
Rank-without-GPT: Building GPT-Independent Listwise
Rerankers on Open-Source Large Language Models

Crystina Zhang,1* Sebastian Hofstätter,2 Patrick Lewis,2 Raphael Tang,3 Jimmy Lin1

1University of Waterloo 2Cohere 3Comcast Applied AI
1{xinyucrystina.zhang, jimmylin}@uwaterloo.ca

2{sebastian, patrick}@cohere.com 3raphael_tang@comcast.com

Abstract. Listwise rerankers based on large language models (LLMs) are the zero-
shot state of the art. However, current work in this direction all depend on GPT
models, making them a single point of failure in scientific reproducibility. In this
work, we lift this pre-condition and build effective listwise rerankers without any
form of dependency on GPT for the first time. Our passage retrieval experiments
show that our best listwise reranker surpasses the listwise rerankers based on GPT-
3.5 by 13% and achieves 97% effectiveness of the ones based on GPT-4. Our results
also show that the existing training datasets, which were expressly constructed for
pointwise ranking, are insufficient for building such listwise rerankers. Instead,
high-quality listwise ranking data is required and crucial, calling for further work
on building human-annotated listwise data resources.

1 Introduction

Given a user query, the objective of text retrieval is to fetch an ordered list of documents
among potentially billions of documents. Mainstream solutions to this problem follow
a multi-stage ranking pipeline. In the first stage, retrievers are designed to efficiently
retrieve the top-k candidates from the entire collection, followed in further stages by the
application of rerankers, which refine the ranking of the returned candidate documents.

Rerankers are traditionally constructed in a pointwise paradigm, where given a query,
the rerankers produce a relevance score for each passage independently, and the final
ranking is formed by sorting passages by their relevance scores. Recently, attracted by the
strong generative power of large language models (LLMs) and their capacity to consume
long-context inputs, a new paradigm of neural rerankers has been proposed using listwise
ranking [16, 28, 22, 29]. These models consume a combined list of passages at a time
and directly outputs the reordered ranking list.1

Not only does listwise reranker achieve better scores on IR benchmarks [29], it also
provides a new perspective to passage reranking paradigm: it questions the necessity to
convert the ranking task into a classification task, and instead frames it as a pure text
generation task that could be solved end-to-end in a generalized text-to-text fashion [24].
For the first time, the model directly generates the entire ranking list in the form of text,
instead of requiring multiple disjoint inference passes of the model as in pointwise [18,

* Work is done during internship at Cohere.
1Note that this is different from the listwise loss [3]. See details in Section 2.2.



2 Crystina Zhang, Sebastian Hofstätter, Patrick Lewis, Raphael Tang, Jimmy Lin

19] or pairwise rerankers [23, 21]. This integrates passage retrieval into the unified
framework established in NLP, and shows its potential to be merged seamlessly with
other text-to-text tasks and leveraging existent prompting techniques [30, 14].

However, while existing work on listwise reranking demonstrates the promising
application of this new ranking paradigm, their success crucially depends on GPT
models, which are either directly used as reranker models at inference time [16, 28] or
indirectly used as teacher models at the training time [22]. Such exclusive dependence
results in a single point of failure in scientific reproducibility. Moreover, it raises the
concern that the current progress on listwise rerankers is only applicable to the proprietary
GPT-based models instead of the general LLMs. In this work, we seek to reduce the
reliance of listwise rerankers on GPT models and diversify the solution options for
constructing such models. Results show that, for the first time, our best listwise reranker
built without any form of GPT dependence surpasses the rerankers based on GPT-3.5 by
13% and achieves 97% effectiveness of ones based on GPT-4, measured by nDCG@10
on two passage retrieval datasets.

In this process, we found the current IR training data, which was constructed in order
to train pointwise rerankers, is far from sufficient for training listwise rerankers (Fig. 1,
Section 3.1), yielding worse results than using data generated by BM25, a non-neural
lexical technique in IR. While silver ranking data generated by current rerankers serves
as a good approximation of the gold ranking, the performance of listwise rerankers
increases linearly with training data ranking quality — a relationship that has not yet
plateaued (Section 5). This indicates that the models are likely to further benefit from
training data of higher quality, calling for future work on building human-annotated
datasets purpose-designed for listwise training.

The main purpose of our work is to advocate diverse solutions for future listwise
reranking research. Our contributions are as follows: (1) We are first to show that
the listwise rerankers, without any form of dependency on the GPT models, could
outperform the listwise rerankers based on GPT-3 or 3.5 and perform on par with the
ones based on GPT-4; (2) We find that the ranking quality in the training data is crucial
in constructing efficient listwise rerankers, which might be the bottleneck of the current
capacity of the listwise rerankers; (3) We demonstrate that listwise reranker fine-tuning
is data-efficient, where an effective listwise reranker can be built using 5k queries, each
associated with a list of passages ranked in high quality, showing that it is feasible to
build a human-annotated listwise dataset for this purpose.

