
The VLDB Journal (2016) 25:125–150
DOI 10.1007/s00778-015-0405-2

REGULAR PAPER

NScale: neighborhood-centric large-scale graph
analytics in the cloud

Abdul Quamar1 · Amol Deshpande1 · Jimmy Lin1

Received: 7 December 2014 / Revised: 2 June 2015 / Accepted: 21 September 2015 / Published online: 13 October 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract There is an increasing interest in executing com-
plex analyses over large graphs, many of which require
processing a large number of multi-hop neighborhoods or
subgraphs. Examples include ego network analysis, motif
counting, finding social circles, personalized recommenda-
tions, link prediction, anomaly detection, analyzing influence
cascades, and others. These tasks are not well served by exist-
ing vertex-centric graph processing frameworks, where user
programs are only able to directly access the state of a single
vertex at a time, resulting in high communication, schedul-
ing, and memory overheads in executing such tasks. Further,
most existing graph processing frameworks ignore the chal-
lenges in extracting the relevant portions of the graph that an
analysis task is interested in, and loading those onto dis-
tributed memory. This paper introduces NScale, a novel
end-to-end graph processing framework that enables the
distributed execution of complex subgraph-centric analyt-
ics over large-scale graphs in the cloud. NScale enables
users to write programs at the level of subgraphs rather
than at the level of vertices. Unlike most previous graph
processing frameworks, which apply the user program to
the entire graph, NScale allows users to declaratively spec-
ify subgraphs of interest. Our framework includes a novel
graph extraction and packing (GEP) module that utilizes a
cost-based optimizer to partition and pack the subgraphs
of interest into memory on as few machines as possible.
The distributed execution engine then takes over and runs
the user program in parallel on those subgraphs, restricting
the scope of the execution appropriately, and utilizes novel
techniques to minimize memory consumption by exploiting
overlaps among the subgraphs. We present a comprehensive

B Abdul Quamar
abdul@cs.umd.edu

1 University of Maryland, College Park, MD, United States

empirical evaluation comparing against three state-of-the-art
systems, namely Giraph, GraphLab, and GraphX, on several
real-world datasets and a variety of analysis tasks. Our exper-
imental results show orders-of-magnitude improvements in
performance and drastic reductions in the cost of analytics
compared to vertex-centric approaches.

Keywords Graph analytics · Cloud computing · Egocentric
analysis · Subgraph extraction · Set bin packing · Data
co-location · Social networks

1 Introduction

Over the past several years, we have witnessed unprecedented
growth in the size and availability of graph-structured data.
Examples include social networks, citation networks, bio-
logical networks, IP traffic networks, just to name a few.
There is a growing need to execute complex analytics over
graph data to extract insights, support scientific discovery,
detect anomalies, etc. A large number of these tasks can
be viewed as operations on local neighborhoods of ver-
tices in the graph (i.e., subgraphs). For example, there is
much interest in analyzing ego networks, i.e., 1- or 2-hop
neighborhoods, for identifying structural holes [6], brokerage
analysis [5], counting motifs [30], identifying social cir-
cles [28], social recommendations [3], computing statistics
like local clustering coefficients or ego betweenness [11], and
anomaly detection [1]. In other cases, we might be interested
in analyzing induced subgraphs satisfying certain proper-
ties, for example, users who tweet a particular hashtag in
the Twitter network or groups of users who have exhibited
significant communication activity in recent past. More com-
plex subgraphs can be specified as unions or intersections of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-015-0405-2&domain=pdf

126 A. Quamar et al.

neighborhoods of pairs of vertices; this may be required for
graph cleaning tasks like entity resolution [32].

In this paper, we propose a novel distributed graph
processing framework called NScale, aimed at supporting
complex graph analytics over very large graphs. Although
there has been no shortage of new distributed graph process-
ing frameworks in recent years (see Sect. 2 for a detailed
discussion), our work has three distinguishing features:

• Subgraph-centric programming model Unlike vertex-
centric frameworks, NScale allows users to write cus-
tom programs that access the state of entire subgraphs of
the complete graph. This model is more natural and intu-
itive for many complex graph analysis tasks compared to
the popular vertex-centric model.

