They could either ex-
amine the diagrams manually or use the tool’s diagnostic features.
Specifically, Task5 asks the subjects to rename elements in the Class
diagram, and then locate any inconsistencies in the model that were
introduced by that action. In Taské and Task?7, the subjects were
asked to locate inconsistency errors that were embedded in the
model, such as identifying model elements that were used but not
defined, and detecting incorrect navigation expressions. Following
is a sample model-debugging task (i.e., Task5).

Task5: Assume that you are supposed to change the name of the gates
from A and D to GA and GD respectively in the Class diagram. Please
implement the change in the model and report any inconsistencies
you found that are caused by this change.

Difficulties and Challenges of Software Modellers

4.5 Data-Collection Techniques and Design

We evaluated the subjects’ performance along three different dimen-
sions, as prescribed by Tullis and Albert [4], namely performance,
self-reported, and behavioural metrics. This section precisely de-
fines the variables and metrics measured in the study.

4.5.1 Performance Metrics. We measured three performance
metrics:

e Task Completeness: We measured the degree to which a
subject was effective in completing a task. We defined four
levels of success:

(1) Complete(1.0): A subject completed a task without any
assistance. Note that, in model-editing tasks, a score of
Complete does not mean that the task was error free. A
model-editing task is deemed Complete if no errors of
omission were performed. Errors of commission are pos-
sible. A model-debugging task is deemed Complete only
if all errors are found and fixed.

Partially Complete (0.5): A subject asks for help during the

task, such as asking about the language syntax, or asking

for clarification about a model element.

Incomplete (0.0): A subject was unable to complete a task.

For model-editing tasks, a score of Incomplete means that

a subject omitted some aspects of a task’s requirement,

whereas in model-debugging tasks it means a subject could

not locate all of the embedded errors in the model.

Generally Complete: Refers to the summation of the above

three scores for a task (i.e., +1.0 for each subject with a

Complete score and +0.5 for each subject with a Partially

Complete score).

e Errors: We counted the number of errors committed by
each subject per task and classified errors as being either
well-formedness or consistency errors [24]. We did not count
completeness errors as our tasks were not designed to analyze
these types of errors. It is important to note that the number
of errors is different from the degree of task completeness
as a task can be completely done but not be error-free.

¢ Efficiency: We measured efficiency using two metrics:

(1) Time-on-Task refers to the time that it takes a user to per-
form a particular task using a product, and is comparable
to Hill’s definition of modelling effort [15].

Lostness measures how "lost" a subject is when perform-

ing a task. To assess lostness, the following three factors

are measured: 1) R: the minimum number of diagrams or

dialogues that must be visited to accomplish the task, 2)

S: the total number of diagrams or dialogue-boxes visited

while performing the task (counting revisits), and 3) N: the

number of different (unique) diagrams or dialogue-boxes

the subject visited while performing the task. Lostness, L,

is then calculated using the following formula [4][45].

@

~

—
W
=

(4

=

@

~

L=\/(§—1)2+<§—1)2 1)

Lostness scores range from Zero to One. The higher the
score, the more trouble the user had finding what they
want. Smith [45] found that users with a lostness score of
less than 0.4 have no substantial difficulty to fulfill a task,

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

whereas users with a lostness score of greater than 0.5 are
definitely lost. One can also estimate subjective lostness
by comparing to the optimal score (e.g., to the smallest
value of lostness among all the subjects) [4].

4.5.2 Self-Reported Metrics. Perhaps the most traditional means
of assessing the usability of a tool is asking users to tell us about
their expectation and experience with the tool [3][4]. We designed
our experiment to collect self-reported data from users to gauge
their satisfaction.

Expectation versus Experience ratings: We asked the sub-
jects to rate two things:

(1) their Expectation Rating of how easy or difficult they ex-
pected a task to be (based on their understanding of the task
and the tool) before starting the task, and

(2) their Experience Rating of how easy or difficult each task
actually was.

We used the same 7-point rating scale (1=Very easy to 7=Very
difficult) for both ratings. For each task, we then calculated an
average Expectation Rating and an average Experience Rating of all
the subjects. The difference in the two average ratings indicates
a degree to which the tools are effective in satisfying the users’
expectations and needs: a difference score of zero indicates high
effectiveness in satisfying the users’ expectations, and a difference
score of 6 suggests an imbalance between the users’ expectations
and what the tools provide.

The expectation and experience ratings were collected in two
different stages of the study: 1) before and after performing a task,
and 2) at the beginning and at the end of the study.

o Pre-Session Expectation Rating: Using the Pre-Session Expec-
tation Rating, we collected data about the subjects’ overall
expectation of the tools’ proficiency with respect to the pre-
study challenges before starting the session (Fig. 2).

o Post-Session Experience Rating: Once the session was com-
pleted, we gave the same set of questions from the Pre-
Session Expectation Rating to the subjects, asking their opin-
ions about how well the tool provided features that aided
them and how well the tool met their expectations to over-
come the pre-study challenges. We can use the averages of
the Pre- and Post-Session ratings to get insight into oppor-
tunities for improving the tools.

o Pre-Task Expectation Rating: Before starting each task, we
asked subjects to rate how easy or difficult they thought
each task should be based on their expectations of the tool
and understanding of the task. The rating was a 7-point
Likert-scale from 1=Very easy to 7=Very difficult.

o Post-Task Experience Rating: Once each task was finished, we
asked users to rate how easy or difficult the task was based
on their actual experience of using the tool.