2 Background

2.1 Pointwise Reranking

Given a query q and a passage pi at the same time, pointwise rerankers hpw produce
a real score si := hpw(q, pi) indicating the relevance of the passage pi to the query q.
The model is optimized using cross entropy [18, 19] or contrastive loss [11, 20, 33, 15,
31], based on binary relevance judgments from human annotators. At inference time,
given the top-k passages {pi}ki=1 returned by the previous-stage retriever, the model
computes the relevance scores {si}ki=1 for each pi independently. The final passages are
then ranked by decreasing the magnitude of their corresponding relevance scores.



Building GPT-Independent Listwise Rerankers on Open-Source LLMs. 3

2.2 Listwise Reranking

As opposed to pointwise rerankers, which rank passages according to their individual
predicted relevance scores to the query, listwise rerankers are designed to directly predict
the final ranking of a list of passages as a whole, This not only allows the models to
inter-reference the candidate passages to better determine their order, but also frames the
passage retrieval task as text generation and thus fuse well with the existent techniques
based on generative models. Using an LLM as a listwise reranker is concurrently studied
in RankGPT [28] and LRL [16], where both works use GPT-based models.

We formulate listwise rerankers under the same preliminaries as the pointwise
one: given the instruction prompt s, the query q, and an input sequence of top-k
passages {pi}ki=1, the listwise-ranking LLM hlw returns the final ranked passages
P̂ := hlw(q, {pi}ki=1; s), where P̂ is a permutation (reranking) of {pi}ki=1.

Sliding window. Limited by the maximum input length, we can feed only 10–20 passages
to the LLM at a time. To rerank a longer list, e.g. typically top-100 passages, both
RankGPT and LRL adopt a sliding window strategy, where we slide a window of size n
from the end to the front of the list and rerank the documents in the window, striding
by m documents per step. In each stride, the top-(n−m) documents are preserved and
form the next sliding window, together with the next m documents.

Fine-tuning listwise-ranking LLMs. Used directly out of the box, current open-source
LLMs often generate ill-formed outputs from listwise prompts [23, 22], where few
valid ranking results can be inferred. Thus, our work focuses on the condition of fine-
tuning LLMs, which helps the models follow the instructions and generate valid outputs.
However, we found that the current human-annotated training data for IR is insufficient
for this purpose, which we elaborate in Section 3.1.

Difference from listwise loss. Note that the listwise ranking mentioned in this work is
different from the listwise loss in information retrieval (IR; [3]), where models still
generate the score for each passage independently, although the loss is computed by
leveraging scores of a list of documents. The term listwise in this work refers to that the
model is capable of processing a list of documents at the same time.

3 Method

3.1 Training Data for Listwise Reranker

The difference in the output format of the two above rerankers by nature requires
different types of training data. Past experience shows that a large-scale professionally
annotated dataset with binary judgments, e.g., MS MARCO [1], is sufficient in fine-
tuning pointwise rerankers. These pointwise datasets consist of queries, documents, and
binary query–document labels, annotated to denote document relevance to the query.
Unannotated documents are considered irrelevant by default. (Fig. 1, Block I, Block III)

However, there are challenges in constructing gold rankings using current resources
for two main reasons. First, there are many false-negative passages. Taking MS MARCO



4 Crystina Zhang, Sebastian Hofstätter, Patrick Lewis, Raphael Tang, Jimmy Lin

4

1

2 3 4 65

Labeled Relevant Documents

Unlabeled Documents (irrelevant by default)

Pointwise Ranking Fine-tuning

Using Pointwise Data for Listwise Fine-tuning

1 2 3 4 6

Q

Ideal Listwise DataPointwise Data

1Q

2

5

1 6 534

Q

Wrong Ordering in Training Data

2 653 4 1

2

pos

model input

model output
neg

1Q

Q neg

pos

4

Query
Labeled order of a list of documents

model input

Ideal Listwise Fine-tuning

1 6 5

Q 2 653

3

4 1

2

model output

ɪ. ɪɪ.

ɪɪɪ.

ɪv. v.

Query

Correct Ordering in Training Data

Fig. 1: The issue with using current pointwise ranking data in listwise training. Numbers
in the boxes indicate different passages. The grey boxes indicate irrelevant passages and
the green ones indicate relevant ones. The saturation level indicates the relevance: the
more saturating the green is, the more relevant the passages are. Boxes with dash borders
indicate unlabeled passages, which are considered irrelevant in the current convention.
Thus, the green boxes with dash borders are the false negative passages.

as an example, which is the largest training data in text retrieval, there is only one labeled
passage per query on average. In a list of, say, twenty retrieved passages, only one at
most is known to be in the correct position (the first one), whereas the positions of the
other nineteen are unknown. This may result in an extremely noisy ordering. Second,
true relevance is nuanced and graded (multilevel) rather than binary, as TREC evaluation
sets show. Binary relevance ignores nuances in the true relevance levels and discards the
correct order of relevant passages, thus resulting in a suboptimal ordering of the passage
list. We illustrate these two issues in Fig. 1, Block IV.

