
Patience in Proximity: A Simple Early
Termination Strategy for HNSW Graph Traversal

in Approximate k-Nearest Neighbor Search

Tommaso Teofili1[0000−0002−4372−0273]⋆ and Jimmy Lin2[0009−0007−1571−3854]

1 Elastic
tommaso.teofili@elastic.co

2 David R. Cheriton School of Computer Science
University of Waterloo
jimmylin@uwaterloo.ca

Abstract. The Hierarchical Navigable Small World (HNSW) graph is
widely recognized for its state-of-the-art performance in approximate
k-NN search, leveraging a multi-layer proximity graph to efficiently nav-
igate high-dimensional spaces. However HNSW graph traversal can be-
come computationally expensive, especially for large-scale datasets. To
address this challenge, we introduce a strategy to early terminate HNSW
graph traversal, dubbed “Patience in Proximity”. Inspired by techniques
from clustering-informed approximate nearest neighbor algorithms, our
approach employs a saturation-based threshold to dynamically halt graph
exploration, reducing computational overhead without significantly com-
promising accuracy.
We evaluate the proposed method on diverse datasets from the BEIR
benchmark.

Keywords: Dense Retrieval · Approximate Nearest Neighbor · HNSW.

1 Introduction

Approximate k-Nearest Neighbor (k-NN) search has become a cornerstone in var-
ious applications, from recommendation systems and natural language process-
ing to computer vision, due to its ability to efficiently search for nearest neighbors
with high-dimensional data. The Hierarchical Navigable Small World (HNSW)
graph, a state-of-the-art approach for approximate k-NN search, achieves re-
markable performance by building and traversing a proximity graph that ef-
ficiently prunes the search space. However, even with such optimizations, the
computational cost of traversing the HNSW graph can be prohibitive for ex-
tremely large datasets or resource-constrained environments, where every mil-
lisecond counts. On a different perspective, speeding up HNSW graph search is
important for Dense Retrieval [12] and Retrieval Augmented Generation [8].

⋆ Corresponding author

2 Teofili T. et al.

Inspired by the application of the concept of patience in visiting clusters
for clustering informed ANN algorithms [1], this work proposes a simple, yet
effective early termination strategy tailored for HNSW graph traversal. Dubbed
“Patience in Proximity”, our approach introduces a saturation-based threshold
for dynamically halting the exploration of nearest neighbor candidates at specific
layers of the HNSW graph. By adapting the principle of patience from the realm
of dense retrieval to the navigable structure of HNSW, we aim to significantly
reduce the computational overhead without compromising the accuracy of the
k-NN search results.

In our work we try to answer the following research questions:

– Can the application of a saturation-based early termination strategy effec-
tively reduce the computational cost of HNSW graph traversal?

– To what extent does one such approach impact the accuracy of approximate
k-NN search compared to exhaustive HNSW traversal?

– How does the proposed strategy perform across diverse datasets, in terms of
both efficiency and effectiveness?

Contributions This paper contributes a lightweight, easy-to-implement early ter-
mination strategy for HNSW 3, empirical evaluations across multiple bench-
marks, and insights into the trade-offs between search accuracy and computa-
tional efficiency. Our work is poised to benefit applications requiring fast and
accurate k-NN search, particularly in scenarios where computational resources
are limited.

2 Background

The problem of efficient Approximate k-Nearest Neighbor (k-NN) search has
gathered significant attention over the years due to its broad applicability across
various domains. Numerous methods have been proposed to enhance the effi-
ciency of k-NN search, particularly for large-scale, high-dimensional datasets,
where exact search methods become computationally infeasible.

Nearest neighbor search is the problem of finding the vectors in a given set
that are closest to a given query vector. As such sets of vectors become bigger and
bigger, and the vector dimensionality grows up until thousands of dimensions,
approximate nearest neighbor methods aim to balance search effectiveness with
computational efficiency. More formally, let X = {x1, ..., xn} ∈ RD be a set of n
vectors in a D-dimensional space and q ∈ RD represents a query vector. Given
a value k ≤ n, ANN search finds the k closest vectors in X to q, according to
a pairwise distance function d(q, x), such that: N = k-argminx∈X d(q, x). The
resulting set N contains the k closest vectors to the query vector q.