Usability Questionnaire: In addition to the expectation and
experience ratings, we gave subjects a usability questionnaire to
collect information on the subjects’ satisfaction with the usability
of their respective tools. Different usability questionnaires could
be employed for this assessment, such as System Usability Scale
(SUS) [7], Computer System Usability Questionnaire (CSUQ) [27],

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

Questionnaire for User Interface Satisfaction (QUIS) [8], and, Useful-
ness, Satisfaction, and Ease of Use Questionnaire (USE) [29]. Among
these, we decided to use CSUQ [26][27] because the questions listed
in the CSUQ were more in line with the goals of our study. It needed
almost no adaptation, whereas the other questionnaire types would
have needed much more adaptation to their questions. The adapta-
tion that we made in the CSUQ questions were to replace the term
"system" with the term "tool” in the questions. Our CSUQ consisted
of 19 statements to which the user rated agreement on a 7-point
scale of "Strongly Disagree" to "Strongly Agree", plus N/A.

4.5.3 Behavioural Metrics. The think-aloud protocol [6] allowed
us to collect information about usability issues from the subjects’
verbal statements such as:

e Verbal expressions of confusion, frustration, dissatisfaction,
pleasure, or surprise.

e Verbal expressions of confidence or indecision about a par-
ticular action that might be right or wrong.

e Not saying or doing something that should have been said
or done.

To get the most out of the subjects, we prompted the subject if
he/she did not express his/her thoughts loudly. The prompts were
based on the situation, but some examples are: What are you think-
ing now? What are you trying to do? Why did you do that? To help
the accuracy of our data (i.e. time on tasks), we tried to avoid too
much prompting and tried to have minimal discussion when the
subject was performing a task. After each session, we analysed the
audio recording of the subject’s session to identify the most valu-
able verbal expressions, expanding the list of the significant verbal
expressions from all subjects as we processed subjects’ sessions.
We coded and classified verbal expressions into different categories.
By counting the number of times that the subjects made verbal
statements within each category, we could obtain useful results
about the prominent challenges that the subjects faced.

5 EXECUTION AND PRACTICAL
CONSIDERATIONS

The study was conducted in 18 separate sessions, one for each
subject. The subjects performed their tasks using a PC machine in
the researcher’s office. The duration of each session ranged from
one hour to nearly two hours with an average of about 80 minutes.
Also, to automate the process of data collection, we developed a
tool that automatically records the time on each task (as a measure
of effort). The time on each task starts from the time that the subject
begins the task (including reading the description of the task) and
ends when the subject acknowledges that he/she is done with the
task (i.e., presses the done button in the tool). Also, the tool stores
other data such as responses to all questionnaires.

The study consisted of several segments: Preparing the Sub-
ject, Collecting the Pre-Session and Pre-Task Expectation Ratings,
Performing the Tasks, Collecting the Post-Session and Post-Task
Experience Ratings, and conducting the CSUQ. Fig. 1 illustrates the
structure of a session.

Preparing the Subject: After greetings and signing the con-
sent form, each subject was given an introduction to the study by
viewing a preparation video. The subject was asked to watch and

Parsa Pourali and Joanne M. Atlee

Preparation and Pre-session Activities

/" Recruitment Letter and

: . .) (Pre-Session
. R .~ —» Preparation Video —
Screening Questionnaire) ~{)

\\VExpectation Ratingﬁ/,

Model-Editing Tasks

Ve ™ Y //' . . -
\Pre-Task Expectation Rating ~ —b{ Taskl - »{ Post-Task Experience Ratlng\;
_ —/ O 4 _ >/

i—b Task2 wa{ Task3 Fb[j-b[:—b{ Task4 FD
v

Model-Debugging Tasks
B RN R R i
|

Post-session Activities

Post-Session Experience Rating —> CSUQ Questionnarie

Figure 1: The work-flow of a subject’s session.

Please answer to the following questions based on your overall experience and expectation of using modelling tools.
1. How would you expect a modelling tool to facilitate (i.e. making the task easy or difficult) the following tasks
for you?

Performing a series of sequencing actions in the right order (e.g., defining Very Very

an element in the class diagram before using it in the state diagram). Easy Difficult
Remembering the contextual information (e.g., remembering the name of ~ Very Very
the model elements when using them). Easy Difficult
Writing navigation expressions correctly (e.g., Very Very
[Car.Driver.License.IssueDate > Car.Driver.BirthDate+18]). Easy Difficult
Remembering the appropriate keywords and syntax of the language (e.g., Very Very
whether you should use ‘==" or ‘=’ for a condition). Easy Difficult
Preventing the mismatch between the types of the variables that are used ~ Very Very

for the Left-Hand-Side and Right-Hand-Side of an assignment or a Easy Difficult
condition (e.g., [Gate.Position == up]).