To verify the above hypothesis that the ordering of the ranking list is crucial for
fine-tuning listwise rerankers, we designed two sets of experiments:

Pointwise ground truth (P-GT). We construct a list by placing the labeled relevant
documents in the front, which are then followed by the non-relevant ones ordered
arbitrarily. This is used as a sanity baseline, showing the effectiveness when only using
the human-annotated training data in the pointwise ranking manner.

Silver ranking. We use the ranking results of several existent ranking systems to approx-
imate the gold ranking. Specifically, we select the following ranking systems, which are
listed in order of increasing ranking capability and thus generating listwise training data
with increasing ranking quality:



Building GPT-Independent Listwise Rerankers on Open-Source LLMs. 5

a) BM25: Passages are ranked by BM25 [25], a traditional unsupervised retrieval
algorithm based on lexical matching.

b) Fine-tuned Contriever (Contriever+ft): Passages are ranked by Contriever [12]
that has been further fine-tuned on MS MARCO. We used the checkpoint released
by the original work.2

c) co.rerank: Passages are ranked by model rerank-english-v2.03 through Co-
here rerank API.4

3.2 Prompt

We adopt the same prompt as RankGPT for a fair comparison of the results:

Input Prompt Template:

USER: I will provide you with {num} passages, each
indicated by a numerical identifier []. Rank the
passages based on their relevance to the search
query: {query}.
[1] {title 1} {passage 1}
[2] {title 2} {passage 2}
...
[{num}] {passage {num}}
Search Query: {query}.
Rank the {num} passages above based on their
relevance to the search query. All the passages
should be included and listed using identifiers, in
descending order of relevance. The output format
should be [] > [], e.g., [4] > [2]. Only respond
with the ranking results, do not say any word
or explain.

Example Completion:

[4] > [5] > [2] > [3] > [1]

4 Experimental Setup

4.1 Models

Most of the experiments in the work are conducted on the open-source LLM, Code-
LLaMA-Instruct [26],5. We experiment with all released model sizes: 7B, 13B, and 34B.
In ablation studies, we compare the results to Vicuna-v1.5,6 another model that is based
on Llama 2 but fine-tuned on ShareGPT, instructional data generated by GPT.

2https://huggingface.co/facebook/contriever-msmarco
3https://huggingface.co/Cohere/rerank-english-v2.0/tree/main
4https://cohere.com/rerank
5https://huggingface.co/codellama
6https://huggingface.co/lmsys/vicuna-7b-v1.5



6 Crystina Zhang, Sebastian Hofstätter, Patrick Lewis, Raphael Tang, Jimmy Lin

4.2 Data

Training data preparation. The training data are prepared from MS MARCO v1 cor-
pus [1], which contains 8.8 million passages. We sampled n training queries from the
100k training data of RankVicuna (n ∈ {2k, 5k, 10k, 20k}), then reordered the list of
documents per query in the four settings mentioned in Section 3.1.

Evaluation datasets. We select TREC-DL-19 and TREC-DL-20 [6, 5] to evaluate the
in-domain effectiveness. Both datasets are built from the TREC Deep Learning Track
and share the same corpus with MS MARCO v1 [1]. In Section 5.4, we report results
reranking top-100 candidates returned by BM25 [25] and RepLLaMA [15]. We report
scores of nDCG@10 following the dataset standard. In Section 5.4, we additionally
report Judged@10 on some experiment settings, the ratio of judged passages in the
top-10 of the ranking list.

4.3 Configurations

In this work, we use FastChat [32]7 for the model training and inference. FlashAtten-
tion [9, 8] is applied to all experiments. We turned on gradient checkpointing when
fine-tuning 34B models. When not specified, we fine-tune the model with batch size
128. The maximum input length is set as 4,096. In all experiments, we keep the total
number of steps the same, thus the number of fine-tuning epochs depends on the number
of training datapoints. The model is fine-tuned for 4 epochs when using 20k training
data, 8 epochs when using 10k training data, so on and on.

In experiments using QLoRA, we set LoRA rank as 64, alpha as 16, dropout rate as
0.05, maximum gradient norm as 0.3, and a constant learning rate of 1× 10−4 following
previous works [10]. LoRA is applied on q_proj and v_proj layers. In experiments that
fine-tune the entire LLM, we use a learning rate of 2× 10−5 with the cosine learning
schedule. All experiments are run on 8 A100 GPUs with 80 GB memory. With QLoRA,
training 7B models takes around 5 hours when fine-tuning 20k training data for 4 epochs.

5 Results and Analysis

5.1 Training Data Quality

We first show that the current pointwise labeled data alone could not serve the need of
fine-tuning generative LLM as listwise rerankers. While the ranking results produced
by current rerankers could be used as an approximation of the gold ranking, listwise
rerankers are likely to further benefit from human-labeled listwise data in higher quality.

