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ABSTRACT

Twitter’s data engineering team is faced with the challenge of pro-
cessing billions of events every day in batch and in real time, and we
have built various tools to meet these demands. In this paper, we de-
scribe TSAR (TimeSeries AggregatoR), a robust, scalable, real-time
event time series aggregation framework built primarily for engage-
ment monitoring: aggregating interactions with Tweets, segmented
along a multitude of dimensions such as device, engagement type,
etc. TSAR is built on top of Summingbird, an open-source frame-
work for integrating batch and online MapReduce computations,
and removes much of the tedium associated with building end-to-
end aggregation pipelines—from the ingestion and processing of
events to the publication of results in heterogeneous datastores.
Clients are provided a query interface that powers dashboards and
supports downstream ad hoc analytics.
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1 INTRODUCTION

The analytical needs of data-driven organizations have been evolv-
ing to increasingly demand insights generated in real time. Internet
companies wish to adapt machine-learned prediction models in
response to changing user behavior, public safety officials want
to respond to incidents without delay, and financial institutions
seek to stop fraud as it’s being committed—just to give a few exam-
ples. However, organizations desire real-time capabilities without
sacrificing efficient and scalable retrospective analytics over large
volumes of historic data, which data scientists have become accus-
tomed to. Like many organizations that have built substantial batch
analytics infrastructure for data science, Twitter has been evolving
to meet increasing demands for real-time analytics.

In this paper, we describe the architecture and design of TSAR
(TimeSeries AggregatoR), a robust, scalable, real-time event time
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series aggregation framework at Twitter designed for applications
such as site traffic, service health, and user engagement monitoring.
Specifically, we showrcase the features of TSAR using a simplified
example of the Twitter interaction counter service that computes
time series of Tweet impressions and engagements both histori-
cally and in real time, segmented by a multitude of dimensions
including users, geographic location, user demographics, device
type, engagement type (like, reply, etc.), and many more. TSAR
provides a high-level domain-specific language (DSL) to specify
aggregations declaratively and automates much of the tedium (boil-
erplate generation, job coordination, error handling, etc.) necessary
to build robust and scalable data processing pipelines that handle
both historic and live data. TSAR, which has been in production
since around 2013, provides an integrated query service that powers
dashboards and supports downstream ad hoc analytics.

As with previous papers that Twitter has written about its an-
alytics infrastructure—for example, event logging pipelines [12],
machine learning tools [14], and recommendation services [6, 17]—
the goal is to share our experiences with an academic audience. We
offer a “real-word” production perspective that complements the
existing literature on real-time processing and aggregation queries.
Although aspects of our solution are constrained by existing infras-
tructure investments, the event aggregation problem we tackle is
pervasive and we believe that our experiences are valuable for both
researchers and practitioners.

2 LAMBDA AND KAPPA

The terms “Lambda Architecture” and “Kappa Architecture” have
entered the vernacular as design patterns for real-time analyt-
ics [13]. Distilled to its essence, the Lambda Architecture, which
traces back to 2011, consists of a batch processing layer (platform)
and a transient real-time processing layer (platform), plus a merg-
ing layer on top.! In contrast, in the Kappa Architecture, everything
is a stream (for example, physically stored in a messaging platform
like Kafka), and therefore there is no distinction between batch
and stream processing (e.g., batch processing is simply streaming
through historic data).?

Although these terms capture the evolution of data process-
ing architectures, we believe that these designations are unhelpful
today because they primarily focus on physical execution. Early
implementations of real-time event aggregation services at Twitter
were built using the Lambda Architecture, with two separate code
paths (in some cases, managed by different teams) leading to job
execution on Hadoop MapReduce and Storm [19]. However, early

!http://nathanmarz.com/blog/how-to-beat-the- cap-theorem.html
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on we realized that building, maintaining, and coordinating jobs in
this manner was not sustainable, which led to the development of
Summingbird [5], an open-source Scala DSL designed to integrate
online and batch MapReduce computations in a single framework.
Summingbird exploits certain algebraic structures to provide the
theoretical foundation for seamlessly integrating online and batch
processing. Programs are written using dataflow abstractions such
as sources, sinks, and stores, and can run on different execution
platforms: Hadoop MapReduce for batch processing and Storm [19]
(later Heron [11]) for online processing. Lin [13] provides a recent
discursive account of the evolution of this infrastructure.