Locating, understanding, and resolving the errors in the model (e.g., using Very Very

a model element that is not defined in the class diagram or misspelling it). Easy Difficult

Figure 2: Pre-session expectation rating questionnaire.

listen to the video carefully. The video included general information
about the procedure and methods of the study (e.g., think-out-loud
method). The advantage of using one video for all the subjects was
that they all received the same information with respect to prepar-
ing for the study. Moreover, in the video we emphasized that: in
the course of the experiment, the subject will not be evaluated in any
way. We made it clear that it is the tool that is under scrutiny and
not them. We needed the subject to understand this because it was
important to create a relaxing and informal atmosphere to make
the session as effective as possible.

To familiarize the subject with the application domain, we asked
the subject to study a textual description of the domain, the provided
Class diagram and its model elements (e.g., classes, operations,
attributes) along with a description of all the elements. Finally, we
asked the subject to rank their expectations of the tool’s ability
to ease the pre-study challenges that were found in the pre-study
phase (see Fig. 2).

Performing the Tasks: We then asked the subject to perform
tasks using the modelling tool of his/her choice. Before each task,
we asked the subject to read the description of the task and rank
how easy or difficult they thought it would be when using the
tool. When performing the tasks, subject was asked to express
their thoughts out-loud, so that we could understand the subject’s

Difficulties and Challenges of Software Modellers

cognitive difficulties. For the purpose of later analysis, we screen-
captured the subject’s work with the tool as well as audio-recorded
their voice. Finally, once the subject finished a task, he/she was
asked to provide a Post-Task Experience Rating for the task.
There is a trade-off between spending time on a task to keep the
quality of the solution high and making progress on all the study’s
tasks. Imposing any time pressure on the subjects could reduce
the quality of the their solutions. Thus, we allowed the subjects
to work at their own pace and to announce when they completed
a task. However, this could result in the times on tasks becoming
unrealistically long and useless for further statistical analysis. To
overcome this challenge, we pursued the following strategies:

e If a subject insisted on solving the task but did not show
any signs of progress after ten minutes, then the researcher
stepped in and asked if the subject needed help ("Do you need
any help or have any question that I can help?"). In this case,
the task success was deemed at best Partially Complete (0.5).
If after given hints the subject still could not fulfill the task
in the next five minutes, then we asked him/her to move on
to the next task and the task was deemed Incomplete (0).

e We did not offer an hourly rate. Our offer was a fixed honorar-
ium of $20 in return for an estimated 90 minutes (maximum)
of work for the study. This avoided the threat of subjects
playing around with the tool to receive a higher payment.

o To further motivate subjects to finish their tasks in good time,
he/she was allowed to immediately leave the experiment
once he/she completed the tasks.

Post-Session Activities: At the end of the session, the subject
was asked to complete two questionnaires: a Post-Session Expe-
rience Ratings and CSUQ? [26][27]. The Post-Session Experience
Ratings comprised the same set of the questions that were shown
in Fig. 2, but this time asked the questions from the perspective of
having experience using the tool. The CSUQ collected useful data
about the subject’s level of satisfaction of using the tools.

In addition, at the end of each session, we asked the subject to
provide any additional comments on the tool and their experience
of using the tools in an open-ended textual format. This could be
positive or negative feedback.

6 RESULTS

This section presents the results of the study with respect to each
of the research questions.

6.1 Tools’ Effectiveness (RQ.1)

We assessed the effectiveness of the tools in assisting subjects with
model-editing and model-debugging tasks by measuring the sub-
jects’ success rate and number of errors in their task solutions.
Fig. 3 illustrates the subjects’ success rates on the tasks, and
shows that a significant number of the subjects were not successful
in finishing their tasks unless we provided them with some hints.
More importantly, it shows that fewer than 45 percent of the sub-
jects were fully successful in the tasks 6 and 7, which were related
to debugging of models. This shows that the tools do not provide
enough support to help subjects resolve errors in the models.

2 A sample CSUQ can be found at http://garyperlman.com/quest/quest.cgi

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

100%

9
90% 5 8% 86%
el 83%
78% 78%
2%

80%

70% 7%
61% 1% 61%

60% 56%
50% 24%44%
9%
20% % 3 36 -
30% 8%
2%
20%
10%

0%
Taskl Task2 Task3 Task4 Task5 Taské Task7
Generally Complete M Complete M Partially Complete M Not Done

Figure 3: Task completion rate (error bars represent 95% con-
1.00
0.90

fidence interval).
0.89
0.80 s
0.70 061
0.60 0.56
0.50
0.50 0.44 0.44
0.40 33
0.30 0.28 0.28
020 0.11
0.10
0.00

Taskl Task2 Task3 Task4 Task5 Task6 Task7

Well-formedness B Consistency

Figure 4: Average error rate made by the subjects per task.

We divided the errors made by the subjects during all the tasks
into two classes based on the guidelines given by Lange et al. [24]:

o Consistency errors are errors that can be temporarily tolerated
but that should be fixed before delivering the model. Con-
sistency errors include: an element is used but not defined,
misspelled element names, incorrect navigation paths (e.g.,
g.blockage instead of g.Sensor.blockage), and type-mismatches
between the LHS and RHS of an expression.

o Well-formedness rules are UML conventions that can help
maximize the model’s understandability. Well-formedness
errors occurred mostly when a subject used UML syntax in-
correctly, or produced an ill-formed expression (e.g., putting
extra parentheses or quotations). Well-formedness errors
can often be detected through analysis of a single diagram.