Fig. 2 shows the results on TREC-DL-19 and TREC-DL-20 of the listwise rerankers
when fine-tuned on different training data. The x-axis is the nDCG@10 of the pointwise
rerankers that generate the training data, and the y-axis is the nDCG@10 of the listwise
rerankers fine-tuned on the corresponding data. The horizontal dash line is the result
when the model is only fine-tuned on the ground-truth pointwise data.

7https://github.com/lm-sys/FastChat



Building GPT-Independent Listwise Rerankers on Open-Source LLMs. 7

(a) TREC-DL-19

BM25
0.497

Contriever+ft
0.621

co:rank
0.735

nDCG@10 of Teachers

0.324

0.508

0.632

0.718
nD

CG
@

10
 o

f L
LM

LLM
P-GT

(b) TREC-DL-20

BM25
0.488

Contriever+ft
0.632

co:rank
0.671

nDCG@10 of Teachers

0.246

0.455

0.586

0.674

nD
CG

@
10

 o
f L

LM

LLM
P-GT

Fig. 2: nDCG@10 on TREC-DL-19 and TREC-DL-20 when fine-tuned on data prepared
on methods described in Section 3.1. P-GT: Pointwise ground truth.

(a) TREC-DL-19

2k 5k 10k 20k
Number of Training Datapoints

0.60

0.65

0.70

nD
CG

@
10

0.669
0.703

0.718 0.722

DL19 (b) TREC-DL-20

2k 5k 10k 20k
Number of Training Datapoints

0.60

0.65

nD
CG

@
10

0.643
0.656

0.673 0.663

DL20

Fig. 3: Results regarding the increasing number of training data generated by co.rerank.
Dash lines refer to the result of co.rerank.

Clearly, listwise rerankers fine-tuned only the pointwise data yield inferior ranking
quality, evidenced by that the grey line is greatly lower than others. When fine-tuned on
the silver ranking data, the scores of the listwise rerankers follow closely to the scores of
pointwise rerankers (e.g., scores on pointwise vs. corresponding listwise reranker: 0.497
vs. 0.508, 0.621 vs. 0.632, 0.735 vs. 0.718). On the one hand, this shows that the quality
of rankings data is crucial when fine-tuning the listwise rerankers; on the other hand, the
listwise student is able to keep up with even one of the best current teachers without
showing a trend of plateau. This hints that the potential capacity of the listwise rankers
may not be fully excavated and may be bounded by the quality of current training data.
That is, if higher-quality listwise training data were available (e.g., by human labeling),
the listwise rankers might show higher ranking capacity.

5.2 Training Data Quantity

Having proved that higher-quality data is necessary to obtain effective listwise rerankers,
we ask the next question: how much data is required? Fig. 3 compares the model
effectiveness with an increasing amount of fine-tuning data. For a fair comparison,
models are fine-tuned for the same number of steps when varying training data quantity:
where models are fine-tuned for 8 epochs with 10k datapoints, it is then fine-tuned for 40,
16, and 4 epochs when using 2k, 5k, and 20k datapoints, where each datapoint consists
of one query and 20 passages. Therefore, training with fewer datapoints only saves the



8 Crystina Zhang, Sebastian Hofstätter, Patrick Lewis, Raphael Tang, Jimmy Lin

(a) TREC-DL-19

7B 13B 34B
Model Size

0.72

0.74
nD

CG
@

10

0.722

0.737
0.743

DL19 (b) TREC-DL-20

7B 13B 34B
Model Size

0.66

0.68

nD
CG

@
10

0.674
0.683 0.687

DL20

Fig. 4: Result regarding different sizes (x-axis) of the model, all fine-tuned on 10k data.
Dash lines refer to the result of co.rerank.

anticipated human labor effort for annotation but not the training time. Experiments are
based on Code-LLaMA-Instruct in size 7B.

As Fig. 3 shows, training on 5k training datapoints already yield 97% of the effective-
ness compared to using 10k data points, while increasing the amount of data from 10k to
20k only brings marginal improvement in the case of TREC-DL-19 and no positive effect
on TREC-DL-20. That is, 100k high-quality query–passage pairs (5k queries with 20
passages per query) serve the need of effectively fine-tuning listwise rerankers. This is in
the same scale with fine-tuning pointwise rerankers, where RankLLaMA [15] consumes
300k query–passage pairs from MS MARCO.

5.3 Model Size

The experiments above are all based on 7B-sized models. We then examine the effect of
scaling up the models. As expected, the effectiveness of the listwise rerankers increases
with the language model size. Fig. 4 shows the trend of the ranking quality with respect to
the model size, where the model of 13B already outperforms the teacher, and increasing
the model size to 34B brings additional improvement.

5.4 Comparisons with Other Baselines

Finally, we compare our listwise rerankers to other methods in the field, evaluated
on TREC-DL-19 and TREC-DL-20. Results are shown in Table 1. The baselines are
grouped into three categories: (1) non-listwise rerankers based on non-LLM models (e.g.,
BERT); (2) non-listwise rerankers based on LLM, including methods based on query
likelihood [27], pairwise [23] and pointwise reranking [15]; (3) listwise rerankers [22,
16, 28, 29], which all depend on GPT models.