Is Summingbird an instance of the Lambda or Kappa Architec-
ture? It provides a unified model for expressing computations, so
in this respect it is “Kappa-like”; yet Summingbird programs are ex-
ecuted (transparently) in different frameworks, making it “Lambda-
like”. As computing abstractions evolve, we believe that the Lambda
and Kappa distinctions are increasingly irrelevant. Recent develop-
ments such as Apache Beam [3] support this argument, as it also
provides a unified computational abstraction over what Akidau et
al. call “bounded” and “unbounded” datasets. However, physical
execution is handled by different “runners” that may perform batch
or streaming computations.

At Twitter, Summingbird provides an expressive programming
model for a broad range of analytics queries, but the amount of
work required to build service infrastructure and end-to-end data
processing pipelines remains substantial, especially those involving
both online and batch computations. TSAR, which provides a set
of abstractions on top of Summingbird, simplifies and automates
much of these processes for event aggregations.

3 DESIGN CONSIDERATIONS

Using engagement monitoring as the canonical application of TSAR,
let us begin by characterizing the scope of the problem: approxi-
mately half a billion Tweets are created every day, and these Tweets
are viewed tens of billions of times. For the interaction counter ap-
plication, we desire an end-to-end latency of ten seconds. Other
than the obvious desiderata of robustness and scalability, there are
a number of less obvious issues to consider:

o How do we coordinate schemas to keep all physical representa-
tions consistent? For example, data might be stored on HDFS for
use by downstream analytics pipelines but replicated in hetero-
geneous datastores to support different applications.

o How do we provide support for flexible schema evolution? Aggre-
gation dimensions, business rules, and data cleaning processes
change over time.

o How do we painlessly update historical data? Common cases
include updates to existing queries or new queries, for which we
need to backfill historic data.

TSAR adopts the following design principles:

e Hybrid computation. Every event is processed twice—first in
real time and then again (at a later time) by a batch job. Since
all processing is orchestrated by Summingbird, there is a single
code base. This hybrid model confers all the advantages of batch
(efficiency, determinism) and streaming (low latency). However,
see Section 5 for more discussion.
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Figure 1: Overall architecture of TSAR.

e Separation of event production from event aggregation. Event
production concerns the generation of events to be aggregated
from raw sources (e.g., log data on HDFS or a Kafka topic). This
is specified imperatively to support data cleaning and custom
business logic. Event aggregation is specified declaratively.

o Unified schema architecture. The schema for a TSAR service is

specified in a datastore-independent way. TSAR automatically

maps the schema onto diverse datastores and transforms the data
as necessary when the schema evolves.

Integrated service infrastructure. TSAR integrates with other

Twitter services that provide data processing, storage, schedul-

ing, observability, alerting, etc. The tedium of configuring and

orchestrating different components is largely automated.

4 TSAR

At a high-level, TSAR is a robust and scalable framework built on
top of Summingbird for specifying event aggregations to compute
time series. It abstracts the most common design patterns for com-
puting event aggregations, exposes them in a simple Scala DSL,
and automates associated tooling and service infrastructure, which
includes boilerplate generation, job scheduling, error handling, etc.
TSAR provides a structured representation of time series data that
supports data replication to a heterogeneous mix of datastores,
e.g., HDFS for long-term persistence and downstream processing,
RDBMSes or key-value stores for dashboard visibility and data
exploration. The overall architecture is shown in Figure 1.

From the perspective of a developer, there are two points of
contact with TSAR:

e The developer expresses the production and aggregation of events
in a Scala DSL, specifies the event schema, and defines associated
configuration data. These elements comprise a TSAR job.

e TSAR provides a query service for consuming the event time
series data (e.g., feeding frontend dashboards).