• Extraction of query subgraphs Unlike existing graph
processing frameworks, most of which apply user pro-
grams to the entire graph, NScale efficiently supports
tasks that involve only a select set of subgraphs (and of
course,NScale can execute programs on the entire graph
if desired).

• Efficient packing of query subgraphs To enable effi-
cient execution, subgraphs of interest are packed into
as few containers (i.e., memory) as possible by tak-
ing advantage of overlaps between subgraphs. The
user is able to control resource allocation (for exam-
ple, by specifying the container size), which makes
our framework highly amenable to execution in cloud
environments.

NScale is an end-to-end graph processing framework that
enables scalable distributed execution of subgraph-centric
analytics over large-scale graphs in the cloud. In our frame-
work, the user specifies: (a) the subgraphs of interest (for
example, k-hop neighborhoods around vertices that satisfy
a set of predicates) and (b) a user program to be executed
on those subgraphs (which may itself be iterative). The user
program is written against a general graph API (specifically,
BluePrints) and has access to the entire state of the subgraph
against which it is being executed. NScale execution engine
is in charge of ensuring that the user program only has access
to that state and nothing more; this guarantee allows exist-
ing graph algorithms to be used without modification. Thus
a program written to compute, say, connected components in
a graph, can be used as is to compute the connected compo-
nents within each subgraph of interest. Our current subgraph
specification format allows users to specify subgraphs of
interest as k-hop neighborhoods around a set of query ver-
tices, followed by a filter on the nodes and the edges in the
neighborhood. It also allows selecting subgraphs induced by
certain attributes of the nodes, e.g., the user may choose an
attribute like tweeted hashtags and ask for induced subgraphs,

one for each hashtag, over users that tweeted that particular
hashtag.

User programs corresponding to complex analytics may
make arbitrary and random accesses to the graph they
are operating upon. Hence, one of our key design deci-
sions was to ensure that each of the subgraphs of interest
would reside entirely in memory on a single machine, while
the user program ran against it. NScale consists of two
major components. First, the graph extraction and pack-
ing (GEP) module extracts relevant subgraphs of interest
and uses a cost-based optimizer for data replication and
placement that minimizes the number of machines needed,
while attempting to balance load across machines to guard
against the straggler effect. Second, the distributed execution
engine executes user-specified computation on the subgraphs
in memory. It employs several optimizations that reduce
the total memory footprint by exploiting overlap between
subgraphs loaded on a machine, without compromising
correctness.

Although we primarily focus on one-pass complex analy-
sis tasks described above, NScale also supports the Bulk
Synchronous Protocol (BSP) model for executing iterative
analysis tasks like computation of PageRank or global con-
nected components. NScale’s BSP implementation is most
similar to that of GraphLab, and the information exchange is
achieved through shared state updates between subgraphs on
the same partition and through use of “ghost” vertices (i.e.,
replicas) and message passing between subgraphs across dif-
ferent partitions.

We present a comprehensive experimental evaluation that
illustrates that extraction of relevant portions of data from
the underlying graph and optimized data replication and
placement helps improve scalability and performance with
significantly fewer resources reducing the cost of data ana-
lytics substantially. The graph computation and execution
model employed by NScale affects a drastic reduction in
communication (message passing) overheads (with no mes-
sage passing within subgraphs) and significantly reduces the
memory footprint (up to 2.6X for applications over 1-hop
neighborhoods and up to 25X for applications such as per-
sonalized page rank over 2-hop neighborhoods); the overall
performance improvements range from 3X to 30X for graphs
of different sizes for applications over 1-hop neighborhoods
and 20X–400X for 2-hop neighborhood analytics. Further,
our experiments show that GEP is a small fraction of the
total time taken to complete the task and is thus the cru-
cial component that enables the efficient execution of the
graph computation on the materialized subgraphs in distrib-
uted memory using minimal resources. This enablesNScale
to scale neighborhood-centric graph analytics to very large
graphs for which the existing vertex-centric approaches fail
completely.

123

NScale: neighborhood-centric large-scale graph analytics in the cloud 127

2 Related work

Here we focus on the large-scale graph processing frame-
works and programming models; motivating applications are
discussed in the next section.

