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ABSTRACT

In the context of a multi-stage retrieval architecture, we explore
candidate generation based on approximate nearest neighbor (ANN)
search and lightweight reranking based on dense vector represen-
tations. These results serve as input to slower but more accurate
rerankers such as those based on transformers. Our goal is to char-
acterize the effectiveness—efficiency tradeoff space in this context.
We find that, on sentence-length segments of text, ANN techniques
coupled with dense vector reranking dominate approaches based on
inverted indexes, and thus our proposed design should be preferred.
For paragraph-length segments, ANN-based and index-based tech-
niques share the Pareto frontier, which means that the choice of
alternatives depends on the desired operating point.
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1 INTRODUCTION

Multi-stage pipeline architectures are widely adopted for building
retrieval systems, both in real-world deployments [16] as well as
by researchers [1]. Typically, keyword-based retrieval provides a
candidate list of documents that is then reranked by one or more
following stages. Later stages often employ computationally expen-
sive approaches—for example, applying inference with deep neural
networks—but over smaller subsets of the candidates, thereby strik-
ing a balance between effectiveness and efficiency.

The primary goal of candidate generation (and the early stages)
is to maximize the recall of retrieved documents while minimizing
query latency. In this context, we explore two designs:

e Candidate generation with approximate nearest neighbor (ANN)
search. In this work, we explore whether inverted indexes can
be replaced by recent developments based on ANN search.
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e Lightweight dense vector reranking. We examine whether re-
cent work in representational learning can be deployed as a
lightweight reranker to achieve better effectiveness—efficiency
tradeoffs. By lightweight, we mean representations that can be
pre-computed and approaches that do not depend on costly neu-
ral network inference over candidate documents.

The contribution of this work is a thorough exploration of the
tradeoff space involving the two components above. While there
has been plenty of research on ANN search, its use as a compo-
nent in a multi-stage pipeline, especially coupled with lightweight
vector-based reranking, has not been thoroughly explored. Our
experiments reveal several interesting findings that lead to better
overall designs for different operating points.

2 RELATED WORK

A brute-force approach to nearest neighbor search quickly becomes
impractical as the size of the collection grows. Multi-dimensional
indexes (e.g., KD-trees) are not suitable for sparse vectors with very
large feature spaces (such as text), but approximate solutions based
on local sensitive hashing [9] and quantization-based methods
[10, 11] have proved workable. Approaches based on hierarchical
navigable small world (HNSW) graphs [13] represent the current
state of the art in ANN search based on a popular benchmark.! How-
ever, previous applications of this general approach to document
retrieval [2] have yielded mixed results at best.

With the advent of neural networks, continuous representations
have emerged as effective alternatives to traditional sparse, bag-of-
words representations for text matching. For example, Henderson
etal. [10] used deep averaging networks (DAN) to encode questions
and answers for conversational answer retrieval; Lee et al. [12] used
BERT [6] to generate vector representations for question answering.
Conneau et al. [5] demonstrated approaches to learning sentence
representations that are generalizable and transferable to many
other tasks. The transformer-based Universal Sentence Encoder
(USE) [3, 4] represents a further step in this direction.

Given advances in representational learning and ANN search, we
feel that dense-vector approaches to document ranking are again
worth pursuing. This work adopts USE as the starting point.

3 MULTI-STAGE RANKER DESIGN

We assume a standard multi-stage ranking architecture comprising
n stages, S1 to S,. The initial stage S; is responsible for generating
alist of k1 candidates directly from the document collection, and all
subsequent stages perform reranking on the output of the previous
stage. Specifically, stage S, receives a ranked list of k1 documents
from the previous stage, applies internal reranking logic, and passes

!http://ann-benchmarks.com/
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along a ranked list of k;, documents to the next stage, with the only
constraint that kp < kp—1.

In this work, we explicitly consider two designs: a single-stage
pipeline with only a candidate generation stage S; and a two-stage
pipeline with a candidate generation stage S; and a lightweight
reranking stage Sy. Depending on the task, these outputs may be
directly returned to users or they may serve as input to more heavy-
weight BERT-based reranking stages; see discussions below.

