TEMPORAL EARLY EXITING FOR STREAMING SPEECH COMMANDS RECOGNITION
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ABSTRACT

Limited-vocabulary speech commands recognition is the task
of classifying a short utterance as one of several speech
commands, for which neural networks obtain state-of-the-art
results. In particular, recurrent neural networks represent
a common approach for streaming commands recognition
systems. In this paper, we explore resource-efficient meth-
ods to short-circuit such systems in the time domain when
the model is confident in its prediction. We propose apply-
ing a frame-level labeling objective to further improve the
efficiency—accuracy trade-off. On two datasets in limited-
vocabulary commands recognition, our best method achieves
an average time savings of 45% of the utterance without re-
ducing the absolute accuracy by more than 0.6 points. We
show that the per-instance savings depend on the length of
the unique prefix in the phonemes across a dataset.

Index Terms— speech commands, early exiting, recur-
rent neural networks.

1. INTRODUCTION

Automatic speech recognition (ASR) systems power billions
of devices, from the Amazon Echo to Google’s voice assis-
tant. Driven by advances in deep learning [1], they attain high
precision and coverage of the English language, with the state
of the art having a vocabulary size of thousands of wordpieces
and a word error rate of 2.8% on LibriSpeech [2].

Why, then, is the limited-vocabulary case still interesting?
For many voice-enabled platforms, queries follow a highly
Zipfian distribution, where the top few dozen cover a large
percentage of the total traffic. On the Comcast X1 entertain-
ment system, for example, the top-twenty commands con-
stitute around 30% of the traffic, amounting to a few mil-
lion queries per day. Thus, the limited-vocabulary task re-
mains relevant, as well as separate: clearly, using an ASR sys-
tem is excessive for targeting phonetically distinct commands
with a small vocabulary. The model complexity should match
the task difficulty. Toward this limited-vocabulary task, re-
searchers have developed lightweight, efficient neural models
that fit on resource-constrained devices [3].
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Even though these models are already low latency, the
right kind of optimization is still meaningful. For example,
we can drastically reduce the overall system latency by short-
circuiting these models across time when they are confident
in their predictions, since downstream components in query
understanding systems often depend on their transcriptions.
We can use the early-exited transcription and perform various
downstream tasks before the user has finished speaking, thus
saving time. In our television entertainment system domain,
for instance, a downstream task is to check the availability of
a desired channel for the user, requiring slow network calls
and database queries.

In this paper, we precisely explore this temporal-early-
exiting strategy for streaming, limited-vocabulary commands
recognition. To further improve the savings—accuracy trade-
off curves, we propose a simple yet novel frame-level label-
ing objective that encourages earlier exits. We evaluate our
approaches on two datasets—one open dataset in simple com-
mands recognition and another in the television entertainment
system domain. Our main contributions are as follows: First,
we are the first to elucidate and study early exiting in the time
domain for speech commands recognition. Second, we pro-
pose a novel method for encouraging earlier exits and improv-
ing overall model quality. Finally, we provide insight into the
early exit points, showing that the per-example savings de-
pend on the length of the smallest unique prefix in the pho-
netic transcription. Our best proposed method achieves an
average savings of 45% without hurting the absolute accuracy
by more than 0.6 points.

2. OUR MODELING APPROACHES

We use a standard recurrent neural network (RNN) encoder
architecture to model speech. Given 16kHz, 16-bit audio,
we construct 60-dimensional log-Mel frames with a win-
dow of 30ms and frame shift of 10ms. Similar to previous
work [4], we stack every three frames together for a down-
sampled frame rate of 30ms. We feed these superframes
x = (x1,...,x7) to a unidirectional RNN, which con-
sists of [ layers, h hidden units, and either long short-term
memory (LSTM) [5] or gated recurrent unit (GRU) [6] cells,
depending on the hyperparameters. Finally, we pass the
RNN’s hidden states to a pointwise, two-layer deep neural



network (DNN) with A hidden units, rectified linear unit ac-
tivations, and |V| output units, producing the final hidden
states hy,...,h € R'V‘, where V is the vocabulary. To
produce a probability distribution over the vocabulary, we use
the softmax function, i.e.,
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2.1. Early-Exiting Inference Criterion

Similar to DeeBERT [7], we use the entropy of the output dis-
tribution as the early-exiting criterion during inference. For
each i frame, let the frame-level entropy H (x;) be
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The lower the entropy, the higher the confidence. Then, define
the early-exiting threshold function as

g(t,x) :=min ({i : H(z;) <7} U{T}), 3)

where 7 € R is the confidence (entropy) threshold and 7' is
the number of frames in @. Put simply, ¢g(7, ) is the smallest
frame index where the entropy is below 7; if none exist, it
returns the final frame index.