Vertex-centric approaches Most existing graph process-
ing frameworks such as Pregel [27], Apache Giraph,
GraphLab [26], Kineograph [8], GPS [39], and Grace [49],
are vertex-centric. Users write vertex-level programs, which
are then executed by the framework in either a bulk syn-
chronous fashion (Pregel, Giraph) or asynchronous fashion
(GraphLab) using message passing or shared memory. These
frameworks fundamentally limit the user program’s access to
a single vertex’s state—in most cases to the local state of the
vertex and its edges. This is a serious limitation for many
complex analytics tasks that require access to subgraphs.

For example, to analyze a 2-hop neighborhood around
a vertex to find social circles [28], one would first need to
gather all the information from the 2-hop neighbors through
message passing and reconstruct those neighborhoods locally
(i.e., in the vertex program local state). Even something as
simple as computing the number of triangles for a node
requires gathering information from 1-hop neighbors (since
we need to reason about the edges between the neighbors, cf.
Fig. 4). This requires significant network communication and
an enormous amount of memory. Consider some back-of-the-
envelope calculations for estimating the message passing and
memory overhead for constructing neighborhoods of vari-
ous sizes at each vertex for the Orkut social network graph
with approx 3 M nodes, 234 M edges and an average degree
of 77. The original graph occupies 14 GB of memory for a
data structure that stores the graph as a bag of vertices in
adjacency list format. Table 1 provides an estimate of the
number of messages that would need to be exchanged and
the memory footprints required in order to construct 1- and
2-hop neighborhoods at each vertex for ego network analysis.
It is clear that a vertex-centric approach requires inordinate
amounts of network traffic, beyond what can be addressed
by “combiners” in Pregel [27] or GPS [39], and impractical
amount of cluster memory. Although GraphLab is based on
a shared memory model, it too would require two phases of
GAS (Gather, Apply, Scatter) to construct a 2-hop neighbor-

hood at each vertex and suffers from duplication of state and
high memory overhead.

We also see that even for a modest graph, the memory
requirements are quite high for most clusters today. Further-
more, because most existing graph processing frameworks
hash-partition vertices by default, this approach will create
much duplication of neighborhood data structures. In recent
work, Seo et al. [41] also observe that these frameworks
quickly run out of memory and do not scale for egocentric
analysis tasks.

The other weakness of existing vertex-centric approaches
is that they almost always process the entire graph. In many
cases, the user may only want to analyze a subset of the
subgraphs in a large graph (for example, focusing in only
on the neighborhoods surrounding “persons of interest” in
a social network, or only the subgraphs induced by a set of
“hashtags” depicting current events in the Twitter network).
Naively loading each partition of the graph onto a separate
machine may lead to unnecessary network communication,
especially since the number of messages exchanged increases
nonlinearly with the number of machines.

Existing subgraph-centric approaches While researchers
have proposed a few subgraph-centric frameworks such as
Giraph++ [46] and GoFFish [44], there are significant limita-
tions associated with both. These approaches primarily target
the message passing overheads and scalability issues in the
vertex-centric, BSP model of computation. Giraph++ parti-
tions the graph onto multiple machines and runs a sequential
algorithm on the entire subgraph in a partition in each super-
step. GoFFish is very similar and partitions the graph using
metis (another scalability issue) and runs a connected com-
ponents algorithm in each partition. An important distinction
is that in both cases, the subgraphs are determined by the sys-
tem, in contrast to our framework, which explicitly allows
users to specify the subgraphs of interest. Furthermore, these
previous frameworks use serial execution within a partition
and the onus of parallelization is left to the user. It would be
extremely difficult for the end user to incorporate tools and
libraries to parallelize these sequential algorithms to exploit
powerful multicore architectures available today.