Fig. 4 depicts the subjects’ error rates for consistency and well-
formedness errors per task. For example, in Task1, each subject
made, in total, 1.33 mistakes. Interestingly, none of the subjects
were able to finish all of their tasks without any error. Moreover,
more than half of the subjects failed to spot the errors in tasks 6
and 7, where the subjects were asked to debug the models.

This is notable given that the tasks were relatively easy and
the model was very small compared to complex industrial models
[25]. Based on our observations, the main reason for such high
error rates was that the subjects relied too much on the tools, and

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

25:55
23:02
20:10
17:17

14:24

Minutes

11:31
08:38
05:46
02:53

00:00
TaskS Task6 Task7

Taskl Task2 Task3 Task4
Figure 5: The average time to perform each task.

17:17

14:24

[
=
w
—

i= 05:46

Time (Minutes)
o
153
w
[e4)

04:14 04:32

02:53 03:49

03:31

00:00

—Best Case —Mean Task Time

Figure 6: Mean time per task vs. best achieved time per task.

assumed that the tool would notify them of errors. However, most
of the errors were not automatically detected and reported by the
tools’ consistency checking until the subjects asked for it. It is
possible that subjects thought their solutions were correct and did
not invoke the tools’ consistency checking.

6.2 Efficiency (RQ.2)

Efficiency was investigated by means of two metrics: time on tasks,
and lostness. Fig. 5 depicts the results of the time that the subjects
took for the tasks. To ensure that our results are meaningful, the
times for the Incomplete tasks are not included in our analysis.
This is because an unsuccessful subject could take a very long time
to give up or to be asked to move on the next task, thus it can
dramatically raise the average time on the tasks.

Tullis and Albert [4] suggest that one way to assess time on task
is to compare the average time it took all subjects to perform a
particular task with the minimum time it took to perform that task.
Fig. 6 shows that the subjects’ average times on most of the tasks
were almost twice that of the best achieved times on tasks.

Worse, even the most-efficient subject was not as efficient as
he/she could have been as evidenced by the lostness scores. Fig. 7
shows the average lostness scores for subjects’ Generally Complete
tasks. The Incomplete tasks are not included in the lostness scores
because subjects were not "lost" when they left tasks Incomplete-
They presumed they had met the task’s requirements.

Using Smith’s [45] threshold for lostness scores of 0.4, we see
that, on average, the only task that the subjects could perform with
a fairly acceptable lostness score was Task 5. In all other tasks, the

Parsa Pourali and Joanne M. Atlee

1.20
1.00
0.80
0.60

0.40

0.20

0.00

Task6 Task7

Task1 Task2 Task3 Task4 Task5

Figure 7: The average lostness score each task.

5.00
450
4.00
3.50
3.00
L
g 2.50
&
2.00
1.50 /\—\/—_«
1.00
0.50
0.00

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

-e-Mean Expectation Rating =s—Mean Experience Rating

Figure 8: Pre/post-task ratings for each pre-study challenge.

subjects exceeded the acceptable lostness score which suggests the
tools’ interfaces are inefficient.

6.3 Satisfiability of Users’ Expectations (RQ.3)

We answer RQ.3 by comparing Pre-Task Expectations against Post-
Task Experiences. The result indicates that the subjects expected the
tasks to be easy (based on their understanding of the task and the
tools). However, their Post-Task Experience Ratings show that the
tools did not meet their expectations. Fig. 8 shows the gap between
the subjects’ expectations and experiences in how difficult it was
to use the tools to perform the tasks. The subjects, on average,
expected the tools to ease modelling challenges (i.e., the mean
Likert score was well below the neutral level of 4), but the subjects’
experience ratings leaned towards dissatisfaction (i.e., the mean
Likert score was slightly above the neutral value). This suggests
that tools are not meeting the users’ expectations on alleviating
modelling tasks. Note that although the subjects could presumably
learn from previously performed tasks, the subjects post-experience
scores suggest that the tasks became increasingly harder for them.

6.4 Users’ Satisfaction (RQ.4)

We used CSUQ to measure the satisfiability and usability of the
tools under test where subjects answered questions about: 1) Over-
all Satisfiability (OVERALL), 2) System Usefulness (SYSUSE), 3)
Information Quality (INFOQUAL), and 4) Interface Quality (IN-
TERQUAL). Subjects specified their level of agreement based on the
Likert scale that ranged from 1 (Strongly Disagree) to 7 (Strongly

Difficulties and Challenges of Software Modellers

7
: T
; _

4
3 — . —l
—1
2
| 1 1 1
0 1 L 1
SYSUSE INFOQUAL INTERQUAL OVERALL

Figure 9: Box-plot based on the result from CSUQ.

]

4 / J. ‘“m.,“_fr_,_..---""*/

Order Context Navigation Syntax Type-Matching Debugging
Figure 10: Mean discrepancy between the pre- and post-

session ratings for each pre-study challenge.