TSAR automates much of the “plumbing” associated with build-
ing end-to-end data pipelines. The batch processing pipeline is
shown on the left side of Figure 1 and uses Hadoop MapReduce
(via Scalding, Twitter’s high-level Scala API). The preprocessing
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aggregate {
onKeys (
(clientApplicationId, engagementType),
(clientApplicationId),
(engagementType)
)
produce(Count, Unique(userId))
sinkTo(Manhattan, NightHawk)
fromProducer(
Source.map {
(e.timestamp,
EngagementAttributes(
Some(clientApplicationId),
Some (engagementType),
Some (userId)

Figure 2: An example TSAR aggregation query.

struct EngagementAttributes {
1: optional i64 client_application_id,
2: optional EngagementType engagement_type,
3: optional i64 user_id

3

Figure 3: An example Thrift definition of an event over
which aggregation is performed.

stage ingests source events (typically, raw Thrift-encoded service
logs), performs job-specific processing (which might include joining
together event streams or applying custom transformations), and
emits another stream of TSAR events, which are constrained to be
tuples of elementary attributes that conform to a fixed, job-specific
Thrift schema. These events are then aggregated along various com-
binations of attribute dimensions (as specified by the job) and the
aggregates are written to HDFS in a long-lived, reusable intermedi-
ate representation. The intermediates are reprocessed, aggregated
further, and replicated to multiple datastores. The online processing
pipeline, shown on the right side of Figure 1, largely follows the
same execution pattern, defined by the same job, except with Heron
as the execution engine (bypassing HDFS). An integrated query
service presents a uniform interface to access both historic as well
as up-to-date values.

4.1 Job Specification

As a concrete example, let us walk through a hypothetical TSAR job
called Engagement that counts engagement events (likes, replies,
etc.) by client application. The query (slightly simplified) is shown
in Figure 2.

As discussed in Section 3, one key design principle is the separa-
tion of how events are produced (which is imperative) with how
they are aggregated (which is declarative).

The fromProducer block contains imperative code to convert
raw data (e.g., service logs) into a stream of events, always in the
form of (time, event) tuples. The event itself, in this example
called EngagementAttributes, is defined as a Thrift struct, shown
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in Figure 3. Note that all fields must be declared optional to cope
with incomplete records in the raw source. In this case we are sim-
ply mapping over a source to generate (time, event) tuples, but
in reality the event-production logic can include any transforma-
tions (e.g., map, flatMap, filter, etc.) supported by Summingbird,
including joins based on lookup into external sources. This flexibil-
ity allows the developer to implement data cleaning algorithms and
apply custom business logic. The translation of field names between
the TSAR query and the Thrift definition is handled automatically
(simply a matter of mapping between “snake case” and “camel case”
naming conventions).

The aggregation itself is specified declaratively. The onKeys
block declares the tuples over which we are aggregating, which
must be subsets of fields in the event Thrift struct (Figure 3). In this
case, we compute three types of aggregations. The produce block
specifies what to compute: in this case, the total count of events in
each aggregation bucket and the number of unique users in that
bucket. Currently, the supported metrics include count, unique
count, sum, mean, variance, standard deviation, max, and min.

The final destination of the results are specified in the sinkTo
block. Options include:

e Manhattan, Twitter’s custom key-value store.> Two key features
that are relevant to TSAR include tight integration with Hadoop
to enable batch data imports and support for high-volume time
series counters as an optimized use case.

e Nighthawk, Twitter’s sharded Redis cache.

o Other RDBMSes such as MySQL and Vertica.

In our example, the output will be stored in both Manhattan and
Nighthawk. TSAR is capable of writing to multiple sinks.

The final component of a TSAR job is the configuration data.
Here, the developer specifies the granularity of aggregation in arbi-
trarily multiples of minutes, hours, and days (including multiple
granularities simultaneously). The configuration also specifies bind-
ings for abstractions in the query: for example, HDFS path of the
raw log data in the case of batch processing, coordinates to the
correct Kafka topic in the case of real-time processing. Similarly,
the developer must also specify the exact coordinates of the data
sink, e.g., which datacenter, which cluster, etc.

4.2 Job Execution

A TSAR job comprises the query (Figure 2), the Thrift struct (Fig-
ure 3), and associated job configuration data. From there, the TSAR
infrastructure manages all other aspects of execution.

When aggregations run in batch, typically over large volumes
of log data stored on HDEFS, the TSAR job translates into several
individual batch jobs, since the developer usually applies a number
of data transformations to clean the raw data and to encode busi-
ness logic, specified imperatively in the fromProducer block of the
TSAR query. These batch jobs are automatically defined, staged,
and deployed without additional intervention. TSAR constructs a
primary batch job that processes raw source data to materialize in-
termediate data and several smaller secondary batch jobs that ingest
the intermediate data to compute the specified aggregates. These
jobs implement simple optimizations that are well known in the

Shttps://blog.twitter.com/engineering/en_us/a/2014/
manhattan-our-real-time- multi- tenant- distributed- database- for- twitter- scale.html
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literature on cube materialization to reduce the number of passes
required over the full dataset (i.e., rollup of individual dimensions
into higher-level aggregates).

