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ABSTRACT
Tools, computing environments, and datasets form the three critical
ingredients for teaching and learning the practical aspects of ex-
perimental IR research. Assembling these ingredients can often be
challenging, particularly in the context of short courses that cannot
afford large startup costs. As an initial attempt to address these
issues, we describe materials that we have developed for the “Intro-
duction to IR” session at the ACM SIGIR/SIGKDD Africa Summer
School on Machine Learning for Data Mining and Search (AFIRM
2020), which builds on three components: the open-source Lucene
search library, cloud-based notebooks, and the MS MARCO dataset.
We offer a self-reflective evaluation of our efforts and hope that our
lessons shared can benefit future efforts.
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1 INTRODUCTION
Teaching and learning the practical aspects of experimental IR re-
search requires overcoming substantial barriers in terms of obtain-
ing the appropriate tools, computing environments, and datasets.
While there exists many open-source toolkits and libraries to sup-
port IR research, downloading, installing, and configuring them is
often not an easy task. Students’ computing environments (typi-
cally, personal laptops) are diverse in terms of specifications, oper-
ating systems, and configuration details. Shared teaching resources
available in universities are more homogeneous, but are frequently
restrictive in supporting custom configurations. Thus, simply get-
ting the tools to run in a compatible computing environment can
require Herculean efforts. For semester-long courses, the pain can
be managed, but one-day tutorials and other short courses can
scarcely afford large startup costs.

Beyond tools and computing environments, it is of course im-
possible to teach and learn about experimental IR research without
test collections. Most research test collections, such as those built
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in the context of TREC, NTCIR, CLEF, FIRE, and other evaluation
campaigns, are protected by usage agreements and thus cannot be
freely downloaded. This restricts their usage in publicly-accessible
teaching materials.

The barriers associated with tools, computing environments, and
datasets can already be onerous in regions of the world that are
relatively well-resourced. These challenges are further magnified
in developing regions of the world, where the community would
like to cultivate future information retrieval researchers.

We describe our initial attempts to tackle these challenges, built
around three main components:
• The open-source Java-based Lucene search library, using the
Python interface provided by the Anserini IR research toolkit.

• Cloud-based notebooks (specifically, Google Colab), for a broadly
accessible, homogeneous computing environment.

• TheMSMARCOdataset, which is not only publicly downloadable
but also widely used in many recent evaluations.

The immediate impetus for the creation of the resources described
in this paperwas the ACMSIGIR/SIGKDDAfrica Summer School on
Machine Learning for Data Mining and Search (AFIRM 2020), held
in Cape Town, South Africa in January 2020.1 This summer school
was the second in a series of annual events intended to support
new faculty and advanced graduate students in growing an African
research community focused on information retrieval and data
mining. The resources described in this paper were deployed in the
“Introduction to IR” session. Although created for a specific purpose,
we believe that our technical approach (i.e., the combination of tools,
environments, and datasets) as well as our materials can be adapted
to other learning contexts. Thus, we share what we have built
with the community to solicit feedback. We offer a self-reflective
assessment based on our AFIRM offering, and hope that others can
improve upon our efforts in the future.

2 COMPONENTS
This section describes our technical approach to tools, computing
environments, and datasets for AFIRM. We note that, individually,
these components are not novel, but we argue that only recently
has this triumvirate been assembled into a cohesive and convenient
package to support learning experimental IR research practices.

2.1 Lucene
While there are many open-source search engines [2, 6], Lucene
stands alone as the only one to have achieved broad deployment
in industry for practical applications. In fact, for IR practitioners
building real-world search solutions, Lucene has become the de facto

1http://sigir.org/afirm2020/

Demonstration Papers I  SIGIR ’20, July 25–30, 2020, Virtual Event, China

2113

http://github.com/castorini/anserini-notebooks-afirm2020
https://doi.org/10.1145/3397271.3401395
https://doi.org/10.1145/3397271.3401395
https://doi.org/10.1145/3397271.3401395
http://sigir.org/afirm2020/


standard, its capabilities typically accessed through Elasticsearch
or Solr, higher-level platforms using Lucene in their cores.

Teaching experimental IR research using Lucene has the nice
side effect of providing a marketable skill for students who do not
end up pursuing advanced degrees but primarily desire an industry
position as a practitioner. However, out of the box, Lucene is ill-
suited for IR research because it provides no obvious entry point for
running experiments on standard IR test collections. The Anserini
IR toolkit2 [10, 11] addresses this issue: it builds around Lucene the
facilities to support standard IR evaluation methodologies.