3.1 Candidate Generation

In most multi-stage ranking architectures, the initial candidate gen-
eration stage S leverages inverted indexes, typically with bag-of-
words queries, to produce documents that are fed to the subsequent
rerankers. We compare this approach against an alternative based
on approximate nearest neighbor (ANN) search on hierarchical
navigable small world (HNSW) graphs, constructed from the sparse
BM25 representation of the documents.

At retrieval time, the query is converted to a bag-of-words rep-
resentation in a similar way as the documents and used to rank
the most similar documents based on inner-product distance. This
setup provides a fair comparison between the index-based and
the ANN-based approaches, since they both operate on equivalent
sparse bag-of-words representations, albeit manifesting different
effectiveness—efficiency tradeoffs (ANN, of course, being approxi-
mate in inner-product search). In both cases, Sy returns kj ranked
documents.

3.2 Lightweight Reranking

Following the candidate generation stage S1, we designed a light-
weight reranking stage Sy based on cosine similarity between dense
vector representations. For this, we adopt the Universal Sentence
Encoder (USE) [3, 4] to represent documents. Under this approach,
we can pre-compute and store the vector representations of all doc-
uments in the collection, such that reranking can be accomplished
by encoding the query, looking up the representations of the candi-
date documents, and computing the cosine similarity between the
query and the stored representations (by brute force). The output
of the reranker is the top k3 documents by score. This approach
is lightweight because reranking does not require any (potentially
costly) neural network inference on candidate documents.

Of course, the effectiveness of this reranking approach depends
on the quality of the document representations. Evidence from the
literature suggests, in general, that the quality of vector represen-
tations degrades, across multiple tasks, as we attempt to encode
longer segments of text. Thus, document length is an important
experimental variable in our setup that we seek to understand.
We note that USE was designed for encoding sentences,? but we
wondered if the approach can be extended to paragraphs.

4 EXPERIMENTAL SETUP
4.1 Tasks

Our evaluations considered three different tasks:

Similar question retrieval with Quora Question Pairs (QQP).
This dataset contains approx. 400K question pairs from Quora,

Zhttps://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3

averaging 11 words per question. Each pair is labeled 1 or 0, with
1 denoting that the sentences are semantically similar. In order to
formulate a retrieval task (for example, in a community QA appli-
cation), we followed exactly the procedure of Gillick et al. [8]. We
treated the dataset as a graph where unique sentences are vertices,
with edges between each pair of similar sentences. At test time,
each sentence in a positive pair forms a query, and all sentences
reachable in the graph form the “relevant” set for that query.

Passage retrieval on the MS MARCO passage collection [14], con-
taining 8.8M passages with 57 words on average, which has been
used in many recent evaluations at TREC and beyond. We used the
development set, comprising 6980 queries, for evaluation.

Retrieval-based factoid QA on Wikipedia articles. We tested on
SQuAD 1.1 following exactly the evaluation procedure of Yang et al.
[19]. The target collection, comprising 5M Wikipedia articles, was
segmented into 30M paragraphs with 66 words on average. The
ground truth for this task is given as answer spans.

For convenience, we refer to the unit of retrieval generically as “doc-
uments”, when in fact they are sentences (QQP) or paragraphs (MS
MARCO and Wikipedia). The first two tasks were selected primar-
ily because they represent texts of different lengths, an important
experimental variable discussed in Section 3.2.

For QQP, we use Recall@10 as the metric. The average number
of relevant labels per query is 3.05 and with a cutoff of 10 we already
achieve a high level of effectiveness with low query latencies (see
results for more details). For passage retrieval on MS MARCO, we
use Recall@100 as the effectiveness metric because it places the
end-to-end system in an operating region that is most practical
given the state of the art today, which uses a BERT-based reranker
for the final stage. As Nogueira et al. [15] reported, feeding 1000
passages to BERT yields latencies of over three seconds per query
(using TPUs), which is far too slow for real-world use.

We purposely selected retrieval-based QA as the final task to
explore the limits of our designs, where ranked results are fed into
a BERT-based model that identifies the answer span, and following
the literature, we evaluate effectiveness using the exact match (EM)
metric. We expect this task to not favor our designs because answer
extraction with transformers is slow and inference time dominates
any upstream latency savings.

