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Abstract

Enterprises today are increasingly compelled to
adopt dedicated vector databases for retrieval-
augmented generation (RAG) in applications
based on large language models (LLMs). As a
potential alternative for these vector databases,
we propose that organizations leverage exist-
ing relational databases for retrieval, which
many have already deployed in their enterprise
data lakes, thus minimizing additional complex-
ity in their software stacks. To demonstrate
the simplicity and feasibility of this approach,
we present QuackIR, an information retrieval
(IR) toolkit built on relational database man-
agement systems (RDBMSes), with integra-
tions in DuckDB, SQLite, and PostgreSQL.
Using QuackIR, we benchmark the sparse and
dense retrieval capabilities of these popular
RDBMSes and demonstrate that their effec-
tiveness is comparable to baselines from es-
tablished IR toolkits. Our results highlight the
potential of relational databases as a simple op-
tion for RAG scenarios due to their established
widespread usage and the easy integration of
retrieval abilities. Our implementation is avail-
able at quackir.io.

1 Introduction

With the rise of large language models (LLMs)
and retrieval-augmented generation (RAG) (Lewis
et al., 2020; Ram et al., 2023), where search results
are incorporated into prompts to provide additional
context for LLMs, a variety of vector stores dedi-
cated to vector search have emerged. The dominant
narrative is that these vector stores are necessary
for enterprises as part of their “AI stack” (Lin et al.,
2023). The goal of this paper is to provide a poten-
tial alternative for the vector stores used in RAG
with relational databases by introducing QuackIR,
a retrieval toolkit dedicated to this approach of
search using relational databases.

Relational databases are an established fixture
in the “data stacks” of many, if not most, enter-

prises, forming an integral component of existing
data lakes. Having successfully withstood the test
of time and numerous challengers, they have shown
themselves to be indispensable, and it follows that
many companies have already invested heavily in
them (Lin et al., 2023). Thus, performing search
directly using relational databases in the context of
RAG applications is advantageous as it adds mini-
mal additional complexity compared to integrating
a separate dedicated vector store.

To demonstrate the retrieval capabilities of re-
lational databases, we explore three relational
database management systems (RDBMSes) with
QuackIR: DuckDB1 for its powerful analytics ca-
pabilities, SQLite2 for being the “go-to” embedded
database, and PostgreSQL3 for its popular deploy-
ment in production.

Our contribution is QuackIR, a toolkit for in-
formation retrieval (IR) with RDBMSes. Using
QuackIR, we evaluate the retrieval effectiveness of
various RDBMSes and draw comparisons against
established baselines, exhibiting the potential of re-
lational databases in retrieval. Based on our results,
we highlight DuckDB as a particularly promising
candidate. QuackIR’s pipeline mirrors widely used
IR toolkits such as Anserini (Yang et al., 2018,
2017; Lin et al., 2016) and Pyserini (Lin et al.,
2021), achieving feature parity and offering a mod-
ular architecture conducive to extension and inte-
gration. We hope that QuackIR enables enterprises
to build effective RAG systems directly on top of
their existing relational database infrastructure.

2 Architecture

We discuss our design and RDBMS-specific tech-
nical details. QuackIR is open source; the full
implementation is available at quackir.io.

1duckdb.org
2sqlite.org
3postgresql.org

quackir.io
quackir.io
duckdb.org
sqlite.org
postgresql.org


Figure 1: Diagram of QuackIR’s pipeline.

QuackIR supports sparse, dense, and hybrid re-
trieval (Lin, 2021). Sparse retrieval is based on
keyword matching, where the terms in a document
and their respective frequencies are represented by
sparse vectors. This is also called full-text search.
BM25 is the “classic” sparse retrieval algorithm,
calculating the relevance scores of documents in re-
gards to query tokens based on various factors such
as the number of documents, document lengths,
and given parameters that can be tuned to adjust
the weight of said factors (Robertson and Zaragoza,
2009). Dense retrieval uses special models, e.g.,
transformers, to embed documents and queries into
vectors that capture the semantic meaning of the
text, hence the name vector search (Karpukhin
et al., 2020). Relevance scores are calculated by
the cosine distance of document and query vectors.
We implement dense retrieval with “flat” indexes in
QuackIR, which is brute-force search for the exact
nearest neighbour by scanning all the vectors and
finding the top results based on the cosine distance.