Agree) with the neutral value of 4. Fig. 9 shows that subjects were
slightly dissatisfied with the tools’ usability (SYSUSE) and the in-
terface quality (INTERQUAL) (mean value of ~3), and were more
strongly dissatisfied with the tools’ ability to provide the relevant or
the contextual information during the tasks (mean value of around
2.5 for the information quality INFOQUAL)).

6.5 The Most-Severe Challenges (RQ.5)

We investigated the users’ most-severe challenges by means of
three different techniques: 1) Pre- and Post-Session Ratings, 2) Be-
havioural Metrics, and 3) Analysing Errors. The three analyses
produced the same results.

6.5.1 Pre- and Post-Session Ratings. We used Pre- and Post-
Session Ratings to identify pre-study challenges that users expected
the tools to alleviate, but that the tools did not. Fig. 10 depicts the
mean of the differences between Pre-Session Expectation and Post-
Session Experience ratings with respect to the pre-study challenges.
The figure shows that the subjects’ expectations and experiences
had the greatest disparity with respect to the Context and Debug-
ging challenges. That is, the subjects expected to face the least
difficulty regarding the two challenges, but instead experienced
the most difficulty. Moreover, the short box plots for these two
challenges indicate a high degree of agreement among the subjects’
views. These results suggest that tool providers should propose tool
advances that address these two prominent challenges over other
tool advances.

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

18

16

14

12

10 T
]

&

4

2

0 ——

&

Figure 11: Mean frequency of each challenge expressed ver-
bally by each subject.

6.5.2 Behavioural Metrics. The think-aloud protocol helped us
identifying the subjects’ cognitive difficulties and challenges. We
started with a list of the categories of challenges based on the six
pre-study challenges. This list was then extended by four more
categories as we learned more from the verbal analysis. The four
new categories are: 1) Layout: issues related to the layout of the
diagrams, 2) Views: issues related to the viewing mechanisms to
combine different diagrams, 3) Reuse: issues faced when reusing
(i.e., copy and pasting) model elements, and 4) Look: appearance-
related dissatisfactions (e.g., shapes and colors).

By analysing the subjects’ verbal expressions, we were able to
correlate each expression to its pertinent category of challenge(s).
Sometimes, a statement could fall in two or more categories. In
such a case, we correlated the statement to all of the applicable
categories. The result of our verbal analysis is shown in Fig. 11.
The figure indicates the two major challenges for the users were
Context and Debugging. Some of the statements that the subjects
made for Context were: "[While trying to remember the name of the
elements] The tool should give me some recommendation." ,'what
was the name of the class!", and "Oh! I forgot the name again..”".

6.5.3 Analysing Errors. The errors rates presented in Fig. 4 show
that almost all the subjects introduced inconsistencies to the model
during the four model-editing tasks. Further analysis showed that
the majority of these inconsistencies were related to referring to an
incorrect or an undefined element. We believe that this relates to the
Context challenge and that the subjects had difficulties recalling the
intended model elements in the Class diagram. The tasks 5, 6, and
7 were designed to gauge the severity of the Debugging challenges,
and the results presented in Fig. 3 show a high degree of failure in
the subjects’ average performance for these tasks.

Based on the above results, one can conclude that the Context and
Debugging challenges are the most-severe challenges. Due to the
space limitations, we did not present the data collected from other
sources that could confirm the above results such as the frequency
with which subjects switched to the Class diagram during tasks as
a reference metric for the severity of the Context challenge.

7 DISCUSSION

Below are additional observations about the subjects’ behaviours,
and attitudes about the tools, collected during the subjects’ sessions

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

with the tools or through an open-ended textual feedback that was
answered at the end of the study.

e Sometimes, the subjects were satisfied with how they ful-
filled tasks and did not realize when they had created an
inconsistent or erroneous model. Subjects expected to be
warned about errors as they were being made but the tools
report errors only when the user proactively invokes error-
checking features. It is important that the tools have features
that either prevent such inconsistencies and errors during
model editing or report them during commission. Please
note that model correctness pertains to whether the model
express the same information as the experiment’s textual
description (i.e., correctness errors are not methodological
€rrors).

Some tools such as MagicDraw [18] or Visual Paradigm [36]
allow users to cross-link the operations in the event/effects
of a transition to related operations in the Class diagram.
However, users avoid creating these cross-links and instead
just set the name or label of the transition. It is unknown
whether the subjects simply do not care or if they think that
it will be complicated for them to cross-link the operations to
the related attributes for every transition. Perhaps, the ideal
would be if the tools allowed the user to type a transition as
a text, and the tool could automatically cross-link.

Some tools (e.g., UMLet) are very lightweight and easy to
learn, and are useful for creating simple models but are not
suitable for editing complex models because of the lack of
features such as syntax-highlighting and auto-completion.
In contrast, tools with these features often feel very heavy-
weight and complicated. As a result, the latter tools have a
learning curve that intimidates users because of the many
views and features that it offers without proper organization.

8 THREATS TO VALIDITY
This section discusses the threats to the validity of the study.

8.1 Construct Validity

As mentioned, we used instrumentation to collect data about the
time spent on tasks. The instrumentation improves the level of
accuracy of the collected timings; however, because we used the
think-aloud protocol, it is probable that the thinking out load and
our prompts to the user increased the actual time to solve tasks.
Also, our measurements for the time includes the time that the
subjects took to read the task description and answer the Pre- and
Post-Task Ratings, although this is negligible.