However, even with Anserini, we have noticed a gap between
what is offered and what is desired. Over the past few years, Python
has become the programming language of choice for data scientists
and other applied machine learning practitioners, particularly those
training neural networks. The fact that Lucene is written in Java
presents a hurdle to adoption for many.

The Anserini team recently addressed this gap by building Py-
serini, which is a Python wrapper around Anserini. Pyserini pro-
vides a self-contained package available in the PyPI (Python Pack-
age Index) repository,3 such that a simple pip install command is
sufficient to download, install, and configure Anserini on a standard
Python 3.6 distribution. This provides a bridge between Python
and Lucene, running on an embedded JVM in a manner that is
completely transparent to the developer. Pyserini, Anserini, and
Lucene form the toolchain that our AFIRM materials build around.

2.2 Notebooks
Ideally, we desire a computing environment that appears fully con-
figured with the relevant tools installed and operational at the click
of a mouse. With cloud-based notebooks in general (the most pop-
ular of which is Jupyter4), and Google’s Colab hosted notebook
service in particular, we come quite close to exactly such an expe-
rience. Many core features of notebooks, such as the interleaving
of code and narrative prose, date back to the concept of literate
programming from the 1980s. However, it wasn’t until a few years
ago that notebooks have become an indispensable part of data sci-
entists’ arsenals; for many, they have replaced the command-line
shell as the execution environment of choice. One can easily find
on the web myriad tutorials written as notebooks, on topics rang-
ing from introductory programming concepts to advanced neural
network modeling. Discussions of notebooks are found in the IR lit-
erature as well [3, 7], and in fact, Guido Zuccon provided notebook
adaptations of his lesson plans for AFIRM 2019.5

The materials that we have developed for AFIRM 2020 take the
form of Python notebooks stored in a GitHub repository, such that
with a single mouse click (see Figure 1), the contents are loaded
directly into Google’s Colab environment. An interactive notebook
springs forth, ready to replicate demonstration material or accept
students’ solutions to exercises that are interspersed in the contents
(more details in the next section). Each notebook begins with all
the invocations necessary to set up the execution environment, for
example, installation of various dependent software packages. The
student simply needs to click “run” to produce the desired output.
2http://anserini.io
3https://pypi.org/project/pyserini
4https://jupyter.org
5https://github.com/ielab/afirm2019

Figure 1: Screenshot showing the start of the re-ranking
notebook, with the link to launch it in Google Colab. We
needed to individually assist many students with the pro-
cess of launching Colab, suggesting that information on Co-
lab itself should be included in the notebooks.

The exact same experience can be replicated for any student with a
browser, anywhere in the world. While Google’s service is useful
(especially since it is currently free to use and exploits Google’s
vast cloud infrastructure, thus offering large-scale storage and com-
puting solutions), in principle we could have managed our own
Jupyter notebook server to achieve largely the same effect. Under
this mode of “delivering” computing environments, the server only
needs to be installed and configured once (and thus represents a
tolerable investment of effort).

2.3 MS MARCO
Of course, tools and computing environments are useless unless
there are documents to index, queries to execute, and relevance
judgments to compute metrics with. Standard research test col-
lections, such as those from TREC, cannot be publicly distributed
since users must first sign usage agreements. This makes building
teaching materials around them cumbersome.

With the introduction of the MSMARCO dataset [1], the commu-
nity now has access to test collections that are publicly accessible—
by that, we mean content residing at public URLs that can be down-
loaded freely (at least for our purposes) without needing to sign any
usage agreements. In fact, the setup portions of our notebooks for
AFIRM include fetching data from these sources with wget. To be
clear, the data transfer occurs between the server hosting the data
and the notebook server, not the client browser. The MS MARCO
dataset actually comprises several test collection; we focus on the
passage collection, which has been used for several tracks at TREC
2019, including the Deep Learning Track [4] and the Conversational
Assistance Track [5]. As such, it represents a realistic collection for
learning the basics of IR research.

3 OVERVIEW OF THE NOTEBOOKS
AFIRM 2020 offered multiple all-day sessions on different facets
of information retrieval and data mining, each of which included
morning lectures followed by hands-on labs in the afternoons. Our
“Introduction to IR” was the first offered at the event and opened

Demonstration Papers I  SIGIR ’20, July 25–30, 2020, Virtual Event, China

2114

http://anserini.io
https://pypi.org/project/pyserini
https://jupyter.org
https://github.com/ielab/afirm2019


with a lecture on the topic. The notebooks presented here were
used in this introductory session. All materials may be found at the
following URL:

http://github.com/castorini/anserini-notebooks-afirm2020

While this paper specifically describes the version used at AFIRM
2020, we continue to evolve the notebooks. Before the summer
school, the notebooks were tested by Waterloo students new to
the field of information retrieval, and we may continue to use the
notebooks for onboarding students into our research group. We
hope these notebooks will become a more widely used resource for
IR education.