4.2 Detailed Settings

Index-based S; stage. For passage retrieval and similar question
retrieval, we used Elasticsearch 7.3. For factoid QA, we used the
Anserini IR toolkit [18], matching the setup of Yang et al. [19]. In
both cases, we use BM25 with the settings of k1 = 0.9 and b = 0.4.
In our results, we refer to this condition as “BM25 (index)”.

ANN-based S; stage. We used Lucene and gensim to generate
BM25 sparse document representations, on which HNSW indexing
was performed with nms1ib? using inner product distance. We limit
the vocab size to 200k. Following previous work, HNSW indexing
parameters were set as M = 35 and efconstruction = 2500, similar to
Fu et al. [7]; efsearch Was kept at 1000. In our results, we refer to
this condition as “BM25 (ANN)”.

3https://github.com/nmslib/nmslib
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Figure 1: Effectiveness—efliciency tradeoffs for QQP (left) and MS MARCO passage (right). Pareto frontiers shown in black.

USE reranking S, stage. We use USE-multilingual-large as
our encoder (available from TensorFlow Hub) and feed documents
as strings directly without any pre-processing. We did not explicitly
differentiate between passages and sentences. Queries are processed
in exactly the same way.

Hardware configuration. All experiments were run on an oth-
erwise idle machine with an Intel Xeon E5-2620v4 processor and
128GB of RAM. All neural inference used a single Tesla P40 GPU.

5 RESULTS

The effectiveness—efficiency tradeoff space for similar question
retrieval on QQP is shown in Figure 1 (left). Operating points of
interest are annotated with both evaluation results as well as the
parameter settings (k; for S; and ky for S;). Since our metric is
Recall@10, with a single stage S (either index- or ANN-based),
k1 = 10 is the only setting that makes sense, which corresponds
to the solid orange and purple circles. However, with the addition
of the USE reranking stage S, it is possible to sweep increasing
values of kj to obtain a tradeoff curve (while holding k» 10
for fair evaluation); these are the orange and purple lines for the
index-based and ANN-based first stages, respectively.

We see that the ANN-based S; is faster but produces worse
results, while the index-based S; is slower but produces better
results. However, the addition of Sp USE reranking over ANN S;
brings about noticeable effectiveness gains with only a modest
increase in latency. Most of the latency comes from reranking itself,
as the speed of ANN §; is relatively insensitive to k;. While S,
USE reranking also benefits index-based S1, increasing k; yields
longer Sj retrieval times, which increases overall latency to a greater
extent. Furthermore, the upper bound effectiveness is around 0.88
(i.e., what can be achieved with any setting). That is, the extension
of the purple line rises almost vertically beyond the bounds of the
plot, and recall can only be further improved (slightly) at a great
cost in terms of latency.

The Pareto frontier in the effectiveness—efficiency tradeoff space
is shown as the dotted black line. For each point on the frontier,
there exists no other setting that achieves both higher recall and
lower latency; that is, each point represents that best possible trade-
off for a particular operating point. We see that ANN-based S; + USE
reranking S, dominates the frontier—except for the highest recall,

this design is preferred. Further note that, for this task, Sy outputs
are of sufficient quality for human consumption and further rerank-
ing with a slow BERT-based model is unlikely to be worthwhile.
Thus, this graph characterizes the end-to-end tradeoffs.

For sentences, which form the “sweet spot” for USE encoding, Sy
reranking seems to work well. What if we extend to paragraphs? For
MS MARCO passage retrieval, the effectiveness—efficiency tradeoff
space is characterized in Figure 1 (right). Due to the nature of the
task and longer passages, “interesting” operating points occupy
different kj and ky settings. We see that the relative positions of
the single-stage S1 approaches are similar: that is, ANN search is
faster but less accurate than index search. However, the addition
of the USE reranker Sy yields less improvement on MS MARCO
than on QQP (i.e., the orange line does not extend to the right as
far); this is not unexpected given the recommended use of USE on
sentences. Consequently, index-based setups more easily overtake
ANN-based setups along the Pareto frontier.