It is possible that the worst performance in the last two tasks
may be attributed to fatigue or to the paying policy ($20 for about
90 minutes, leave as soon as you finish), and not due to the task
type. We tried to mitigate this threat by providing an informal
atmosphere and allowing the subjects to take a break whenever
they felt uncomfortable. We believe such fatigue cannot be avoided
and is generalizable to a real working environment. In our opinion,
not being able to locate an error in a model after around three
minutes (see Fig. 6) suggests that the tools do not provide enough
useful and usable features for such debugging tasks.

Parsa Pourali and Joanne M. Atlee

8.2 Internal Validity

One threat to internal validity was the subjects’ familiarity with the
UML. We tried to mitigate the risks by recruiting subjects who could
passed our UML exercises. We also made sure that the subjects had
previously passed at least one course that included UML modelling.
A related issue was that we asked the subjects’ to self-declare
their expectation of the tools’ abilities and their proficiency with
using the tools. Their answers might be influenced by how self-
confident they are in general, and may not necessarily reflect their
real UML proficiency. As a result, their modelling errors and in-
stances of lostness might be caused not only by inadequate tool
support, but also by the level of competence in UML modelling.

8.3 External Validity

The main threat to external validity is that the subjects were stu-
dents rather than experienced modellers who work in industry. To
mitigate this threat we kept the scope of the study and the size of
the model quite small compared to industrial models of software
systems. Moreover, the tasks were relatively small and easy to do
in terms of size, complexity and duration. Nevertheless, we cannot
rule out the possibility that the observed effects could have been
different if the systems and tasks had been larger.

One other threat was the subjects’ familiarity with the system
being modeled. It is possible that the results would differ if the
users had dealt with the model for a longer period of time. A related
threat is that the modellers might have performed better if they
had created the Class diagram themselves as then the modellers
would have been more familiar with the model.

9 CONCLUSION

We conducted a formative user study to understand the difficulties
and challenges of modellers when editing and debugging static and
dynamic UML models as exemplified by Class and State-Machine
diagrams. Our analysis on the subjects’ performance, verbal ex-
pressions, Pre- and Post-Session Ratings, and errors in the tasks
determined that the most-prominent challenges of modellers are:
1) remembering contextual information (Context) and 2) locating,
understanding and resolving errors in models (Debugging).

Furthermore, the average discrepancy between the Pre-Task
Expectation and Post-Task Experience Ratings showed that there
is a notable gap between the users’ expectations and the tools’
capability to satisfy the expectations. Similarly, the result of the
CSUQ indicated that the subjects’ opinion on the tools’ usability
leaned towards dissatisfaction.

Next steps are to identify enhancements to tools that address
the most-critical challenges. For each challenge, we will identify
relevant human-cognition factors that might effectively reduce the
challenge, and devise enhancements to the tools that reinforce the
identified factors. We will also hold empirical user studies to assess
the impact of the tool advances on modellers’ effectiveness.

10 ACKNOWLEDGEMENT

We thank the 18 participants of our empirical user study. This work
was funded by the Natural Sciences and Engineering Research
Council (NSERC) of Canada and the University of Waterloo.

Difficulties and Challenges of Software Modellers MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

REFERENCES [27] James R. Lewis. 1995. IBM computer usability satisfaction questionnaires: psy-

[1] Silvia Abraho, Francis Bourdeleau, Betty Cheng, Sahar Kokaly, Richard Paige, chometric evaluat.ion and instructions for use. International Journal of Human-
Harald Stéerrle, and Jon Whittle. 2017. User experience for model-driven engi- Computgr Interaction 7, 1 (19?5)’ 57-78. . i
neering: Challenges and future directions. In 20th International Conference on (28] Rensis Likert. 1932. A technique for the measurement of attitudes. Archives of
Model Driven Engineering Languages and Systems (MODELS). IEEE, 229-236. psychology (1932).
Luciane TW Agner and Timothy C. Lethbridge. 2017. A survey of tool use in [29] Arnold M. Lund. 2001. Measuring Usability with the USE Questionnaire 12

modeling education. In 20th International Conference on Model Driven Engineering General Background.‘ Usqbility interface 8, 2 (2001), 3-6. . .
Languages and Systems (MODELS). IEEE, 303-311. [30] Parastoo Mohagheghi, Miguel A. Fernandez, Juan A. Martell, Mathias Fritzsche,

[3] William Albert and E. Dixon. 2003. Is this what you expected? The use of expec- and Wasif(}ilani. 2008. MDE adoption in‘industry.: cha!lenges and success criteria.
tation measures in usability testing. In Proceedings of the Usability Professionals In Internatmna? Conference on Model Driven Engineering Languages and Systems
Association 2003 Conference, Scottsdale, AZ. (MODELS). Springer, 54-59.