Hybrid retrieval fuses results from different re-
trieval techniques, such as sparse and dense re-
trieval, in an effort to create a list of results that
improves upon both. We implement reciprocal
rank fusion (RRF) in QuackIR, a popular hybrid
retrieval method that combines together documents
rescored according to their respective ranks in the
base retrieval results (Cormack et al., 2009).

The pipeline and features of QuackIR parallel
those of Anserini and Pyserini, comprising pre-
processing, indexing, retrieval, and evaluation, with
a modular design that is convenient to integrate

java -cp anserini-1.0.0-fatjar.jar \
io.anserini.search.SearchCollection \
-index indexes/index_path \
-topics path/to/queries \
-output runs/output.txt \
-bm25 -removeQuery

python -m pyserini.search.lucene \
--threads 16 --batch-size 128 \
--index indexes/index_path \
--topics path/to/queries \
--output runs/output.txt \
--output-format trec \
--hits 1000 --bm25 --remove-query

python -m quackir.search \
--index index_name \
--topics path/to/queries \
--output runs/output.txt \
--db-type duckdb \
--db-path duck.db

Figure 2: Sample search commands in Anserini, Py-
serini, and QuackIR, in that order from top to bottom.

into existing enterprise workflows. A diagram of
this pipeline can be found in Figure 1. Anserini
and Pyserini are widely used IR toolkits that sup-
port the full retrieval pipeline through powerful
utilities implemented in Java and Python, respec-
tively. They offer various retrieval modes, includ-
ing sparse, dense, and hybrid.

Given Anserini and Pyserini’s widespread adop-
tion within the IR research community, we
use them as primary references when designing
QuackIR. By conforming to their interface and de-
sign patterns, we aim to bridge the gap between
academic IR toolkits and RDBMS-based industry
applications. An example retrieval command in
QuackIR, alongside corresponding commands in
Anserini and Pyserini, is shown in Figure 2.



def fts_search(self, query_string, top_n=5, table_name="corpus"):
query = f"""WITH fts AS (SELECT *,
COALESCE(fts_main_{table_name}.match_bm25(id, ?, k:=0.9, b:=0.4), 0) AS score FROM {table_name})
SELECT id, score FROM fts WHERE score IS NOT NULL
ORDER BY score DESC LIMIT {top_n};
"""
return self.conn.execute(query, [query_string]).fetchall()

Figure 3: QuackIR’s internal implementation of sparse retrieval with DuckDB, using Python wrapping SQL.

2.1 Design

QuackIR wraps the SQL logic required for retrieval
within the integrated RDBMSes; for instance, Fig-
ure 3 illustrates QuackIR’s sparse retrieval imple-
mentation using DuckDB’s full-text search. While
the RDBMSes already provide the primary retrieval
capabilities, e.g., the SQL query shown, the usage
across different systems varies and can be difficult
to master. QuackIR presents a natural Python inter-
face that interoperates with Anserini and Pyserini,
matching research-level effectiveness while being
fully implemented within RDBMSes, reducing pro-
duction complexity for industry practitioners and
their existing relational database systems.

Pre-Processing To generate terms for sparse re-
trieval, text is put through a tokenizer for stem-
ming and to remove stopwords. QuackIR wraps
Pyserini’s Lucene analyzer to use its Porter tok-
enizer for convenient tokenization. The built-in
text processing functionalities of the RDBMSes are
disabled wherever possible to ensure that retrieval
effectiveness is evaluated without the interference
of database-specific tokenization or normalization.
That is, for our experiments, all documents and
queries used for sparse retrieval are pre-tokenized
with QuackIR. For dense retrieval, we use docu-
ments and queries pre-encoded with BGE-base-en-
v1.5 (Xiao et al., 2024).