Other graph processing frameworks There are several other
graph programming frameworks that have been recently

Table 1 Message passing and memory overheads of an vertex-centric approach, for constructing neighborhoods of different sizes at each vertex
for executing an egocentric analysis task (the input Orkut graph has 3 M nodes and 234 M edges)

Neighborhood size 1-Hop 2-Hop

Messages required to construct neighborhoods 231 M ≈18 B

Avg. memory required per neighborhood 83 KB 6 MB

Total cluster memory required 233 GB ≈18 TB

123

128 A. Quamar et al.

proposed. SociaLite [40] describes an extension of a Datalog-
based query language to express graph computations such as
PageRank, connected components, and shortest path. The
system uses an underlying relational database with tail-
nested tables and enables users to hint at the execution
order. Galois [33], LFGraph [18], are among highly scalable
general-purpose graph processing frameworks that target
systems- or hardware-level optimization issues, but support
only low-level or vertex-centric programming frameworks.
Facebook’s Unicorn system [10] constructs a distributed
inverted index and supports online graph-based searches
using a programming API that allows users to compose
queries using set operations like AND, OR; thus Unicorn
is similar to an online SPARQL query processing system
and can be used to identify nodes or entities that satisfy cer-
tain conditions, but it is not a general-purpose complex graph
analytics system.

X-Stream [38] provides an edge-centric graph processing
model using streamed partitions on a single shared mem-
ory machine. The programming API is based on scatter and
gather functions that are executed on the edges and that
update the states maintained in the vertices. Any multi-hop
traversal in X-Stream would be expensive as it requires mul-
tiple iterations of the scatter, shuffle and gather phases. Since
the stream partitioning used by the framework does not take
the neighborhood structure into account, such operations
would necessitate a large amount of data to be shuffled to
the gather phase across different stream partitions. X-Stream
also fundamentally relies on the vertex state remaining con-
stant in size, and it would negate the key benefits of X-Stream
if variable-sized neighborhoods were constructed in the ver-
tex state. Finally, X-Stream provides a restricted edge-centric
API that would make it hard to encode neighborhood-centric
computations such as those supported by NScale.

GraphX, built on top of Apache Spark, supports a flexi-
ble set of operations on large graphs [13]; however, GraphX
stores the vertex information and edge information as sep-
arate RDDs, which necessitates a joint operation for each
edge traversal. Further, the only way to support subgraph-
centric operations in GraphX is through its emulation of
the vertex-centric programming framework, and our experi-
mental comparisons with GraphX show that it suffers from
the same limitations of the vertex-centric frameworks as dis-
cussed above.

3 Application scenarios

This section discusses several representative graph analyt-
ics tasks that are ill-suited for vertex-centric frameworks, but
fit well with NScale’s subgraph-centric computation model.

Local clustering coefficient (LCC) In a social network, the
LCC quantifies, for a user, the fraction of his or her friends

High school
friends

Family
members

Colleagues

Friends

College
friendsFriends in

database lab
in CS dept

Friends in
CS dept

Work place friends

Fig. 1 An example of neighborhood-centric analysis: identify users’
social circles in a social network

who are also friends—this is an important starting point for
many graph analytics tasks. Computing the LCC for a ver-
tex requires constructing its ego network, which includes
the vertex, its 1-hop neighbors, and all the edges between the
neighbors. Even for this simple task, the limitations of vertex-
centric approaches are apparent, since they require multiple
iterations to collect the ego network before performing the
LCC computation (such approaches quickly run out of mem-
ory as we increase the number of vertices we are interested
in).

Identifying social circles Given a user’s social network (k-
hop neighborhood), the goal is to identify the social circles
(subsets of the user’s friends), which provide the basis for
information dissemination and other tasks. Current social
networks either do this manually, which is time-consuming,
or group friends based on common attributes, which fails
to capture the individual aspects of the user’s communities.
Figure 1 shows examples of different social circles in the ego
networks of a subset of the vertices (i.e., shaded vertices).
Automatic identification of social circles can be formulated
as a clustering problem in the user’s k-hop neighborhood,
for example, based on a set of densely connected alters [28].
Once again, vertex-centric approaches are not amenable to
algorithms that consider subgraphs as primitives, both from
the point of view of performance and ease of programming.

Counting network motifs Network motifs are subgraphs that
appear in complex networks (Fig. 2), which have impor-
tant applications in biological networks and other domains.
However, counting network motifs over large graphs is quite
challenging [21] as it involves identifying and counting sub-
graph patterns in the neighborhood of every query vertex
that the user is interested in. Once again, in a vertex-centric
framework, this would entail message passing to gather
neighborhood data at each vertex, incurring huge messag-
ing and memory overheads.