As an explicit requirement, the notebooks can be run in any
modern browser with minimal external bandwidth. Indeed, they
ran successfully in regular computer science teaching labs at the
University of Cape Town, as well as in various browsers running
on students’ personal devices. At the time of the event, there were
no known Google data centers in Africa,6 but only minor technical
problems were encountered during transfer of large data.

We intend for these notebooks to be self-explanatory; students
should be able to complete them on their own with little or no
help. If this were already the case in practice, we could merely
publicize these materials at SIGIR and other venues, ready to be
widely deployed. Unfortunately, from our experience at AFIRM
2020, work remains to be done (see Section 4). We hope to obtain
feedback from the broader research community to aid us in evolving
the notebooks into a generally valuable resource.

We structured the AFIRM 2020 lab into four notebooks, which
build on each other but can be completed independently, depend-
ing on past knowledge: (1) Python for Information Retrieval, (2)
Indexing, (3) Ranking, and (4) Re-ranking.

Material in these notebooks build on concepts introduced during
the morning lectures, where the basics of indexing, ranking, re-
ranking, and evaluation were introduced. The morning lectures
also discussed commercial search, including e-commerce search,
social media search, music search, and recommender systems, as
well as traditional web search. Emphasis was placed on the need
for scalability and on the practical difficulties of evaluating search
engines. The basics of online and offline evaluation were covered.
Problems interpreting implicit feedback signals were highlighted.
As a result, by the afternoon lab, the notebooks were properly
situated in their technological and scientific contexts.
Python for Information Retrieval. This first notebook assumes
a basic knowledge of Python and the Unix shell, and provides
foundational exercises for students who are completely new to IR.
After introducing some basic features of the notebooks, including
the execution of shell commands, we step through standard Python
text processing operations, which also serve as a gentle introduction
to Python. These operations include converting text to lowercase
and performing simple tokenization.

This notebook culminates in an end-to-end exercise to build an
inverted index for a small collection of passages using standard
Python data structures. We suggest that students create a dictio-
nary mapping tokens to lists of pairs, where each pair contains
a document identifier and a term frequency value. Our goal is to

6https://www.google.com/about/datacenters/locations

provide a basic understanding of the indexing structures created
using the tools in the second notebook.
Indexing. The second notebook starts by walking the student
through the process of installing the required tools and packages,
including Java, Maven, and Anserini, and downloading all required
data, including the MS MARCO passage collection, queries, and
relevance judgments. The entire process is as simple as re-running
the cells in the notebook. Students explore the data with grep and
other Unix commands to establish familiarity with the format and
content of the data. We highlight the relationship between passages,
queries, and relevance judgments.

We then introduce Anserini’s indexing command, with an expla-
nation of possible options. Students build an index and explore it
with Pyserini, Anserini’s Python interface. Using Pyserini, students
can compute document and term frequencies, display postings lists,
generate document vectors, view raw passages, and directly com-
pute ranking scores. Our goal is to illustrate relationships between
the dictionary-based inverted index from the first notebook and
the index structures created by Anserini.
Ranking. In the third notebook, students interactively query the
MSMARCO collection with built-in ranking functions and generate
TREC runs. An example query (“south african football teams”) illus-
trates the impact of BM25 parameter changes and pseudo-relevance
feedback. Students are encouraged to create their own example
queries and to explore the impact of those techniques.

Students then execute a full query set over the collection in
batch mode. We introduce trec_eval, including file formats and
options. Students apply trec_eval to their runs, illustrating on a
larger scale the impact of parameter changes and pseudo-relevance
feedback. At this point, they are free to experiment further or to
continue on to the re-ranking notebook.
Re-ranking. No tutorial today would be complete, of course, with-
out BERT. The lab concludes with a re-ranking notebook that pro-
vides an example of modern neural methods for search based on
Nogueira and Cho [9]. At AFIRM 2020, BERTwas briefly introduced
during the morning lecture, and this notebook provides direct expe-
rience. Lectures later in the summer school explored neural methods
in greater depth.

Students re-rank the output generated from the previous note-
book with BERT and compare retrieval effectiveness to BM25. They
start by setting up the Colab TPU environment, verifying that a TPU
device is successfully connected and uploading credentials to the
TPU for GCS bucket usage. After some data transform steps, they
fine-tune BERT for passage re-ranking, re-rank the passages, and
evaluate the result. Since this notebook requires a working knowl-
edge of Tensorflow,7 a machine learning library widely adopted in
both industry and research communities, it is left as an optional
exercise for the motivated students.