Indexing Documents are indexed to facilitate ef-
ficient computation of relevance scores and fast re-
trieval. For indexing, QuackIR takes the path of the
collection and inserts the contents of the file, or of
all the files inside for a directory, into the specified
database. QuackIR accepts jsonl files for sparse
and dense indexes, and parquet files for dense in-
dexes. A table with the appropriate columns is cre-
ated based on the type of index: a text column for
contents in a sparse index or an RDBMS-specific
vector column for embeddings in a dense index.
For dense indexes, simply loading the data into the
database table is enough. For sparse indexes, there
is an additional step for the actual indexing to make
the collection statistics used for retrieval easily ac-

from quackir.index import DuckDBIndexer
from quackir import IndexType

table_name = "corpus"
index_type = IndexType.SPARSE

indexer = DuckDBIndexer()
indexer.init_table(table_name, index_type)
indexer.load_table(table_name, corpus_file)
indexer.fts_index(table_name)

indexer.close()

Figure 4: Code snippet for creating and loading a sparse
index in DuckDB, where corpus_file is the path to the
corpus in the appropriate format.

from quackir.search import DuckDBSearcher
from quackir import SearchType

table_name = "corpus"
query = "what are ducks"
search_type = SearchType.SPARSE

searcher = DuckDBSearcher()
results = searcher.search(

search_type,
query_string=query,
table_names=[table_name]

)
print(results)

searcher.close()

Figure 5: Code snippet for searching a sparse index with
QuackIR in DuckDB.

cessible. An example code snippet for indexing in
QuackIR with DuckDB is shown in Figure 4. We
do not consider the cost of the entire indexing pro-
cess in our results; we assume a static corpus, as is
the case with benchmarks, which makes indexing
a one-time operation (Lin, 2025).

Retrieval QuackIR supports a variety of retrieval
needs, offering sparse, dense, and hybrid retrieval.
An example code snippet for searching a sparse in-
dex in QuackIR with DuckDB is shown in Figure 5.
For sparse retrieval, DuckDB and SQLite both at-
tempt to implement BM25, but PostgreSQL does
not. Even then, as described by Kamphuis et al.
(2020), there are many variants of BM25, and the
RDBMSes have implementation differences from
Lucene’s formula used by Anserini, the baseline
we compare against. For dense retrieval, supported
by DuckDB and PostgreSQL, we use brute-force
search with flat indexes to get the “baseline” effec-
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Figure 6: BM25 formulas for the score of term t in
Lucene, DuckDB, and SQLite from top to bottom where
N is the number of documents, dft is the number of
documents containing t, tftd is the term frequency of
t in document d, Ld is length of document d, Llossy is
document length with loss, Lavg is average length of
documents in collection, and k1 and b are parameters.

tiveness. Hybrid retrieval is implemented directly
with SQL, querying both a sparse and a dense index
and combining results by RRF. Following Cormack
et al. (2009), we set k = 60 as the default value
used in RRF for our experiments. As hybrid re-
trieval uses dense retrieval, it is also only supported
in DuckDB and PostgreSQL.

2.2 DuckDB

QuackIR supports sparse retrieval in DuckDB with
its fts extension,4 one of DuckDB’s many powerful
core extensions. DuckDB’s sparse index is called a
“fts_index”, which is comprised of several tables in
the same database but with another schema, similar
to an inverted index used by Lucene.5

With DuckDB’s extensive configurability, we
are able to fully disable the built-in text processing
by setting no stemmer, no stopwords, no regular
expression parsing, no accent-stripping, and no
lowercasing. We are also able to set the values
of the BM25 parameters k1 and b to 0.9 and 0.4,
respectively, following the Anserini defaults. How-
ever, the BM25 formula DuckDB uses differs from
that of Lucene’s in that it multiplies the score by
(k1 + 1) and does not use caching for the document
length metric. The formula is shown in row (2) of
Figure 6.

QuackIR has dense retrieval in DuckDB as well.
DuckDB is well-suited for vector search, as the
required functionalities are natively available with-

4duckdb.org/docs/stable/core_extensions/full_
text_search.html

5motherduck.com/blog/search-using-duckdb-part-3/

out additional extensions. Dense indexes use
DuckDB’s built-in ARRAY datatype, and scoring
uses its array_cosine_similarity function.