[4] William Albert and Thomas Tullis. 2013. Measuring the user experience: collecting, Andreas Muelder. 2011. Y:flkindu Statechart Modeling TO9IS‘
analyzing, and presenting usability metrics, Newnes. Gunter Mussbacher, Daniel Amyot, Ruth Breu, Jean-Michel Bruel, Betty HC

[5] Mohammad M. Alsuraihi and Dimitris I. Rigas. 2007. How effective is it to design Cheng, Philip pe Collet, Benoit Combemale, Robgrt B. Frgnce, Bogarfit Heldal,
by voice?. In Proceedings of the 21st British HCI Group Annual Conference on James Hill, et al. 2014. The relevance of model-driven engineering thirty years

A

W w
N =

People and Computers: HCL...But Not As We Know It - Volume 2. BCS Learning & frorg now. (2014?’ 183-200. i : i
Development Ltd., 159-162. [33] Christian Nentwich, Wolfgang Emmerich, Anthony Finkelstein, and Ernst Ellmer.
[6] Kathy Baxter, Catherine Courage, and Kelly Caine. 2015. Understanding your 2003. Flexible consistency checking. ACM Transactions on Software Engineering

users: a practical guide to user research methods. Morgan Kaufmann. and Methodology (TOSEM) 12, 1 (jan 2003), 28-63. https://doi.org/10.1145/839268.

[7] John Brooke. 1996. SUS: A quick and dirty usability scale. Usability evaluation in 839271 i)
industry 189 (1996). [34] Leonel Nobrega, Nuno Jardim Nunes, and Helder Coelho. 2007. The meta sketch
[8] J. P. Chin, V. A. Diehl, and L. K. Norman. 1988. Development of an instrument editor. In Computer-Aided Design Of User Interfaces V. Springer, 201-214.

measuring user satisfaction of the human-computer interface. In Proceedings of [35] Object Management Group. 2015. OMG Unified Modeling Language TM (OMG

the Special Interest Group on Computer-Human Interaction (SIGCHI) conference on UML), Superstructure v.2.3. InformgtikSpektrum 21, March (2915)’ 758.
Human factors in computing systems - CHI °88. ACM Press, New York, New York, [36] Visual Paradigm. 2013. Visual paradigm for uml. Visual Paradigm for UML-UML
USA. 213-218. tool for software application development (2013), 72.

[9] Andrej Dyck, Andreas Ganser, and Horst Lichter. 2013. Model recommenders for (37] Tanumoy Pati, Dennis C. Feiock,'and James H. Hill 2012. Proactive moc}eling:
command-enabled editors. In International Workshop on Model-driven Engineering auto-generating models from their semantics and constraints. In Proceedings of

By Example (MDEBE). 12-21. the 2012 workshop on Domain-specific modeling. ACM, 7-12.
[10] Alexander Egyed. 2006. Instant Consistency Checking for the UML. In Proceedings (38] Tanumf)y Pa_tl’ Sowmya Kolll, and James H. Hill. 2017. Pfoactlve modeling: a new
of the 28th International Conference on Software Engineering. ACM Press, New model intelligence technique. Software & Systems Modeling 16, 2 (2017), 499-521.

York, New York, USA, 381-390. https://doi.org/10.1145/1134285.1134339 [39] Parsa Pourali and Joanne M. Atlee. 2018. An Experimental Investigation on
[11] John Erickson and Keng Siau. 2007. Can UML be simplified? Practitioner use of Unders%‘anding the Diﬁ‘lczflties and Challenges "fs"ﬂw‘?re Modellgrs When Using
UML in separate domains. In proceedings of Evaluation and Modelling Methods Modelling Tm')ls. Techr_ncal _Report C5-2018-03. David R. Cheriton School of
for Systems Analysis and Development (EMMSAD). 89-98. Computer Science, University of Waterloo. 44 pages. https://uwaterloo.ca/

[12] Trit Hadar and Anna Zamansky. 2015. Cognitive factors in inconsistency man- computer- science[si?es/ca.computer— science/ﬁles/uploads/ﬁks/cs—201§—03.pdf
agement. In 23rd International Conference on Requirements Engineering(RE’15). [40] G Ramesh, TV Ra}m} Kanth, and A Ananda Rao. 2916‘ Extensible Real Time S.Oft_
IEEE, 226-229. ware Design Inconsistency Checker : A Model Driven Approach. In Proceedings

[13] Cons,tance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw. 1996. Auto- of the International MultiConference of Engineers and Computer Scientists (IMECS),

mated consistency checking of requirements specifications. ACM Transactions Vol. I. Hong Kong.

on Software Engineering and Methodology (TOSEM) 5, 3 (1996), 231-261. (41]]ames Reason'. 1990. Hu‘man error. Caml7r}dge u.mversny press.

[14] Anders Hessellund, Krzysztof Czarnecki, and Andrzej Wasowski. 2007. Guided de- [42] Gianna Reggio, Maurizio Leotta, af“? Filippo Ricca. 2014. Who Knows / Uses
velopment with multiple domain-specific languages. In International Conference What of the UML': A Personal Opinion Survey. ACM/IEEE 17th Intl. Conf. on
on Model Driven Engineering Languages and Systems (MODELS). 46-60. Model Driven Engineering Languages and Systems (2014), 149-165. https://doi.