2.2. Connectionist Temporal Classification Objective

Connectionist temporal classification (CTC) [8] is an ob-
jective for modeling sequential label distributions when the
frame-level alignment is unknown. Concretely, it augments
the vocabulary V' with a blank label (b), i.e., V' := V U (b).
Given some ground truth y := (y1,...,yv), it defines a
sequence generating function B(y) that produces all strings
(alignments) g € V'T of length T such that, if all consec-
utive nonblank symbols were joined and subsequent blanks
removed, ¢ would equal y, e.g., cc(byaaa(b)(b)t — cat.
Given some input , CTC then models the conditional prob-
ability marginalized over all possible alignments as
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where the probability distribution on the right is represented
by the RNN encoder. The authors [8] provide a forward—
backward algorithm for computing the loss gradients for
gradient-based training, which, upon convergence, yields
probable alignments for a label sequence.

For our task, we define the vocabulary as the set of clas-
sification classes, with each example having a label sequence
length of one (a single class). At first glance, this objective

seems to be appropriate because we can pick an exit point
using the alignment. However, in practice, CTC results in
peaky, overconfident predictions and overly exploits a single
path [9]. Additionally, its application is atypical for classifi-
cation tasks such as ours. Nevertheless, it serves as a relevant
baseline approach.

2.3. Last-Frame Cross Entropy Objective

The typical approach to limited-vocabulary speech com-
mands recognition is to produce from the utterance a single
probability distribution across the labels, and then minimize
the cross entropy (CE) loss given the ground truth [10, 11, 12].
For streaming systems, researchers commonly use the final
hidden state of the RNN (or RNN-DNN) as the fixed-length
representation [12] and apply a softmax transformation across
the labels. The last-frame CE L i for a single example is

Lrr = —logp(yrd|z), &)

where c is the ground truth label index and yr is the final
hidden state. Although the intermediate output distributions
p(yi|x1.;) for all 1 < ¢ < T are not explicitly trained, we
show experimentally that this popular method produces ac-
ceptable early exits.

2.4. All-Frame Cross Entropy Objective

For improved early exiting, we propose to apply the cross en-
tropy objective to all frames instead of only the last. This way,
all hidden states are encouraged to be discriminative. That is,
for a single example, the all-frame objective is
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To weigh the importance of the final frame versus all the
frames, we add the last-frame loss to the all-frame loss with
weight A, for a final objective of Lar := L7 + N ap. Al-
though it seems like such a loss would hurt the original accu-
racy because early frames may not contain the label, we show
that it in fact improves the quality for a wide range of A.

3. EXPERIMENTS

3.1. Experimental Setup and Data

We implemented our models in PyTorch 1.6.0. We conducted
all experiments on GPU-accelerated machines with Nvidia
Tesla V100 and Titan RTX GPUs.

For evaluation, we first chose the Google Speech Com-
mands dataset (GSC; v1) [11], which comprises 65,000 one-
second utterances split evenly across 30 phonetically distinct
words. Being open and licensed under Creative Commons
BY 4.0, this dataset enables easy reproducibility. Following



Dataset Training/Dev/Test Sizes C L ‘ P N

GSC (51K, 6.8K, 6.8K) 11 1.00|23.7K 41.0K
CC20 (109.7K, 13.7K, 13.7K) 21 2.04| 40K 97.2K

Table 1. Summary statistics of the datasets, where C' denotes
the total number of classes, L the average length of the utter-
ances in seconds, and P and N the numbers of positive and
negative examples, respectively.

the previous literature, we picked the 10 positive keywords
“yes,” “no,” “up,” “down,” “left,” “right,” “on,” “off,” “stop,”
and “go.” We collapsed the rest of the keywords into the
negative class for a total of 11 distinct labels. The training,
development, and test sets were, following the original pa-
per [11], distinctly split into sizes of 80%, 10%, and 10% of
the dataset—see Table 1 for a summary of the dataset.