Unlabeled top-reranked passages. Although TREC-DL data have comparatively dense
human judgments,8 we observe that listwise rerankers bring more unlabeled passages
to the top of the reranked list compared to the pointwise ones. For example, on TREC-
DL-19, the Judged@10 of listwise rerankers are between 0.88 to 0.94, whereas the
Judged@10 of RankLLaMA is over 0.98.
8120 judgments per query on TREC-DL-19; 211 judgments per query on TREC-DL-20



Building GPT-Independent Listwise Rerankers on Open-Source LLMs. 9

Table 1: Comparison of listwise reranker fine-tuned on data generated by co.rerank to
other methods in the field, evaluated on TREC-DL-19 and TREC-DL-20. The italicized
scores in bracket are evaluated on enriched query–passage relevance judgment, with
Judged@10 = 1. Results of RankVicuna, LRL, and RankGPT-3.5 are copied from the
original paper [22, 16, 28]. Results of RankGPT-4 reranking BM25 top-100 are copied
from [29]. ∗ indicates a significant difference from rankVicuna (row 7, based on Viccuna and
distilled from GPT-3), † indicates a significant difference from LRL (row 8, based on GPT-3), and
‡ indicates a significant difference from RankGPT-3.5 (row 9, based on GPT-3.5), and none of the
results is significantly different from RankGPT-4 (row 10, based on GPT-4). All significant tests
are based on a two-tailed t-test with p < 0.01.

Model GPT- Model Previous top-k TREC-DL-19 TREC-DL-20
independent Size Stage nDCG@10 nDCG@10

non-listwise methods (not LLM-based)
(1) monoBERT BERT ✓ 110M BM25 1000 72.3 72.2
(2) monoT5 T5 ✓ 3B BM25 100 71.8 68.9
(3) rankT5 T5 ✓ 3B BM25 100 71.2 69.5

non-listwise methods (LLM-based)
(4) UPR FLAN-T5-XXL ✓ 11B BM25 100 62.0 60.3
(5) PRP-Sliding-10 FLAN-UL2 ✓ 20B BM25 100 72.7 70.5
(6) RankLLaMA LLaMA ✓ 7B RepLLaMA 100 75.3 (76.1) 76.7 (76.2)

listwise methods
(7) RankVicuna Vicuna ✗ 7B BM25 100 66.8 65.5
(8) LRL GPT-3 ✗ ? BM25 100 65.8 62.2
(9) RankGPT-3.5 GPT-3.5 ✗ ? BM25 100 65.8 62.9
(10) RankGPT-4 GPT-4 ✗ ? BM25 100 75.7 71.0

(11) Rank-wo-GPT

Code-LLaMA-Instruct

✓ 7B BM25 100 71.8 (70.8)∗†‡ 67.4 (66.7)∗†‡

(12) Rank-wo-GPT ✓ 7B RepLLaMA 100 73.0 (75.2)∗†‡ 70.0 (71.7)∗†‡

(13) Rank-wo-GPT ✓ 13B BM25 100 73.7∗†‡ 68.3∗†‡

(14) Rank-wo-GPT ✓ 34B BM25 100 74.3∗†‡ 68.7∗†‡

For a fair comparison, we manually annotated the missing query–passage relevance
judgments from the top-10 of the lists returned by some of the rerankers, including both
pointwise and listwise ones from rows (6, 11, 12). The labels are on the same scale as
the original graded judgment (i.e., from 0 to 3, with larger numbers indicating higher
relevance). These added labels, together with the initial ones, form the new judgment set,
which we refer to as “enriched judgments”.

Scores evaluated on our enriched judgments set are italicized in parentheses. We
observe that the added judgment made a nontrivial difference to the evaluation results.
Most prominently, the nDCG@10 on row (12) increased from 73.0 to 75.2 after filling in
the missing relevance. Intact judgments also amend the over-rated rankings, for example,
on row (11), the scores decreased with more labels. In the rest of this section, we compare
results evaluated on the enriched judgments.

Comparison to GPT-based listwise rerankers. Comparing rows (11–14) to rows (7–10),
we found even the smallest listwise reranker (7B) is significantly higher compared to
previous listwise rerankers based on GPT-3 and GPT-3.5, and insignificantly lower than
rerankers based on GPT-4.