The Hierarchical Navigable Small World (HNSW) graph introduced by Malkov
and Yashunin [5] has emerged as one of the most effective methods for approxi-
mate k-NN search due to its ability to efficiently prune the search space using a
3 https://github.com/apache/lucene/pull/14094

Patience in Proximity 3

multi-layer proximity graph structure. By organizing nodes in layers, with each
successive layer containing progressively more nodes, HNSW enables rapid navi-
gation from coarser to finer-grained searches. Search begins at the top-most layer,
which has the fewest nodes, and proceeds layer by layer, with each layer increas-
ing in density. As the search descends to lower layers, the candidate set of neigh-
bors is refined, with nearest neighbors being progressively identified through a
best-first traversal mechanism. Formally, let the HNSW graph G = (V,E) where
V is the set of nodes, each representing a data point (or vector) in the space,
and E ⊆ V ×V represents directed edges between nodes, indicating proximity in
the vector space. Each data point v ∈ V exists in one or more layer l = 0, . . . , L
where L is the highest layer of the graph.

In recent years, a variety of techniques have been explored to further enhance
the efficiency of HNSW. These strategies can be broadly categorized into two
types: improvements in graph construction and optimizations in search heuris-
tics. Several works have focused on optimizing the graph-building process, aiming
to reduce memory consumption and improve the connectivity of graph layers [2,
3, 11]. These methods have yielded important advancements, but graph traver-
sal during the search phase remains the most computationally expensive step.
A simple early-exit strategy makes use of a distance-based cutoff, which termi-
nates the search when the current nearest neighbor’s distance reaches a certain
threshold, and further exploration is unlikely to yield better results [4, 6]. This
approach reduces the computational load but may sacrifice accuracy if the cutoff
threshold is set too aggressively. Another known strategy is the early stopping
based on the number of visits per layer [4]. In this method, the traversal is ter-
minated if a predefined number of candidate nodes have been evaluated at each
layer, under the assumption that additional visits are unlikely to significantly
alter the outcome. This method is effective in limiting the search time, but it
can sometimes miss distant but relevant neighbors, particularly in non-uniform
data distributions.

A recent paper by Busolin et al. [1] introduces a strategy that applies a
patience threshold during search to stop exploration once improvements in can-
didate quality saturates. This approach was designed for nearest neighbor al-
gorithms that rely on clustering information, such that it avoids visiting some
clusters whose centroids are still possibly close to a query vector. While this can-
not be applied as is to improve HNSW, its underlying principle can be adapted
to the graph traversal problem in HNSW, where search efficiency is critical.

Our work extends this line of research by proposing a saturation-based early
termination strategy, “Patience in Proximity”, tailored specifically for HNSW
graph traversal. Unlike distance-based cutoffs or fixed visit thresholds, our ap-
proach dynamically adjusts the termination point based on the diminishing re-
turns observed in candidate quality during the traversal. This way we aim to
minimize unnecessary computations while maintaining the high accuracy that
HNSW is known for.

4 Teofili T. et al.

3 Methodology

In standard HNSW traversal, the search process continues until no closer neigh-
bors are found in the bottom-most layer, or a predetermined candidate pool size
is reached. While effective, exhaustive search often entails redundant node visits,
particularly when the nearest neighbors are already identified.

“Patience in Proximity” strategy dynamically halts HNSW graph traversal
once the candidate quality saturates. Instead of imposing a strict cutoff based
on visits or distance, this method tracks improvement rates in selected nearest
neighbors. Once improvements fall below a saturation threshold, the search is
terminated.

Let v be a point in the HNSW graph (at a given layer l) and C a set of
candidate neighbors to visit (the nodes linked to v in G at layer l), the HNSW
search algorithm visits all c ∈ C to select k nearest neighbors for a given query
vector q, based on a distance function d. During the visit of all c ∈ C, new nearest
neighbors are eventually identified and added to the set of nearest neighbors
N(q).

Let Nh,l(q) be the set of nearest neighbors collected after visiting h candidates
at layer l and ϕh,l(q) be the size of the intersection between Nh,l(q) and the
previous nearest neighbors at iteration Nh−1,l(q) divided by k: ϕh,l(q) = 100 ·
|Nh−1,l(q) ∩Nh,l(q)|/k.

(a) HNSW (b) HNSWP

Fig. 1. Number of candidates visited with plain HNSW (a) and HNSW with “patience”
(b) on a sample query vector from HotpotQA.

Figure 1(a) plots ϕh,0(q), for a sample query vector from the HotpotQA
dataset. After around 300 visits, the value of ϕ saturates reaching its plateau.
This observation, allows HNSW to make an adaptive decision on when to stop
visiting further candidates, because actual collection of additional nearest neigh-
bors becomes extremely rare.