Social recommendations Random walks with restarts (such
as personalized PageRank [3]) lie at the core of several social
recommendation algorithms. These algorithms can be imple-

123

NScale: neighborhood-centric large-scale graph analytics in the cloud 129

V2

V1

V3

V2

V1

V3

V1

V2 V3

V4

(a) (b) (c)

Fig. 2 Counting different types of network motifs: a Feed-fwd loop,
b feedback loop, c bi-parallel motif

mented using Monte Carlo methods [16] where the random
walk starts at a vertex v and repeatedly chooses a random out-
going edge and updates a visit counter with the restriction that
the walk jumps back only to v with a certain probability. The
stationary distribution of such a walk assigns a PageRank
score to each vertex in the neighborhood of v; these provide
the basis for link prediction and recommendation algorithms.
Implementing random walks in a vertex-centric framework
would involve one iteration with message passing for each
step of the random walk. In contrast toNScale, the complete
state of the k-hop neighborhood around a vertex is available
to the user’s program, which can then directly execute per-
sonalized PageRank or any existing algorithm of choice.

Subgraph pattern matching and isomorphism Subgraph
pattern matching or subgraph isomorphism has important
applications in a variety of application domains including
biological networks, chemical interaction networks, social
networks, and many others, and a wide variety of techniques
have been developed for exact or approximate subgraph
pattern matching [7,9,17,31,42,43,47,48,50–52] (see Lee
et al. [24] for a recent comparison of the state-of-the-art
techniques). Many of those techniques work by identifying
potential matches for a central node in the pattern and then
exploring the neighborhood around those nodes to look for
matches. This second step can often involve fairly sophisti-
cated algorithms, especially if the patterns are large or contain
sophisticated constructs, or if the goal is to find approximate
matches, or if the data are uncertain. Most of those algo-
rithms are not easily parallelizable, and hence, it would not
be easy to execute them in a distributed fashion using the
vertex-centric programming frameworks. On the other hand,
NScale could be used to construct the relevant neighbor-
hoods in memory in many of those cases, and those search
algorithms could be used as is on those neighborhoods.

4 NScale overview

4.1 Programming model

We assume a standard definition of a graph G(V, E) where
V = {v1, v2, . . . , vn} denotes the set of vertices and E =
{e1, e2, . . . , em} denotes the set of edges in G. Let A =

{a1, a2, . . . , ak} denote the union of the sets of attributes
associated with the vertices and edges in G. In contrast to
vertex-centric programming models,NScale allows users to
specify subgraphs or neighborhoods as the scope of compu-
tation. More specifically, users need to specify: (a) subgraphs
of interest on which to run the computations through a sub-
graph extraction query and (b) a user program.

Specifying subgraphs of interest We envision that NScale
will support a wide range of subgraph extraction queries,
including pre-defined parameterized queries and declara-
tively specified queries using a Datalog-based language that
we are currently developing. Currently, we support extrac-
tion queries that are specified in terms of four parameters: (1)
a predicate on vertex attributes that identifies a set of query
vertices (PQV), (2) k—the radius of the subgraphs of interest,
(3) edge and vertex predicates to select a subset of vertices
and edges from those k-hop neighborhoods (PE , PV), and
(4) a list of edge and vertex attributes that are of interest
(AE , AV). This captures a large number of subgraph-centric
graph analysis tasks, including all of the tasks discussed ear-
lier. For a given subgraph extraction query q, we denote the
subgraphs of interest by SG1(V1, E1), . . . , SGq(Vq , Eq).

Figure 3 shows an example subgraph extraction query,
where the query vertices are selected to be vertices with
age > 18, radius is set to 1, and the user is interested
in extracting induced subgraphs containing vertices with
age > 25 and edges with weight > 5. The four extracted
subgraphs, SG1, . . . , SG4 are also shown.