We note that each curve has an interesting “kink” in it: starting
with S1, adding S, first trades off query latency (slower) for better
quality (higher recall), but beyond a point, the output becomes
worse in both tradeoff dimensions (lower recall and slower). This
is a surprising finding that to our knowledge has not previously
been reported in the literature. We explain as follows: S; (either
index- or ANN-based) is focused on exact term matching, while Sy
performs semantic matching. With smaller k; values, USE rerank-
ing only receives paragraphs that already have high term matching
scores, on top of which semantic matching can improve recall by
bringing relevant paragraphs to higher ranks. However, beyond
a certain point, USE reranking starts receiving paragraphs that
may have poor term matching scores, and semantic matching be-
comes distracted by paragraphs with fewer matching query terms.
Without strong term-matching signals, semantic matching alone is
insufficient to capture overall relevance.

We further note that the “kink” we observe in the MS MARCO
case is indeed also present in the QQP plot as well, but the effect
is more subtle. Focusing on the orange line (Figure 1, left), it does
bend “leftwards” with greater ki values—that is, beyond a certain
point (the “apex” marked in the figure), R@10 becomes slightly
worse as latency continues to rise. The “kink” similarly occurs with
the purple line of QQP, but beyond the bounds of the figure.
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Figure 2: The end-to-end tradeoff space for factoid QA.

Our results thus far show that paragraph-length documents al-
ready push Sz reranking away from the operating region it was
designed for, making it much less effective than when encoding
sentences. We further push the limits of our design in the QA task
by introducing slow BERT-based models for span extraction. The
tradeoff space for the factoid QA task on Wikipedia is shown in Fig-
ure 2. The starting point for comparisons is the two-stage approach
of Xie et al. [17]: keyword search with BM25 followed by a BERT
reader to extract the exact answer spans. We have replicated this
design, and the comparable condition is shown with orange circles,
sweeping different values of k1. Here we focus on an operating
region with latencies that are practical for real-world deployment;
higher EM is possible but with latency measured in seconds.

In this context, the index-based approach is preferred to ANN
because the slight latency advantages of the latter are negligible
given costly BERT inference. Nevertheless, with each single-stage
setup there is a comparable setup where we inject USE reranking
(i.e., retrieve ky paragraphs with BM25, rerank with USE, then feed
top kz paragraphs to the BERT reader). These are shown as the
short colored lines above each solid orange circle. We see that, in
each case, we can increase EM slightly at small costs in latency,
which provides the developer with an alternative of simply varying
ki in a single-stage architecture. Thus, even in this scenario that is
unfavorable to our designs, USE reranking may still have a role to
play in finding the best end-to-end tradeoffs.

6 DISCUSSION

What do we make of these results at a high level? We believe that
two conclusions are warranted:

(1) For S1, ANN is faster but less effective; this holds for our sparse
BM25 representations, on both sentences and paragraphs.

(2) For Sz, our USE encoder is effective for reranking sentences;
this isn’t surprising since sentences are the designed use case.
As aresult, an ANN + USE combination dominates much of the
tradeoff space, and is preferred for all operating points except
for the highest recall requirements (with high latency); see
Figure 1, left. USE can still be useful for reranking paragraphs,
but is not as effective, and thus the ANN + USE combination is
preferred for a smaller range of operating points. However, USE
can still benefit index-based approaches; see Figure 1, right.

Furthermore, we note the need to couch these conclusions in the
final end-to-end pipeline, which may or not may include feeding
the output of Sy to more rankers. For QQP, we argue that an S3
reranker doesn’t make much sense given the already high quality of
the output. For factoid QA, the nature of the task makes a final span
extraction stage necessary. In the latter case, the high inference cost
of transformers greatly reduces the flexibility offered by our designs.
However, accelerating inference in such models is the subject of
much recent work, which means that span extraction will dominate
end-to-end latencies less and less, thus making tradeoffs in the
earlier stages (as we explore here) more important.

7 CONCLUSION

The contribution of our paper is a thorough characterization of the
tradeoff space along three dimensions: index-based vs. ANN-based
candidate generation, the effectiveness of lightweight reranking,
and the impact of document length. Our findings provide the sys-
tem designer guidance on the nature of the effectiveness—efficiency
tradeoffs with respect to these dimensions. Selection of the appro-
priate operating point depends on operational constraints, but how
to determine these lies beyond the scope of this paper.
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