[15] James H Hill. 2011. Measuring and reducing modeling effort in domain-specific 0rg/10.1007/978-3-319-11653-2_10

[43] Jason E. Robbins and David F. Redmiles. 2000. Cognitive support, UML adherence,
and XMI interchange in Argo/UML. Information and Software Technology 42, 2
(2000), 79-89.

modeling languages with examples. In 18th International Conference and Work-
shops on Engineering of Computer Based Systems (ECBS). IEEE, 120-129.
[16] Ko-Hsun Huang, Nuno Jardim Nunes, Leonel Nobrega, Larry Constantine, and

Monchu Chen. 2011. Hammering Models: Designing Usable Modeling Tools. [44] Forrest Shull, Janice Singer, and Dag IK Sjeberg. 2008. Guide to advanced empirical
In 13th International Conference on Human-Computer Interaction (INTERACT). softu'/are engineering. Vol. 93. Springer. . .
Springer, 537-554. [45] Pauline A. Smith. 1996. Towards a practical measure of hypertext usability.
[17] John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristoffersen. 2011. Interacting with computers 8, 4 (1996), 365-381.)
Empirical assessment of MDE in industry. In 33rd International Conference on [46] Monique ‘Snoeck, Cindy Michiels, apd GmeADed?ne‘ 2003. Cjons:s{ency by
Software Engineering (ICSE). IEEE, 471-480. Construction: The Case of MERODE. Springer Berlin Heidelberg, Berlin, Heidelberg,
[18] No Magic Inc. 2013. Magicdraw, UML. (2013). 105-117. https://doi.org/10.1007/978-3-540-39597-3_11
[19] Stuart Kent. 2002. Model Driven Engineering. In International Conference on [47] Jon Whittle, John Hutchinson, Mark Rouncefield, Hakan Burden, and Rogardt

Heldal. 2013. Industrial adoption of model-driven engineering: Are the tools really
the problem? In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 8107 LNCS.
Springer Berlin Heidelberg, 1-17. https://doi.org/10.1007/978-3-642-41533-3_1

Integrated Formal Methods. Springer, 286—-298.
[20] Mik Kersten. 2007. Focusing knowledge work with task context. Ph.D. Dissertation.
University of British Columbia.

[21] Andrew J. Ko, Thomas D. Latoza, and Margaret M. Burnett. 2015. A practical guide

to controlled experiments of software engineering tools with human participants. 48] Dina Zayan, Michat Antkiewicz, and Kr zysztof Czarnecki. 2014. Effef:ts of us-

Empirical Software Engineering 20, 1 (2015), 110~141. ing examples on structural model comprehension: a controlled experiment. In

[22] Maria Kutar, Carol Britton, and Trevor Barker. 2002. A comparison of empirical Proceedings of the 36th International Conference on Software Engineering. ACM,
955-966.

study and cognitive dimensions analysis in the evaluation of UML diagrams. In
Proceedings of the 14th Workshop of the Psychology of Programming Interest Group
(PPIG 14).
[23] Ludwik Kuzniarz, Miroslaw Staron, and Claes Wohlin. 2004. An empirical study
on using stereotypes to improve understanding of UML models. In Proceedings
of 12th IEEE International Workshop on Program Comprehension. IEEE, 14-23.
Christian F. J. Lange and Michel R. V. Chaudron. 2004. An empirical assessment
of completeness in UML designs. In Proceedings of the 8th International Conference
on Empirical Assessment in Software Engineering (EASE "04). IET, 111-121.
Christian F. J. Lange, Michel R. V. Chaudron, and Johan Muskens. 2006. In practice:
UML software architecture and design description. IEEE software 23, 2 (2006),
40-46.
[26] James R. Lewis. 1992. Psychometric evaluation of the post-study system usability
questionnaire: The PSSUQ. 36, 16 (1992), 1259-1260.

[24

[25

https://doi.org/10.1145/1134285.1134339
https://doi.org/10.1145/839268.839271
https://doi.org/10.1145/839268.839271
https://uwaterloo.ca/computer-science/sites/ca.computer-science/files/uploads/files/cs-2018-03.pdf
https://uwaterloo.ca/computer-science/sites/ca.computer-science/files/uploads/files/cs-2018-03.pdf
https://doi.org/10.1007/978-3-319-11653-2_10
https://doi.org/10.1007/978-3-319-11653-2_10
https://doi.org/10.1007/978-3-540-39597-3_11
https://doi.org/10.1007/978-3-642-41533-3_1

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Experimental Context
	3.1 Pre-Study Phase

	4 Experimental Design
	4.1 Recruitment Procedure
	4.2 The Application Domain
	4.3 Treatment Allocation
	4.4 Tasks
	4.5 Data-Collection Techniques and Design

	5 Execution and Practical Considerations
	6 Results
	6.1 Tools' Effectiveness (RQ.1)
	6.2 Efficiency (RQ.2)
	6.3 Satisfiability of Users' Expectations (RQ.3)
	6.4 Users' Satisfaction (RQ.4)
	6.5 The Most-Severe Challenges (RQ.5)

	7 Discussion
	8 Threats to Validity
	8.1 Construct Validity
	8.2 Internal Validity
	8.3 External Validity

	9 Conclusion
	10 Acknowledgement
	References