TSAR relies on Twitter’s Manhattan key—value store to provide
fast, scalable, and robust access for high-load dashboard applica-
tions, and is a frequent destination for the sinkTo block in a query.
The output of batch jobs is first written to HDFS, and then bulk
imported into Manhattan—this process is orchestrated by TSAR
without requiring developer intervention. TSAR groups aggregate
data into temporal buckets that are placed on cluster nodes to opti-
mize performance around the most common use case: a query for
all data points falling within an interval that is approximately 100
times the aggregation granularity of the time series.

Output to relational databases is another important use case
for TSAR. For example, data stored in Vertica provide vehicles for
self-serviceable interactive exploration by data scientists. In some
cases, MySQL provides a suitable backend for rapid development of
internal dashboard applications. To populate relational databases,
TSAR uses Crane, a tool developed by the Analytics Infrastructure
team at Twitter designed specifically to move data between datas-
tores. TSAR exports data to an RDBMS via a batch job comprising
two steps: the first step converts the developer-defined Thrift struct
into a format suitable for bulk loading into the RDBMS, and then
in the second step the data are ingested into the RDBMS atomically.
Once again, data movement is orchestrated by TSAR and does not
require developer intervention.

Referring back to design principles in Section 3, the key point
here is that TSAR provides a unified schema architecture (starting
with a developer-defined Thrift struct such as the one in Figure 3)
and transparently handles the mapping to different datastores such
that aggregate data can be seamlessly replicated and accessed. For
schema evolution, new attributes can be specified simply by adding
new optional fields to the Thrift struct, although with a few caveats:
existing attributes cannot be deleted or renamed, and new attributes
must be appended to the end of the schema to maintain backwards
compatibility. New aggregation templates and new metrics can
be added at any time. Upon redeployment of the TSAR job, the
framework will begin computing new values, but the developer
must explicitly trigger backfilling on historic data if desired.

Online execution of a TSAR job is quite similar to batch execu-
tion, except that Summingbird bypasses HDFS; instead, Heron [11]
consumes Kafka queues to compute the real-time aggregations.
To support robust, high-throughput computations, Summingbird
pre-partitions the aggregation key space (at compile time) across
nodes in the Heron topology and pre-aggregates large cardinality
keys in the “map” phase (in essence, acting as combiners). Typi-
cally, real-time results are written to Nighthawk, which is Twitter’s
caching service. Results from online execution of a TSAR job are
not persisted to HDFS.

4.3 Data Consumption

Event time series computed by TSAR can be consumed in a number
of ways. The results of batch computations, typically over long
periods of time, are persisted on HDFS and can feed additional
downstream analytics jobs—for example, event counts can serve as
input training data to machine-learned models. Another frequent
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use case is interactive data exploration by data scientists over time
series data that have been imported into an RDBMS.

Another common use case for TSAR is to power high-request,
customer-facing dashboards with strict SLAs, for example, serving
advertisers. These typically allow users to examine both historic
and live data, which requires the integration of results from batch
and online aggregations. For this, TSAR automatically builds a
Thrift query service for each TSAR job. This one-service-per-job
design allows independent capacity allocation and minimizes in-
cident spillover effects. The basic interface takes two structured
parameters, a query key specifying the event to be queried and the
time range. By default, the service automatically queries both the
online and batch results (since TSAR knows exactly where they
are stored). The results from both sources are merged, and in cases
with overlap in coverage, the online results are discarded. Part of
the TSAR configuration includes parameters to control overlap
between batch and online results, allowing the developer to control
a tradeoff between robustness and resource consumption.

5 RELATED WORK

The “process every event twice” design of TSAR is worth discussing,
since it appears antithetical to the design of more recent platforms
for integrating batch and stream processing such as Spark (with
Spark Streaming [21] and Spark Structured Streaming), Apache
Beam [3] (the open-source API to Google Cloud Dataflow [2]), or
Kafka Streams. One important consideration in maintaining distinct
batch and online execution frameworks is the existing investment
Twitter had already made in building infrastructure around Hadoop
and in developing Storm and later Heron. Furthermore, the TSAR
architecture dates back to 2013, before modern approaches were
available or were sufficiently mature for our processing volume.
Given a clean-slate redesign, these alternative approaches might
have been viable, but organizations are frequently restricted by
path dependencies imposed by previous design choices.