2.3 SQLite

Sparse retrieval is available in QuackIR with
SQLite using its FTS5 extension.6 SQLite’s sparse
index is a virtual table,7 which is an object that
resembles a table but is in fact made of methods.
Disabling the tokenizer is not an option, so we
proceed with its Porter tokenizer. The BM25 pa-
rameters k1 and b have their values hard-coded at
1.2 and 0.75, respectively, so we cannot set them
to match Anserini. The differences between the
BM25 formulas of SQLite and Lucene consist of
the same (k1 + 1) multiplier and precise document
length accuracy as DuckDB. It also does not add 1
before taking the logarithm in the IDF term. The
formula is shown in row (3) of Figure 6.

QuackIR does not support dense retrieval with
SQLite. While there exist vector extensions for
SQLite, none are widespread. Specifically, none
are as established as pgvector, so we choose not to
incorporate any, as it would be less applicable.

2.4 PostgreSQL

QuackIR offers sparse retrieval in PostgreSQL with
its built-in full-text search.8 Its sparse index is a
generalized inverted index (GIN),9 which is an in-
dex designed for searching composite items, im-
plemented as a B-tree. We use the “simple” con-
figuration with no stopwords, resulting in tokens
being lowercased without any other processing.
While this evaluates PostgreSQL’s “default” full-
text search capabilities and mirrors the setup of
the other RDBMSes, since this approach does not
use BM25 like DuckDB and SQLite, it is not nec-
essarily a “fair” comparison for optimal effective-
ness. Therefore, we also run experiments using
the “english” configuration, which uses Snowball
stemming for English, a natural choice for English
retrieval, along with a document length normaliza-
tion option that divides the score of a document by
1 + the logarithm of its length.10 We will refer to
this as the “modified” configuration. Additionally,
there is the option to configure how strongly tokens

6sqlite.org/fts5.html
7sqlite.org/vtab.html
8postgresql.org/docs/current/textsearch.html
9postgresql.org/docs/current/gin.html
10postgresql.org/docs/current/
textsearch-controls.html

duckdb.org/docs/stable/core_extensions/full_text_search.html
duckdb.org/docs/stable/core_extensions/full_text_search.html
motherduck.com/blog/search-using-duckdb-part-3/
sqlite.org/fts5.html
sqlite.org/vtab.html
postgresql.org/docs/current/textsearch.html
postgresql.org/docs/current/gin.html
postgresql.org/docs/current/textsearch-controls.html
postgresql.org/docs/current/textsearch-controls.html


are bound together in the query. We choose the
“OR” operator, which matches when at least one of
the tokens in the query appears in the document, as
it is the weakest binding. For fusion purposes, we
use PostgreSQL with the “simple” configuration
for the sparse component.

QuackIR’s dense retrieval with PostgreSQL uses
PostgreSQL’s popular pgvector extension,11 which
integrates the vector datatype and adds support for
vector similarity search to PostgreSQL. We use
pgvector’s cosine distance for scoring.

3 Experiments

Experiments are performed on an Azure instance
equipped with 64 AMD EPYC 9V74 80-Core Pro-
cessors, running Ubuntu 24.04.2 with 503 GB of
memory. We evaluate on the BEIR dataset (Thakur
et al., 2021), a widely adopted benchmark com-
prising a diverse set of real-world retrieval tasks
across multiple domains, with established baselines
for comparison (Lin, 2025). Specifically, the “flat”
variant is used, where fields are concatenated prior
to indexing (Kamalloo et al., 2024). Latency is
measured in queries per second (QPS). Retrieval ef-
fectiveness is evaluated with Pyserini and the qrels
integrated into the tools submodule it shares with
QuackIR, which provides relevance judgements for
document–query pairs. We measure effectiveness
with the nDCG@10 metric, which is calculated
by the relevance and ranks of the top ten retrieved
documents, where a higher score is better.

The retrieval effectiveness results for the three
RDBMSes currently supported by QuackIR are
shown in Table 1. Their respective latencies are
shown in Table 2. We group the datasets by the size
of their corpus and into three rough subsections as
done by Lin (2025). The number of documents
and the number of queries for each dataset are also
present in the table to examine scalability, indi-
cated by |C| and |Q|, respectively. The effective-
ness results from Lin (2025) are used as baseline
for our comparisons, shown under the “Anserini”
column. Some larger datasets are not evaluated
with QuackIR due to the latency being too high for
practicality with the current implementation.