Specifying subgraph computation user program The user
computation to be run against the subgraphs is specified as a
Java program against the BluePrints API [4], a collection of
interfaces analogous to JDBC but for graph data. Blueprints is
a generic graph Java API used by many graph processing and
programming frameworks (e.g., Gremlin, a graph traversal
language [15]; Furnace, a graph algorithms package [12]). By
supporting the Blueprints API, we immediately enable use
of many of these already existing toolkits over large graphs.
Figure 4 shows a sample code snippet of how a user can
write a simple local clustering coefficient computation using
the BluePrints API. The subgraphs of interest here are the
1-hop neighborhoods of all vertices (by definition, a 1-hop
neighborhood includes the edges between the neighbors of
the node).

NScale supports the Bulk Synchronous Protocol (BSP)
for iterative execution, where the analysis task is executed
using a number of iterations (also called supersteps). In
each iteration, the user program is independently executed
in parallel on all the subgraphs (in a distributed fashion).
The user program may then change the state of the query
vertex on which it is operating (for consistent and determin-
istic semantics, we only allow the user program to change

123

130 A. Quamar et al.

1

5

2

9 10

3

7

4

11 12

6 8

6.24.5

7.39.5

2.2

5.4

7.2

11.9

12.3

12.6

2.1

1.3

10.6

6.4
Age: 18 Age: 32 Age: 22 Age: 36

Age: 19

Age: 22Age: 31

Age: 43Age: 33Age: 22

Age: 32 Age: 21

6.7

5.4

Subgraph Extraction Query: {Node.Sex = Male; Node.age > 18}, 1, {{Node.age > 25}, {Edge.weight > 5}}, all

5

2

10

2

10

7

11

6

4

8

7

11

6

SG-1 SG-2

SG-3 SG-4

Fig. 3 A subgraph extraction query on a social network

state of the query vertex that it owns; otherwise we would
need a mechanism to arbitrate conflicting changes to a vertex
state and we are not aware of any clean and easy model for
achieving that). The state changes are made visible across
all the subgraphs during the synchronization barrier, through
use of shared state for subgraphs on the same partition and
through message passing for subgraphs on different parti-
tions. We provide a more detailed description of the provision
of support for iterative computation inNScale, including the
consistency and ownership model used, in Sect. 6.3.

Certain user applications might require customized aggre-
gation of the values produced as a result of executing the
user-specified program on the subgraphs of interest. Our
mechanism to handle state updates for iterative tasks can also
be used for aggregating information across all the nodes in
the graph in the synchronization step. To briefly summarize,
the nodes can send messages to the coordinator that it can use
to make various decisions (e.g., when to stop). The messages
can be first locally aggregated, and the final aggregation is
done by the coordinator (depending on the aggregation func-
tion).

4.2 System architecture

Figure 5 shows the overall system architecture of NScale,
which is implemented as a Hadoop YARN application. The
framework supports ingestion of the underlying graph in a
variety of different formats including edge lists and adjacency
lists and in a variety of different types of persistent storage
engines including key–value pairs, specialized indexes stored
in flat files, and relational databases. The two major compo-
nents of NScale are the graph extraction and packing (GEP)
module and the distributed execution engine. We briefly dis-
cuss the key functionalities of these two components here
and present details in the following sections.

Graph extraction and packing (GEP) module The user spec-
ifies the subgraphs of interest and the graph computation to
be executed on them using the NScale user API. Unlike

Fig. 4 Example user program to compute local clustering coefficient
written using the BluePrints API. The edgeExists() call requires access
to neighbors’ states, and thus, this program cannot be executed as is in
a vertex-centric framework

prior graph processing frameworks, the GEP module forms
a major component of the overall NScale framework. From
a usability perspective, it is important to provide the abil-
ity to read the underlying graph from the persistent storage
engines that are not naturally graph-oriented. However, more
importantly, partitioning and replication of the graph data are
more critical for graph analytics than for analytics on, say,
relational or text data.

Graph analytics tasks, by their very nature, tend to traverse
graphs in an arbitrary and unpredictable manner. If the graph
is partitioned across a set of machines, then many of these
traversals are made over the network, incurring significant
performance penalties. Further, as the number of partitions
of a graph grows, the number of cut edges (with endpoints
in different partitions), and hence the number of distributed
traversals, grows in a nonlinear fashion. This is in contrast
to relational or text analytics where the number of machines
used has a minor impact on the execution cost.