10 Crystina Zhang, Sebastian Hofstätter, Patrick Lewis, Raphael Tang, Jimmy Lin

0 10 20 30 40 50 60 70 80 90
Position in Output

0
10
20
30
40
50
60
70
80
90

Po
sit

io
n 

in
 In

pu
t

Label: 1

0

1

2

3

0 10 20 30 40 50 60 70 80 90
Position in Output

0
10
20
30
40
50
60
70
80
90

Po
sit

io
n 

in
 In

pu
t

Label: 2

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90
Position in Output

0
10
20
30
40
50
60
70
80
90

Po
sit

io
n 

in
 In

pu
t

Label: 3

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90
Position in Output

0
10
20
30
40
50
60
70
80
90

Po
sit

io
n 

in
 In

pu
t

Label: all

0

2

4

6

8

10

12

14

(a) Pointwise Reranker

0 10 20 30 40 50 60 70 80 90
Position in Output

0
10
20
30
40
50
60
70
80
90

Po
sit

io
n 

in
 In

pu
t

Label: 1

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90
Position in Output

0
10
20
30
40
50
60
70
80
90

Po
sit

io
n 

in
 In

pu
t

Label: 2

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90
Position in Output

0
10
20
30
40
50
60
70
80
90

Po
sit

io
n 

in
 In

pu
t

Label: 3

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90
Position in Output

0
10
20
30
40
50
60
70
80
90

Po
sit

io
n 

in
 In

pu
t

Label: all

0

2

4

6

8

10

12

14

(b) Listwise Reranker

Fig. 5: Compare the position of relevant passages before and after reranking by RankL-
LaMA and Rank-wo-GPT both reranking RepLLaMA top-100. x-axis: passage positions
in the reranked list; y-axis: passage positions in the first-stage list. Best viewed in color.

Comparison to LLM-based pointwise rerankers. While the pointwise rerankers are
fine-tuned on the optimal human-annotated data, we find our listwise models, fine-tuned
under data non-optimized for its purpose, perform close to the best pointwise rerankers
in the same model size on TREC-DL-19. Comparing row (12) to row (6), where both
listwise and pointwise rerankers are based on the same size of models (7B) and reranking
the same candidates from the first-stage retriever, there is only a small gap between
the nDCG@10 on TREC-DL-19, with insignificant difference (two-tailed t-test, with
p < 0.01), although there is a larger gap on TREC-DL-20: 71.7 vs. 76.2 on rows (12, 6),
with a significant difference, which requires future work to close the gap.

5.5 Analysis on Sliding Window Strategy

While the sliding window strategy is a natural resort to apply listwise ranking on a
passage list longer than the model input capacity, it is unknown yet how well it aggregates
the list in each pass.

To start answering this question, we plot the ranking positions of relevant passages
before and after reranking. Fig. 5 compares the position difference when using the
pointwise and listwise rerankers, the models on rows (6) and (12) in Table 1. In each
heatmap, the y-axis indicates the passage position in the first-stage ranking (i.e., Re-
pLLaMA) and the x-axis indicates the position after reranking by RankLLaMA (Fig. 5a)
or Rank-wo-GPT (Fig. 5b).

Comparing the heatmaps, we observe a prominent pattern in the listwise heatmap
(Fig. 5b) that there is a chain of bright clusters in the square shape along the diagonal
line. This indicates that a large number of relevant documents are “trapped” in the local
block, promoted only within the current or the next pass of the sliding window. We find
this phenomenon common for relevant passages at all relevant levels.



Building GPT-Independent Listwise Rerankers on Open-Source LLMs. 11

Table 2: Results when using Code-LLaMA-Instruct and Vicuna as the initial LLM, and
when fine-tuning Vicuna with QLoRA or all parameters (Full). All models are in size 7B
and fine-tuned on 10k datapoints for 8 epochs.

Model DL-19 DL-20

(1) QLoRA Code-LLaMA-Instruct 0.718 0.674
(2) QLoRA Vicuna-v1.5 0.728 0.683
(3) Full Vicuna-v1.5 0.727 0.674

The brightness density in the upper matrix indicates the frequency of relevant pas-
sages promoted over a long distance over the list. Compared to pointwise, where the
scatters distribute symmetrically along the diagonal matrix, listwise heatmap shows
more scatters clustered in left-most columns, x ∈ [0, 20], indicating that the top-ranked
passages by listwise rerankers still come from a wider range of positions in the first-stage
results compared to the pointwise methods regardless of the large number of passages
trapped, as aforementioned.

6 Ablation Studies

LLM with GPT-based instruction fine-tuning. To investigate if more GPT-like instruction
fine-tuning would further benefit the listwise ranking results, we ran the same experiment
on Vicuna-v1.5. As shown in rows (1, 2) in Table 2, while fine-tuning based on Vicuna
achieved slightly better results on both datasets, the difference is not significant. Thus, we
conclude that starting from a GPT-free LLM yields satisfactory effectiveness compared
to a more GPT-like LLM.

Fine-tuning Full Model vs. QLoRA. In previous experiments, we fine-tuned the LLM
using QLoRA instead of the entire LLM model to alleviate the GPU memory and disk
requirement. Here, we compared the effectiveness of the two fine-tuning strategies on
Vicuna.9 As shown in rows (2, 3) in Table 2, fine-tuning with QLoRA yields similar
effectiveness as fine-tuning all parameters on both datasets, with the same amount of
training data and the fine-tuning epochs.