3.1 Sparse

We begin by examining sparse retrieval. The ef-
fectiveness of DuckDB and SQLite come close to
Anserini’s baseline with slight variations, and Post-

11github.com/pgvector/pgvector

greSQL underperforms. The differences between
the scores that DuckDB and SQLite achieve from
baseline are small enough for us to attribute them
to the formula variations discussed earlier.

DuckDB results are very close to baseline for
almost all of the datasets, with less than 0.01 of
difference, which is fairly minor. The exceptions
to this are TREC-NEWS, Climate-FEVER, and Ar-
guAna, being lower than baseline by 0.010, 0.016,
and 0.079, respectively, and Signal-1M, which is
higher than baseline by 0.01.

SQLite achieves good effectiveness also, and re-
sults are near baseline for the most part, with 10
datasets exceeding baseline by less than 0.01, 13
datasets exceeding baseline by more than 0.01, and
6 datasets below baseline. Remarkably, the datasets
below baseline are all below by 0.01 or more, indi-
cating a non-trivial deviation. The datasets where
SQLite underperforms, Touché 2020, NQ, Hot-
potQA, FEVER, Climate-FEVER, and BioASQ,
are all large collections, with the exception of
Touché 2020, which falls in the “medium” subsec-
tion and has the biggest difference, almost 0.1 be-
low baseline. Among the “large” datasets, Signal-
1M and DBpedia achieve results close to baseline
but also contain the fewest queries in this group.
Although DBpedia and BioASQ differ by only
about one hundred queries, BioASQ includes more
than three times as many documents and shows
the smallest deviation from baseline among the
below-baseline datasets. This suggests some loss
of effectiveness in SQLite over many queries in
very large corpora.

Since PostgreSQL does not implement BM25, it
would be unfair to expect it to conform to baseline.
Nevertheless, from the perspective of effectiveness,
the scores of its full-text search using the “sim-
ple” configuration are around 0.1–0.15 lower than
baseline on average, except SCIDOCS and NFCor-
pus, where the difference is smaller, and ArguAna,
where the difference is much larger. Compared to
the “simple” configuration, results are consistently
better with our “modified” configuration, though
still below baselines. The amount of improvement
gained by the different configuration varies con-
siderably across datasets, ranging from less than
0.01 in NFCorpus to almost 0.19 in ArguAna. This
brings scores with the “modified” configuration to
about 0.04 less than baseline on average, which is
still nonnegligible.

In terms of efficiency, shown in Table 2 under the
sparse subsection, SQLite is the fastest, followed

github.com/pgvector/pgvector


Sparse Dense Hybrid
Dataset |C| |Q| Anserini Duck SQLite PSQL S PSQL M Anserini Duck PSQL Anserini Duck PSQL

NFCorpus 3,633 323 0.322 0.321 0.322 0.297 0.306 0.374 0.374 0.374 0.373 0.362 0.363
SciFact 5,183 300 0.679 0.680 0.686 0.569 0.606 0.741 0.741 0.741 0.742 0.744 0.680
ArguAna 8,674 1,406 0.397 0.318 0.481 0.069 0.255 0.636 0.636 0.636 0.559 0.506 0.345
CQA Mathematica 16,705 804 0.202 0.204 0.219 0.122 0.185 0.316 0.316 0.316 0.275 0.274 0.233
CQA webmasters 17,405 506 0.306 0.307 0.308 0.232 0.287 0.407 0.407 0.407 0.371 0.372 0.339
CQA Android 22,998 699 0.380 0.381 0.394 0.261 0.342 0.508 0.508 0.508 0.465 0.465 0.412
SCIDOCS 25,657 1,000 0.149 0.150 0.154 0.091 0.117 0.217 0.217 0.217 0.195 0.194 0.175
CQA programmers 32,176 876 0.280 0.280 0.297 0.187 0.250 0.424 0.424 0.424 0.372 0.373 0.329
CQA GIS 37,637 885 0.290 0.289 0.300 0.186 0.262 0.413 0.413 0.413 0.368 0.368 0.329
CQA physics 38,316 1,039 0.321 0.321 0.347 0.205 0.300 0.472 0.472 0.472 0.414 0.414 0.359
CQA English 40,221 1,570 0.345 0.344 0.367 0.225 0.238 0.486 0.486 0.486 0.446 0.444 0.391
CQA stats 42,269 652 0.271 0.273 0.284 0.183 0.259 0.373 0.373 0.373 0.341 0.340 0.313
CQA gaming 45,301 1,595 0.482 0.483 0.488 0.344 0.412 0.597 0.597 0.597 0.562 0.563 0.502
CQA UNIX 47,382 1,072 0.275 0.278 0.287 0.168 0.255 0.422 0.422 0.422 0.360 0.362 0.330
CQA Wordpress 48,605 541 0.248 0.249 0.258 0.128 0.241 0.355 0.355 0.355 0.335 0.336 0.281
FiQA-2018 57,638 648 0.236 0.238 0.252 0.092 0.181 0.407 0.407 0.407 0.367 0.368 0.288
CQA tex 68,184 2,906 0.224 0.226 0.242 0.130 0.211 0.312 0.312 0.312 0.293 0.293 0.258
Average - - 0.318 0.314 0.334 0.205 0.277 0.439 0.439 0.439 0.402 0.399 0.349