While such a saturation might happen also during earlier stages, the early
termination only kicks in when the set of collected neighbors doesn’t change

Patience in Proximity 5

much for a number ∆ (our patience) of consecutive iterations, e.g., when ϕh ≥
γ ∈ [90, 100] for ∆ consecutive iterations. In summary, we stop visiting candidate
neighbors for a query vector q if visiting the next candidate keeps at least γ
percent of the k collected neighbors unchanged, for ∆ consecutive iterations.
Note also that the number of candidates to be visited (green line in Figure 1(a))
rapidly increases as the new candidates to be evaluated are way more than
the candidates that get promoted to nearest neighbors, in the beginning. Again
nearly around 300 visits, where very few candidates start being turned into
nearest neighbors, the number of candidates to be evaluated starts decreasing,
suggesting that HNSW is running out of good candidate options for the given
query vector, confirming the saturation phenomenon.

Figure 1(b) plots ϕh,0(q) as well as the patience threshold ∆ and a saturation
counter to account for the number of times ϕh,0(q) ≥ γ, with γ = 95. The
patience threshold is met after about 350 iterations and the visit ends, resulting
in about 450 less candidate visits with respect to the plain HNSW execution
(about 800 visits in Figure 1(a)).

Since HNSW leverage the nearest neighbor search primitive also when build-
ing the graph, our early termination strategy can be either used at search time
only or during both indexing and search. The latter potentially leading to the
construction of a more compact HNSW graph.

4 Experiments

We evaluate approximate k-nearest neighbor retrieval using standard evaluation
methodology on datasets from the BEIR benchmarks [7]: we consider Robust04,
HotpotQA, DBPedia, Climate-FEVER and TREC-COVID datasets. BGE [9] is
selected as a representative dense retrieval model for generating the embeddings,
specifically bge-base-en-v1.5.

In order to assess the effectiveness / efficiency tradeoffs of our early-termination
strategy; we report NDCG@10, Recall@100 and Recall@1000 and query-per-
second (QPS). We consider the HNSW implementation of the Apache Lucene li-
brary (9.11.1 release) and employ the Anserini toolkit [10] to run our experiments
in a reproducible way on an Intel(R) Xeon(R) CPU@2.80GHz with 68GiB Sys-
tem memory. Our experiments report results with our early-termination strategy
at search time only (HNSWP (S)) and at index-and-search time (HNSWP (IS)).

Table 1 shows a notable improvement in QPS across all datasets, both when
early termination is applied only during search and when applied at both index-
ing and search stages.

With HNSWP (S), for Robust04 and TREC-COVID we observe up to 20%
QPS speedup, for HotpotQA and Climate-FEVER we observe up to 41-43%
QPS speedups while we report the best efficiency improvement for DBPedia
with a 64% QPS speedup. HNSWP (IS) QPS is mostly on par with HNSWP (S)

for Robust04, DBPedia and Trec-COVID, whereas its efficiency improvements
are more limited for HotpotQA and Climate-FEVER datasets.

6 Teofili T. et al.

Dataset Method NDCG@10 R@100 R@1000 QPS

Robust04
HNSW 0.4460 0.3487 0.5938 73.7
HNSWP (S) 0.4463 0.3481 0.5922 87.1
HNSWP (IS) 0.4444 0.3466 0.5588 89.1

HotpotQA
HNSW 0.7069 0.8487 0.9153 70.6
HNSWP (S) 0.7018 0.8422 0.9085 100.1
HNSWP (IS) 0.6936 0.8301 0.8958 95.1

DBPedia
HNSW 0.4046 0.5234 0.7654 47.9
HNSWP (S) 0.4069 0.5264 0.7684 77.1
HNSWP (IS) 0.3985 0.5129 0.7518 78.5

Climate-FEVER
HNSW 0.3108 0.6354 0.8282 73.4
HNSWP (S) 0.3112 0.6361 0.8304 102.5
HNSWP (IS) 0.3123 0.6364 0.8287 84.3

TREC-COVID
HNSW 0.7814 0.1406 0.4769 62.4
HNSWP (S) 0.7814 0.1407 0.4787 73.9
HNSWP (IS) 0.7807 0.1405 0.4787 73.2

Table 1. Comparison of Methods Across Multiple BEIR Datasets

On the other hand, effectiveness remains almost untouched when using HNSWP (S),
whereas we notice drops by about 1 point for all of NDCG@10, Recall@100 and
Recall@1000 for Robust04, HotpotQA and DBPedia when using HNSWP (IS).
This last observation seems in line with the fact that HNSWP (IS) builds an
HNSW graph with fewer edges. For the Climate-FEVER dataset, we observe an
unexpected improvement both in efficiency and effectiveness, although very lim-
ited, with our early-termination strategy. We also notice a small improvement
in efficiency and effectiveness for HNSWP (S) on the DBPedia dataset. We plan
to investigate further in the future on the rationale behind these unexpected
(although beneficial) effectiveness improvements.