7 Related Work

In the past few years, the question of how generative models could bring benefits to
information retrieval has been an area of intense study, with a number of differing
and complementary techniques emerging. The strong generative performance of LLMs
has been leveraged for retrieval by generating a large volume of synthetic datasets on
domains: InPars [2, 13], and Promptagator [7].

9We conducted the same experiment in Code-LLaMA-Instruct; However, the results were not in
the correct scale. Thus we use Vicuna as a replacement in this ablation.



12 Crystina Zhang, Sebastian Hofstätter, Patrick Lewis, Raphael Tang, Jimmy Lin

In parallel, researchers have investigated whether LLMs could be used directly as
retrievers or rerankers: SGPT [17] first shows that the GPT-based decoder models, are
effective when used as bi-encoder in retrieval tasks. UPR [27] uses the query likeli-
hood as the ranking score. PRP [23] shows that the LLM can effectively determine
the comparative relevance regarding the query, given a pair of documents. Recently,
RepLLaMA [15] demonstrates that fine-tuning LLAMA in the traditional paradigm of
bi-encoder and pointwise cross-encoder surpasses smaller models.

Finally, a line of work that is mostly relevant to our work regards LLMs as black
boxes and only uses the final generative output for ranking: RankGPT [28] and LRL [16]
studied listwise rerankers concurrently, demonstrating their effectiveness using GPT-3,
GPT-3.5, and GPT-4. RankVicuna [22] then showed that the method could be applied to a
smaller-sized open-source LLM (e.g. Vicuna [4] in 7B, 13B) by distilling from GPT-3.5.
PSC [29] proposed a permutation self-consistency prompting method, which alleviates
the positional bias and largely improves the effectiveness of the listwise ranking.

8 Conclusions and Future Work

In this work, we study how to construct effective GPT-free listwise rerankers based on
open-source LLM models. Experiments on two passage retrieval datasets show that our
listwise rerankers, without any form of dependency on GPT, can substantially outperform
the ones built on GPT-3 and perform on par with the ones built on GPT-4. In this process,
we find that current pointwise training data in IR is not sufficient in fine-tuning listwise
rerankers. Instead, training data comprised of high-quality ranked document lists is
required and crucial. While the training data generated by current pointwise rerankers
could be used as a nice approximation, the models are likely to benefit more from
higher-quality listwise training data that are built from human annotations.

We hope this work sets the stage for future research on listwise ranking methods
by bringing more diversity of solutions to the research in this area. Additionally, we
hope it paves the path for future work on addressing text retrieval in the text generation
paradigm, where it could be formatted in the same way as the other text-to-text tasks,
and thus better integrated into the unified system.

Acknowledgments

This research was supported in part by the Canada First Research Excellence Fund
and the Natural Sciences and Engineering Research Council (NSERC) of Canada.
Computational resources were provided by Compute Ontario and Compute Canada.

References

1. Bajaj, P., Campos, D., Craswell, N., Deng, L., Gao, J., Liu, X., Majumder, R., McNamara, A.,
Mitra, B., Nguyen, T., et al.: MS MARCO: A human generated machine reading comprehen-
sion dataset. arXiv:1611.09268 (2016)



Building GPT-Independent Listwise Rerankers on Open-Source LLMs. 13

2. Bonifacio, L., Abonizio, H., Fadaee, M., Nogueira, R.: InPars: Unsupervised dataset gen-
eration for information retrieval. In: Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval. pp. 2387–2392 (2022)

3. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: From pairwise approach to
listwise approach. In: Proceedings of the 24th International Conference on Machine Learning.
p. 129–136. ICML ’07, Association for Computing Machinery, New York, NY, USA (2007)

4. Chiang, W.L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang,
Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An open-source chatbot impressing GPT-4
with 90%* ChatGPT quality (2023)

5. Craswell, N., Mitra, B., Yilmaz, E., Campos, D.: Overview of the TREC 2020 deep learning
track. arXiv:2102.07662 (2021)

6. Craswell, N., Mitra, B., Yilmaz, E., Campos, D., Voorhees, E.M.: Overview of the TREC
2019 deep learning track. arXiv:2003.07820 (2020)

7. Dai, Z., Zhao, V.Y., Ma, J., Luan, Y., Ni, J., Lu, J., Bakalov, A., Guu, K., Hall, K.B., Chang,
M.W.: Promptagator: Few-shot dense retrieval from 8 examples. arXiv:2209.11755 (2022)

8. Dao, T.: FlashAttention-2: Faster attention with better parallelism and work partitioning.
arXiv:2307.08691 (2023)

9. Dao, T., Fu, D.Y., Ermon, S., Rudra, A., Ré, C.: FlashAttention: Fast and memory-efficient
exact attention with IO-awareness. In: Advances in Neural Information Processing Systems
(2022)

10. Dettmers, T., Pagnoni, A., Holtzman, A., Zettlemoyer, L.: QLoRA: Efficient finetuning of
quantized LLMs. arXiv:2305.14314 (2023)