TREC-COVID 171,332 50 0.595 0.595 0.601 - - 0.781 0.781 0.781 0.804 - -
Touché 2020 382,545 49 0.442 0.435 0.347 - - 0.257 0.257 0.257 0.377 - -
Quora 522,931 10,000 0.789 0.789 0.806 - - 0.889 0.889 0.889 0.868 - -
Robust04 528,155 249 0.407 0.408 0.424 - - 0.447 0.447 0.447 0.509 - -
TREC-NEWS 594,977 57 0.395 0.385 0.403 - - 0.443 0.443 0.443 0.486 - -
Average - - 0.526 0.522 0.516 - - 0.563 0.563 0.563 - - -

NQ 2,681,468 3,452 0.306 0.305 0.292 - - 0.541 - - 0.483 - -
Signal-1M 2,866,316 97 0.330 0.340 0.331 - - 0.289 - - 0.353 - -
DBpedia 4,635,922 400 0.318 0.318 0.319 - - 0.407 - - 0.419 - -
HotpotQA 5,233,329 7,405 0.633 0.636 0.593 - - 0.726 - - 0.739 - -
FEVER 5,416,568 6,666 0.651 0.648 0.559 - - 0.863 - - 0.811 - -
Climate-FEVER 5,416,593 1,535 0.165 0.149 0.134 - - 0.312 - - 0.281 - -
BioASQ 14,914,603 500 0.523 0.521 0.513 - - 0.415 - - 0.528 - -
Average - - 0.418 0.416 0.392 - - - - - - - -

Table 1: Main results comparing DuckDB, SQLite, and PostgreSQL over sparse, dense, and hybrid retrieval in
terms of effectiveness (nDCG@10). “Duck” refers to DuckDB, “PSQL” refers to PostgreSQL, where “PSQL S” is
PostgreSQL with the “simple” configuration and “PSQL M” is PostgreSQL with the “modified” configuration. The
last row of each block, “Average”, shows the average score over the datasets in that block.

by DuckDB, with PostgreSQL being considerably
slower. The speed difference between SQLite and
DuckDB is large for smaller datasets, but closes
as the size of the corpora grows. PostgreSQL’s
speed is slow to the point where we do not evalu-
ate it on the medium or large datasets, as it takes
longer than one second to process a query by the
end of the small datasets. We only show the latency
of PostgreSQL with the “simple” configuration as
the “modified” configuration takes more than one
second per query for all datasets, and we include
its effectiveness only as a reference for what Post-
greSQL’s full-text search is capable of achieving.

3.2 Dense

Cosine similarity seems to be a much less disputed
formula than BM25, as DuckDB and PostgreSQL
both match the Anserini baseline exactly for dense
retrieval tasks. PostgreSQL is initially faster on
the smallest datasets, but this advantage quickly
disappears within the “small” subset. For larger
datasets, neither system performs practically, with
query latency exceeding one second per query.

3.3 Hybrid

Fusion results are typically better than both indi-
vidual runs when two strong runs are combined.
However, when the two base runs differ too much
in effectiveness, the score is usually in between the
two and thus lower than the maximum of the two
original runs. This trend is present for the base-
lines12 and the DuckDB and PostgreSQL results,
where we use the “simple” configuration for Post-
greSQL. Unfortunately, this also comes with worse
latency, so we only evaluate the effectiveness for
the small subset.