We further curated a proprietary dataset for our television
entertainment system domain. The dataset comprised 40K
positive samples, split evenly across the top-20 commands,
and 100K negative samples, divided evenly across 6670 com-
mands. The top-twenty commands represent around 30% of
our total traffic. We grouped the negative examples into a
single class, for a total of 21 classes, all of which were pho-
netically unique between the classes. The dataset was col-
lected with the help of an auto-annotation tool, which an-
notated transcriptions by analyzing subsequent user behav-
iors and identifying patterns for query reformulation within a
given session [13, 14]. That is, we labeled transcriptions as
correct when users provided positive implicit feedback (e.g.,
button click, user stayed on the program and continued watch-
ing). This auto-annotation process yields examples with very
low word error rates [13], thus providing a reliable source
for training data. We again bucketed the training, develop-
ment, and test sets into 80%, 10%, and 10% of the dataset,
respectively—Table 1 summarizes the dataset statistics. We
name this dataset CC20.

For our hyperparameters, we chose a batch size of 64 and
a learning rate of 5 x 10~* using the Adam optimizer [15]
with an exponential decay factor of 0.985 across a maximum
of 40 epochs. We tuned the hidden size of the RNN and the
number of layers across a grid of {384, 512} hidden units and
{1, 2} layers. For efficiency, we performed this hyperparame-
ter tuning on GSC’s development set and used the same values
on CC20. We then fixed the architecture and applied the all-
frame objective with A € {0.1,0.5,2.5}. To improve the ro-
bustness of the model to noise, we follow the same procedure
from the Howl keyword spotting toolkit [12] and randomly
mix Gaussian noise ~ NORMAL(0, 0.02) with 0.2 probabil-
ity at each training step, along with noise from MUSAN [16]
and Microsoft SNSD [17], with a mixing factor of 0.1.

We assign meaningful names to the resulting models. The
base model name is “{LSTM, GRU}-h-1,” followed by the
objective—CTC, LF (last-frame CE), or AF-) (all-frame CE).

GSC CC20

#  Model Dev/Test  Dev/Test
1 LSTM [12] 94.3/94.5 -

2 RNN 18] —/95.6 -

3 GRU-384-1 (CTC) 92.8/93.1 71.5/71.6
4  GRU-384-1 (LF) 95.5/96.0 97.9/98.1
5 GRU-384-1 (AF-0.1) 95.8/96.7 98.1/98.2
6 GRU-384-1 (AF-0.5) 96.4/96.7 98.3/98.4
7 GRU-384-1 (AF-2.5) 96.2/96.5 98.1/98.1

Table 2. The model accuracy without early exiting.
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Fig. 1. The savings—accuracy trade-offs on the test sets.

3.2. Results

First, as a sanity check, we present our model results without
early exiting in Table 2. All models have 670K parameters.
Our models achieve comparable results to streaming state-of-
the-art models (rows 1 and 2). We also try beam search de-
coding for the CTC model with a beam width of 100, but
taking the strongest activation at each time step (i.e., greedy
decoding) obtains the same quality. We note that our CTC
model converges poorly on CC20, possibly because of more
frame-level phonetic confusion between the examples (e.g.,
“recordings” and “recording pro”), which is a nonissue for
GSC. Interestingly, the all-frame objective consistently out-
performs LF and CTC by 0.1-0.7 points across a wide range
of A values—see rows 5-7 and 3 and 4. We conjecture that the
all-frames objective serves as a form of regularization similar
to deeply supervised networks [19], whose hidden features
are explicitly trained to be discriminative. In our case, we can
regard our objective as deep supervision on the final features
across time, not the layers.

Next, we follow the early exiting inference strategy as de-
scribed in Section 2.1, sweeping the entropy threshold 7 from
0 to 1 in increments of 1/300. For each operating point 7, we
compute the time savings ©(7) as the average proportion of
the speech utterance that early exiting truncates, i.e.,

n
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Fig. 2. The observed phonetic exit index against the optimal
index. The confidence intervals are omitted because the esti-
mates are precise.

where T is the length in frames of the i example =), and
g(r,2(®) < Tj is the exit time index given threshold 7 and
example =(*), as defined in Eqn. (3). A time savings of 0.4
thus means that, on average, the model exits after observing
the first 60% of the audio clip.