4 EXPERIENCE AND DISCUSSION
The diversity of backgrounds at AFIRM 2020 posed a challenge in
developing a lab that would benefit all students. Although note-
books allow students to progress at their own pace, we found that

7https://www.tensorflow.org
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they were insufficient as standalone teaching tools. We also ob-
served that students who worked collaboratively in small groups
navigated the notebooks more effectively and developed a deeper
understanding through discussions.

The extendable nature of Colab notebooks seemed to comple-
ment the lab exercises well. Not only did the notebooks allow the
students to step through a complete basic IR experiment, but they
also prompted students to write snippets of code from scratch to
solidify their understanding of the underlying concepts. Given the
proper tools in the form of Pyserini methods, students found it
especially helpful to be able to explore the data structures under
the hood, e.g., to interact with the index.

Since our goal is to create the best possible resource for teaching
and learning the practice of IR research, we outline some shortcom-
ings we already recognize. We hope to solicit additional feedback
from the community on these and other issues.

Pedagogical Shortcomings.Markov and de Rijke [8] present a re-
view of how information retrieval is currently taught by textbooks
and tutorials. They identify a greater focus on ad hoc retrieval
(vs. question answering or recommendation) and a greater focus
on offline evaluation (vs. online evaluation). They argue for a more
balanced curriculum, including conversational and mobile search,
as well as interaction mining, query understanding, and online
learning to rank. We do little to address these recommendations.
Our notebooks cover exactly the traditional ad hoc retrieval sce-
nario with offline evaluation that Markov and de Rijke identified as
forming the core of current material. We do include a notebook on
neural re-ranking and work with a collection of passages suitable
for question answering, but do not address any of the other topics
suggested by the authors.

Presentational Shortcomings. The notebooks as deployed for
AFIRM have expectations with respect to background that may
not be realistic for a range of potential students. The notebooks
assume a basic familiarity with both Python and the Unix shell.
The necessary background in Python programming is beyond what
could be covered in the context of an IR tutorial. This background is
perhaps best provided through any of the many available tutorials
on basic Python programming, including those that are already
in the form of notebooks. On the other hand, a basic explanation
of Unix shell commands should have been incorporated into the
notebook, especially since only the most basic of commands are
required (ls, wc, cat, grep for a fixed string, etc.).

The re-ranking notebook, in particular, had some significant
presentational shortcomings. We overlooked the definition of some
key terms that would have promoted understanding. For example,
the term “TPU” is used without explanation. The final re-ranking
and evaluation steps are presented as a single chunk of Python code,
which should have been broken down for clarity. These oversights
might be explained by our relative lack of experience in teaching
to more general audiences.

The notebooks also have a strong focus on English, generally
ignoring text processing in non-English languages. For example,
case normalization and stopword elimination are considered only
in terms of English. Given our goal of making IR tools more gener-
ally accessible, it would be good to include pointers to resources
outside English. At AFIRM, an invited talk immediately following

the lab discussed low resource languages, and the lack of an explicit
connection represented a missed opportunity.
Colab Shortcomings. At the time of writing, Google Colab pro-
vides a nearly ideal environment for our purposes, but we note a
few minor issues that can create substantial friction. In particular,
various popups and interstitial pages related to security can create
uncertainty and alarm. Running any Colab notebook created by a
third party generates a pop-up warning about potential risks, with
no clear way for an inexperienced student to assess those risks. The
re-ranking notebook generates an interstitial page indicating that
“Google Cloud SDK requires access to your Google Account” and
that access would allow it to “delete all of your Google Drive files”.
While these warnings are accurate, we wish there were ways to
avoid them or to make the risks clearer. Ideally, notebooks could be
given finer-grained access control permissions, since we only need
to access students’ Google Drives to save modified notebooks.
Missing Context. AFIRM 2020 students undertook the lab sup-
ported by the morning lectures, which placed the notebooks in the
context of IR research. This context is missing from the notebooks,
so as a resource for learning they still need classroom support.
Ideally, the notebooks should evolve into a standalone resource.

5 CONCLUSION
Prior to the pandemic, we had planned to return to AFIRM 2021with
improved notebooks, reflecting feedback from the community. We
still hope to return to AFIRM in the future. Independent of these
specific materials, our technical approach of combining Lucene
with notebooks applied to MS MARCO data presents a powerful
combination that might be useful for other purposes.
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