Since DuckDB’s sparse results are close to base-
line and the dense results matched exactly, it makes
sense that the hybrid results are close to the hybrid
baseline. The difference between results and base-
line for sparse retrieval does not appear to have a
large effect on the difference between hybrid re-
sults and baseline. That is, a large effectiveness
difference in sparse runs does not necessarily lead

12github.com/castorini/anserini/blob/master/docs/
experiments-beir-fusion.md

github.com/castorini/anserini/blob/master/docs/experiments-beir-fusion.md
github.com/castorini/anserini/blob/master/docs/experiments-beir-fusion.md


Sparse Dense
Dataset |C| |Q| Duck SQLite PSQL Duck PSQL

NFCorpus 3,633 323 83.5 676.2 3.0 65.1 111.4
SciFact 5,183 300 59.4 158.8 1.7 53.6 79.7
ArguAna 8,674 1,406 24.9 17.7 1.0 36.4 47.0
CQA Mathematica 16,705 804 37.4 84.8 1.2 22.5 23.2
CQA webmasters 17,405 506 38.2 76.6 1.9 21.7 22.2
CQA Android 22,998 699 32.0 58.2 1.5 17.3 16.8
SCIDOCS 25,657 1,000 34.4 63.5 0.9 15.5 15.2
CQA programmers 32,176 876 24.9 45.2 0.7 12.9 10.8
CQA GIS 37,637 885 23.1 43.3 0.6 11.3 8.4
CQA physics 38,316 1,039 30.3 56.5 0.8 11.1 8.1
CQA English 40,221 1,570 29.8 57.2 1.4 10.6 7.9
CQA stats 42,269 652 24.4 40.1 0.8 10.1 7.6
CQA gaming 45,301 1,595 21.6 38.8 1.0 8.3 7.1
CQA UNIX 47,382 1,072 20.2 36.4 0.7 7.9 6.9
CQA Wordpress 48,605 541 18.7 31.1 0.6 7.5 6.7
FiQA-2018 57,638 648 20.0 32.6 0.8 7.6 5.7
CQA tex 68,184 2,906 16.5 30.6 0.4 5.6 4.8

TREC-COVID 171,332 50 6.2 11.1 - 3.1 2.9
Touché 2020 382,545 49 4.5 8.3 - 3.1 1.8
Quora 522,931 10,000 14.9 8.5 - 3.1 1.4
Robust04 528,155 249 2.3 3.4 - 3.1 1.4
TREC-NEWS 594,977 57 1.6 2.7 - 3.0 1.2

NQ 2,681,468 3,452 1.9 2.8 - - -
Signal-1M 2,866,316 97 6.2 8.9 - - -
DBpedia 4,635,922 400 2.3 3.6 - - -
HotpotQA 5,233,329 7,405 1.1 1.3 - - -
FEVER 5,416,568 6,666 1.1 2.0 - - -
Climate-FEVER 5,416,593 1,535 0.8 1.0 - - -
BioASQ 14,914,603 500 0.6 0.3 - - -

Table 2: Latency of DuckDB, SQLite, and PostgreSQL over sparse and dense retrieval in terms of queries per
second (QPS).

to a large effectiveness difference in hybrid runs.
Notably, the difference for NFCorpus increases
from 0.001 for sparse to 0.011 for hybrid. On
the other hand, the difference for ArguAna de-
creases from 0.079 to 0.053, likely due to its strong
dense retrieval results. The remaining outliers from
sparse retrieval with large differences are not evalu-
ated with hybrid retrieval due to latency. All other
datasets have reasonably small differences.

With PostgreSQL’s lacklustre results in sparse
retrieval, it makes sense that hybrid retrieval is not
as effective. Most results are lower than baseline by
roughly 0.05, which is an improvement over the 0.1
difference with sparse retrieval, likely balanced by
the effectiveness of dense retrieval. Exceptions are
NFCorpus, which has a small difference of 0.01,
and ArguAna, with a particularly large difference
of 0.214, likely due to the gap in the scores of
sparse results. Even then, by fusing with dense
results, the gap between PostgreSQL’s results and
baseline for ArguAna closes by around 0.1 com-
pared to the gap in sparse results alone.