We also conducted a small experiment for accounting the number of candi-
dates visits with and without our early-termination strategy. We found out that
using early-termination leads to 39% to 42% less candidate visits for HotpotQA
and Robust04, respectively.

5 Conclusions

In this work, we introduced “Patience in Proximity”, a novel saturation-based
early termination strategy for optimizing Hierarchical Navigable Small World
graph traversal in approximate k-Nearest Neighbor search. By dynamically ter-
minating search once candidate quality improvements plateau, our method effec-
tively reduces computational costs while maintaining accuracy. Our experiments
across multiple datasets demonstrate that the patience-based approach provides
efficiency improvements over BEIR benchmark datasets. The adaptive nature of
our early-termination strategy enables it to cater to varying dataset densities,
making it suitable for a wide range of real-world k-NN scenarios. Future work

Patience in Proximity 7

involves evaluation with more datasets; we may also explore extensions of this
strategy to inspect the candidate quality saturation patterns more broadly, in-
cluding layer-specific experiments. We also plan to investigate some unexpected
effectiveness improvements observed in our experimental results.

References

1. Busolin, F., Lucchese, C., Nardini, F.M., Orlando, S., Perego, R., Trani, S.:
Early exit strategies for approximate k-nn search in dense retrieval. In: Pro-
ceedings of the 33rd ACM International Conference on Information and Knowl-
edge Management. p. 3647–3652. CIKM ’24, Association for Computing Ma-
chinery, New York, NY, USA (2024). https://doi.org/10.1145/3627673.3679903,
https://doi.org/10.1145/3627673.3679903

2. Coleman, B., Segarra, S., Smola, A.J., Shrivastava, A.: Graph reordering for cache-
efficient near neighbor search. Advances in Neural Information Processing Systems
35, 38488–38500 (2022)

3. Fu, C., Xiang, C., Wang, C., Cai, D.: Fast approximate nearest neighbor search
with the navigating spreading-out graph. arXiv preprint arXiv:1707.00143 (2017)

4. Lin, P.C., Zhao, W.L.: Graph based nearest neighbor search: Promises and failures.
arXiv preprint arXiv:1904.02077 (2019)

5. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable small
world graphs. IEEE Trans. Pattern Anal. Mach. Intell. 42(4),
824–836 (2020). https://doi.org/10.1109/TPAMI.2018.2889473,
https://doi.org/10.1109/TPAMI.2018.2889473

6. Ren, J., Zhang, M., Li, D.: Hm-ann: Efficient billion-point nearest neighbor search
on heterogeneous memory. Advances in Neural Information Processing Systems
33, 10672–10684 (2020)

7. Thakur, N., Reimers, N., Rücklé, A., Srivastava, A., Gurevych, I.: BEIR:
A heterogeneous benchmark for zero-shot evaluation of information re-
trieval models. In: Thirty-fifth Conference on Neural Information Pro-
cessing Systems Datasets and Benchmarks Track (Round 2) (2021),
https://openreview.net/forum?id=wCu6T5xFjeJ

8. Wang, Z.J., Chau, D.H.: Mememo: On-device retrieval augmentation for private
and personalized text generation. In: Proceedings of the 47th International ACM
SIGIR Conference on Research and Development in Information Retrieval. pp.
2765–2770 (2024)

9. Xiao, S., Liu, Z., Zhang, P., Muennighoff, N., Lian, D., Nie, J.Y.: C-Pack:
Packed resources for general chinese embeddings. In: Proceedings of the 47th
International ACM SIGIR Conference on Research and Development in In-
formation Retrieval. p. 641–649. SIGIR ’24, Association for Computing Ma-
chinery, New York, NY, USA (2024). https://doi.org/10.1145/3626772.3657878,
https://doi.org/10.1145/3626772.3657878

10. Yang, P., Fang, H., Lin, J.: Anserini: Reproducible ranking baselines using Lucene.
Journal of Data and Information Quality 10(4), Article 16 (2018)

11. Yang, S., Xie, J., Liu, Y., Yu, J.X., Gao, X., Wang, Q., Peng, Y., Cui, J.: Revisiting
the index construction of proximity graph-based approximate nearest neighbor
search. arXiv preprint arXiv:2410.01231 (2024)

8 Teofili T. et al.

12. Zhao, W.X., Liu, J., Ren, R., Wen, J.R.: Dense text retrieval based on pretrained
language models: A survey. ACM Transactions on Information Systems 42(4), 1–60
(2024)