From a technical perspective, though, a “process twice” design
allows us to sidestep the many complexities in a streaming-only
design. For example, Apache Beam needs to keep track of event time
and processing time and has quite elaborate built-in mechanisms
for managing incremental computations (e.g., specifying whether
previous results are retracted or only deltas are propagated). This
yields complex expressions such as the following:*

.triggering(
AtWatermark ()
.withEarlyFirings(AtPeriod(Duration.standardMinutes(1)))
.withLateFirings(AtCount(1)))
.accumulatingAndRetractingFiredPanes()

And of course, the underlying execution engine must support the
associated semantics of such expressions. To accomplish this, it is
inevitable that the execution engine must track mutable state. A
similar notion in Kafka Streams, the KTable, can be interpreted as
a stream of updates. Mutability is hard [8].

These issues do not exist in TSAR because the batch jobs can be
orchestrated such that late-arriving events are not an issue, based
on the service-level agreements of the underlying data sources.

“https://www.oreilly.com/ideas/the-world-beyond-batch-streaming- 102
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For example, if the SLA of the upstream process guarantees that
all messages will be delivered within ten minutes after the event
time, then we can simply offset the batch processing start time
and ensure that all output will be correct. Inputs and results are
both immutable. In the language of Apache Beam, results are only
computed at the watermark, and thus all the execution machinery
related to early and late firings becomes completely unnecessary.
While it is true that all events are processed twice, the online and
batch execution frameworks can be optimized for specific data
processing patterns, as opposed to a single execution engine with
a more complex design.

In general, a batch execution engine will be faster and more
efficient than a streaming execution engine of comparable imple-
mentation quality and effort, by the virtue that batch processing is
amenable to more optimizations. This performance difference will
be magnified as the amount of data increases, which is important in
large backfill jobs where a new query needs to be run on petabytes
of retrospective data. Furthermore, given the “backup” provided by
the batch processing system when processing everything twice, the
online system can be more cavalier in error recovery, load shedding,
applying backpressure, etc., yielding simpler designs. While it is
certainly true that modern enterprise data architectures are moving
in the direction of Kafka and “everything is a stream” processing,
and such systems have matured significantly over the last few years,
it is not a foregone conclusion that “one processing engine to rule
them all” is superior in all respects.

Notwithstanding this architectural discussion, additional lessons
from TSAR come from elsewhere. Even if we were to replace the
execution engine in TSAR with an alternative framework, the only
thing that would change is the box marked Summingbird in Figure 1.
Critically, much of the service infrastructure and tooling remains
necessary: job scheduling and coordination, error handling, replica-
tion to multiple datastores to support different application scenarios,
etc. This is perhaps a lesson that the academic community is be-
ginning to internalize: in a production environment, the elegance
of a computational model meets the harsh reality of needing to
interface with a multitude of heterogeneous, unreliable, and often
legacy components in end-to-end pipelines. Frequently, it is the
“plumbing” that consumes the efforts of infrastructure engineers.
Perhaps the biggest contribution of TSAR is the tooling that au-
tomates a significant amount of tedium (and articulation of what
those issues are) to provide an easy-to-use end-to-end service.

There is a large body of work on efficiently computing aggrega-
tions both in the batch setting (i.e., cube materialization [1, 7, 15, 16])
as well as the online setting [4, 9, 10, 18, 20]. This work, however,
is largely orthogonal to TSAR since it focuses on a much higher
level of abstraction, leaving the execution to Summingbird, and
ultimately Hadoop MapReduce or Heron. Since aggregations in
TSAR are declaratively specified, all relevant optimizations can be
implemented in these underlying frameworks.

6 CONCLUSIONS

Building robust and scalable data pipelines is hard. Summingbird
addresses the physical execution of online and batch MapReduce
computations under a common programming model, but that is only
one (albeit important) aspect of an end-to-end solution. For a large
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class of aggregation queries, TSAR takes the next step of automating
the tedium involved in orchestrating hybrid data pipelines, making
developers’ lives a bit easier.
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