Overall, we believe DuckDB demonstrates the
most potential. In sparse retrieval, it has the most
consistent scores compared to baselines, and its
speed is competitive with SQLite when scaling. It

also has the most flexible configurations for text
processing, which is promising for future develop-
ment. In dense retrieval, it boasts equal effective-
ness and superior speed compared to PostgreSQL.
Thus, we recommend DuckDB as especially wor-
thy of interest for retrieval in relational databases.

4 Conclusion

We introduce QuackIR, an IR toolkit with
RDBMSes. Using QuackIR, we run experiments
on DuckDB, SQLite, and PostgreSQL, drawing
comparisons against existing baselines and demon-
strating the viability of RDBMSes in retrieval. We
hope QuackIR can be useful for industry practition-
ers to take full advantage of their existing relational
databases for their RAG applications.

5 Limitations

We believe QuackIR is the first RDBMS-based IR
toolkit, so there is much to be explored in this space.
Some limitations are worth addressing.

We do not consider the cost of indexing in our
evaluation. After the indexing operation, sparse
indexes in SQLite and PostgreSQL update auto-
matically upon updates to the original table, while
DuckDB requires explicit re-indexing to reflect any



changes. This is not applicable in our experiments
as we run the indexing operation once after all doc-
uments have been inserted into the table, but it
would be worth considering for use cases where
the collection is frequently updated.

As is the case with many industry applications,
scaling is an issue that needs to be addressed
to create practical, deployable solutions. Both
sparse and dense retrieval in QuackIR exhibit in-
creases in query latency for large datasets across
all the RDBMSes, with dense retrieval suffering a
more pronounced degradation in performance even
through the medium datasets, so improvements
with speed would be helpful to the user experience.
More efficient sparse and dense retrieval would
also allow fusion retrieval to become practical.

For the sake of establishing a baseline, we do not
investigate many other extensions available. For
example, we have only explored “flat” dense in-
dexes with brute-force retrieval in QuackIR so far,
but pgvector and DuckDB’s vss extension13 both
offer hierarchical navigable small worlds (HNSW)
indexes (Malkov and Yashunin, 2020) , which per-
forms approximate nearest neighbor search, sacri-
ficing recall for speed. Additionally, we use pgvec-
tor for dense retrieval in PostgreSQL for simplic-
ity and as a “fair” comparison against DuckDB,
but there exists pgvectorscale,14 a complement of
pgvector built for scaling. It is shown15 to have bet-
ter throughput than Qdrant, a dedicated vector store,
though worse latency. PostgreSQL even has a vari-
ant dedicated to search, ParadeDB,16 claiming to be
an alternative to Elasticsearch. All of this is to say,
given the popularity of relational databases, there
are many extensions for RDBMSes and related
applications worth studying that may be able to
improve upon what we present here. They present
opportunities that would further affirm our point of
relational databases being sufficient for RAG, and
also help address the scaling issues we identified.

QuackIR focuses on retrieval in RDBMSes and
does not currently have a complete set of “peripher-
als”. For example, it lacks its own vector encoding
capabilities. This can be addressed by develop-
ments such as FlockMTL (Dorbani et al., 2025),
a DuckDB extension that offers deep integration
of LLM capabilities and retrieval-augmented gen-
eration. It further demonstrates the promise of

13duckdb.org/docs/stable/core_extensions/vss.html
14github.com/timescale/pgvectorscale
15tigerdata.com/blog/pgvector-vs-qdrant
16github.com/paradedb/paradedb

DuckDB in retrieval and the power of the rela-
tional database’s popularity that resulted in the de-
velopment of all these extensions. The current
lack of integrations also opens opportunities to
explore additional retrieval approaches, such as
learned sparse retrieval (Lin, 2021) with SPLADE
(Lassance et al., 2024) for term expansion and
reweighting. Such techniques could likely be in-
corporated into QuackIR’s existing sparse pipeline
using Anserini’s “fake words” strategy, which en-
codes term weights as duplicate occurrences of the
term. There is still a lot to explore in this direction.
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