11. Gao, L., Dai, Z., Callan, J.: Rethink training of BERT rerankers in multi-stage retrieval
pipeline. In: Advances in Information Retrieval: 43rd European Conference on IR Research,
ECIR 2021, Virtual Event, March 28 – April 1, 2021, Proceedings, Part II. p. 280–286.
Springer-Verlag, Berlin, Heidelberg (2021)

12. Izacard, G., Caron, M., Hosseini, L., Riedel, S., Bojanowski, P., Joulin, A., Grave, E.: Unsu-
pervised dense information retrieval with contrastive learning. arXiv:2112.09118 (2021)

13. Jeronymo, V., Bonifacio, L., Abonizio, H., Fadaee, M., Lotufo, R., Zavrel, J., Nogueira, R.:
InPars-v2: Large language models as efficient dataset generators for information retrieval.
arXiv:2301.01820 (2023)

14. Liu, N.F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua, M., Petroni, F., Liang, P.: Lost in the
middle: How language models use long contexts. arXiv:2307.03172 (2023)

15. Ma, X., Liang, W., Yang, N., Furu, W., Lin, J.: Fine-tuning LLaMA for multi-stage text
retrieval. arXiv:2309.15088 (2023)

16. Ma, X., Zhang, X., Pradeep, R., Lin, J.: Zero-shot listwise document reranking with a large
language model. arXiv:2305.02156 (2023)

17. Muennighoff, N.: SGPT: GPT sentence embeddings for semantic search. arXiv:2202.08904
(2022)

18. Nogueira, R., Cho, K.: Passage re-ranking with BERT. arXiv:1901.04085 (2019)
19. Nogueira, R., Jiang, Z., Lin, J.: Document ranking with a pretrained sequence-to-sequence

model. arXiv:2003.06713 (2020)
20. Pradeep, R., Liu, Y., Zhang, X., Li, Y., Yates, A., Lin, J.: Squeezing water from a stone: A

bag of tricks for further improving cross-encoder effectiveness for reranking. In: Advances in
Information Retrieval. pp. 655–670. Springer International Publishing, Cham (2022)

21. Pradeep, R., Nogueira, R., Lin, J.: The expando-mono-duo design pattern for text ranking
with pretrained sequence-to-sequence models. arXiv:2101.05667 (2021)

22. Pradeep, R., Sharifymoghaddam, S., Lin, J.: RankVicuna: Zero-shot listwise document rerank-
ing with open-source large language models. arXiv:2309.15088 (2023)



14 Crystina Zhang, Sebastian Hofstätter, Patrick Lewis, Raphael Tang, Jimmy Lin

23. Qin, Z., Jagerman, R., Hui, K., Zhuang, H., Wu, J., Shen, J., Liu, T., Liu, J., Metzler, D., Wang,
X., et al.: Large language models are effective text rankers with pairwise ranking prompting.
arXiv:2306.17563 (2023)

24. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu,
P.J.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach.
Learn. Res. 21(1) (jan 2020)

25. Robertson, S., Zaragoza, H., et al.: The probabilistic relevance framework: BM25 and beyond.
Foundations and Trends in Information Retrieval (2009)

26. Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan, X.E., Adi, Y., Liu, J., Remez, T.,
Rapin, J., et al.: Code Llama: Open foundation models for code. arXiv:2308.12950 (2023)

27. Sachan, D., Lewis, M., Joshi, M., Aghajanyan, A., Yih, W.t., Pineau, J., Zettlemoyer, L.:
Improving passage retrieval with zero-shot question generation. In: Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing. pp. 3781–3797. Abu
Dhabi, United Arab Emirates (Dec 2022)

28. Sun, W., Yan, L., Ma, X., Ren, P., Yin, D., Ren, Z.: Is ChatGPT good at search? Investigating
large language models as re-ranking agent. arXiv:2304.09542 (2023)

29. Tang, R., Zhang, X., Ma, X., Lin, J., Ture, F.: Found in the middle: Permutation self-
consistency improves listwise ranking in large language models. arXiv:2310.07712 (2023)

30. Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q.V., Zhou, D., et al.:
Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural
Information Processing Systems 35, 24824–24837 (2022)

31. Zhang, C., Li, M., Lin, J.: CELI: Simple yet effective approach to enhance out-of-domain
generalization of cross-encoders. In: Duh, K., Gomez, H., Bethard, S. (eds.) Proceedings
of the 2024 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies (Volume 2: Short Papers). pp. 188–196.
Association for Computational Linguistics, Mexico City, Mexico (Jun 2024)

32. Zheng, L., Chiang, W.L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D.,
Xing, E.P., Zhang, H., Gonzalez, J.E., Stoica, I.: Judging LLM-as-a-judge with MT-Bench
and Chatbot Arena. arXiv:2306.05685 (2023)

33. Zhuang, H., Qin, Z., Jagerman, R., Hui, K., Ma, J., Lu, J., Ni, J., Wang, X., Bendersky, M.:
RankT5: Fine-tuning T5 for text ranking with ranking losses. In: Proc. of the 46th International
ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR)
(2023)