We plot the resulting time-savings-to-accuracy curves in
Figure 1, with an accuracy cutoff of 85% on both datasets.
The AF models achieve similar efficacy, with all of their
curves being Pareto-better than the others. In particular, pick-
ing A = 0.5 obtains the highest area under the curve (AUC)
for both datasets; at a savings of 0.45, we lose only 0.5 and
0.6 points in absolute accuracy on GSC and CC20, respec-
tively. The AF curves also fall off more gradually than the
others, suggesting that the objective smooths the predictions
across time.

3.3. Early-Exiting Analysis

We hypothesize that the exit index is smaller for instances
with shorter unique phonetic prefixes in the dataset. For neg-
ative instances, the unique prefix is compared against the pos-
itive set only, because all of the negatives form a single class.
For example, consider a dataset with the four transcriptions
“Sophie,” “Soho,” “Ralph,” and “Ralphie.” Suppose Sophie
and Soho are positives and the others negative. Intuitively,
Sophie and Soho require more time to disambiguate than does
Ralph and Ralphie, which can be classified as negative based
on the first phoneme alone, since the negatives form a single
class and hence do not require interclass distinction.

To test this hypothesis, we first build a pronunciation
dictionary by applying the English pretrained finite state
transducer—based grapheme-to-phoneme (G2P) model from
the Montreal Forced Aligner (MFA) toolkit [20]. We ad-
ditionally supplement the dictionary with the LibriSpeech
lexicon. Next, we align the transcriptions with the audio us-
ing MFA, which outputs the most likely phoneme sequence
and its constituent time intervals. For each transcription, we
then compute the optimal exit point as the smallest unique

phonetic prefix, taken across the entire dataset for positive
examples and the positive set for negatives. In the afore-
mentioned example, the optimal points would be “Soph-ie,”
“Soh-0,” “R-alph,”, and “R-alphie.” Finally, we note the
observed phonetic exit index for each clip in the test set.

For our analysis, we select the models trained on the LF
and the AF-0.5 objectives, representing the vanilla method
and our best approach, respectively. To enable a direct com-
parison, we pick the thresholds so that the accuracy between
the two models are matched—93.6% on GSC and 95% on
CC20. We plot the optimal index against the observed exit
index in Figure 2. The observed exit index increases with the
optimal exit point on both models and datasets, which sup-
ports our hypothesis. In agreement with the savings—accuracy
curves in Figure 1, the AF-0.5 model consistently exits earlier
than the LF one, as the lower bars show.

4. BACKGROUND AND RELATED WORK

Previous papers in the early exiting of neural networks per-
form layerwise exiting, not across time, as in our case. Fi-
nal predictions are made based on intermediate hidden layers,
with the help of “early exit modules” trained for each layer.
If an intermediate exit module is certain enough in the final
prediction, the model short-circuits and halts inference at that
layer. Various examples include BranchyNet [21] for image
classification, DeeBERT [7] for natural language processing,
and Tyagi et al.’s work [22] for speech intent. Along a par-
allel direction, Tang et al. [23] explore predicting the final
voice query from the intermediate ASR system outputs, an
approach that we can readily combine with temporal early
exiting for greater effectiveness.

A multitude of modeling approaches exist for limited-
vocabulary speech commands recognition, such as convolu-
tional neural networks [10], residual networks, and recurrent
neural networks [18]. Since our focus is on streaming sys-
tems, we use RNNs as the target architecture. To compress
these models further, researchers have explored neural archi-
tecture search [3] and dilated convolutions [24]. He et al. [4]
also explore compressing an ASR model and achieve promis-
ing results, but their system is orders of magnitude larger than
limited speech commands models.

5. CONCLUSIONS

In this paper, we explore early exiting across time for RNNs
in speech commands recognition. We propose a simple ob-
jective for improving the efficiency—accuracy trade-off. On a
few datasets in limited-vocabulary speech commands recog-
nition, we obtain a time savings of 45% without dropping the
accuracy by more than 0.6 points. We show that the savings
correlate with how easy the phonetics are to disambiguate.
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