This is especially an issue in NScale, where user pro-
grams are treated as black boxes. Hence, we have made
a design decision to avoid distributed traversals altogether
by replicating vertices and edges sufficiently so that every
subgraph of interest is fully present in at least one parti-
tion. Similar approach has been taken by some of the prior
work on efficiently executing “fetch neighbors” queries [35]
and SPARQL queries [19] in distributed settings. The GEP

123

NScale: neighborhood-centric large-scale graph analytics in the cloud 131

HDFS

Subgraph Extraction

Cost Based
Optimizer

Set Bin Packing

Map Phase

Reducer 1 Reducer NNode to
Bin

mapping

Underlying Graph Data

Flat
Files

K-V
Stores

 Special
Purpose
Indexes

NScale User API

Graph Extraction and Packing Distributed Execution Engine

Apache YARN

Map Reduce

Output
Materialization

Exec
Engine

Exec
Engine

Fig. 5 NScale architecture. The GEP module is responsible for
extracting and packing subgraphs of interest and then handing off the
partitions to the distributed execution engine

module is used to ensure this property and is responsible
for extracting the subgraphs of interest and packing them
onto a small set of partitions such that every subgraph of
interest is fully contained within at least one partition. GEP
is implemented as multiple MapReduce jobs (described in
detail later). The output is a vertex-to-partition mapping,
which consists of a mapping from the graph vertices to par-
titions to be created. These data are either written to HDFS
or directly fed to the execution engine.

Distributed execution engine The distributed execution
phase inNScale is implemented as a MapReduce job, which
reads the original graph and the mappings generated by GEP,
shuffles graph data onto a set of reducers, each of which
constructs one of the partitions. Inside each reducer, the exe-
cution engine is instantiated along with the user program,
which then receives and processes the graph partition.

The execution engine supports both serial and parallel exe-
cution modes for executing user programs on the extracted
subgraphs. For serial execution, the execution engine uses a
single thread and loops across all the subgraphs in a parti-
tion, whereas for parallel execution, it uses a pool of threads
to execute the user computation in parallel on multiple sub-
graphs in the partition. However, this is not straightforward
because the different subgraphs of interest in a partition are
stored in an overlapping fashion in memory to reduce the
total memory requirements. The execution engine employs
several bitmap-based techniques to ensure correctness in that
scenario.

5 Graph extraction and packing

5.1 Subgraph extraction

Subgraph extraction in the GEP module has been imple-
mented as a set of MapReduce (MR) jobs. The number of

MR stages needed depends on the size of the graph, how the
graph is laid out, size(s) of the machine(s) available to do
the extraction, and the complexity of the subgraph extraction
query itself. The first stage of GEP is always a map stage that
reads in the underlying graph data and identifies the query
vertices. It also applies the filtering predicates (PE , PV) to
remove the vertices and edges that do not pass the predi-
cates. It also computes a size or weight for each vertex that
indicates how much memory is needed to hold the vertex,
its edges, and their attributes in a partition. This allows us
to estimate the memory required by a subgraph as the sum
of the weights of its constituent vertices. (Only the attributes
identified in the extraction query are used to compute these
weights.) The rest of the GEP process only operates upon the
network structure (the vertices and the edges) and the vertex
weights.

Case 1: Filtered graph structure is small enough to fit in
a single machine In that case, the vertices, their weights,
and their edges are sent to a single reducer. That reducer
constructs the subgraphs of interest and represents them as
subsets of vertices, i.e., each subgraph is represented as a
list of vertices along with their weights (no edge information
is retained further); this is sufficient for the subgraph pack-
ing purposes. The subgraph packing algorithm takes as input
these subsets of vertices and the vertex weights and produces
a vertex-to-partition mapping.

Case 2: Filtered graph structure does not fit on a single
machine In that case, the subgraph extraction and packing
both are done in a distributed fashion, with the number of
stages dependent on the radius (k) of subgraphs of interest.

We explain the process assuming k = 2, i.e., assuming
our subgraphs of interest are 2-hop neighborhoods around
a set of query vertices. We also assume an adjacency list
representation of the data1 (i.e., the IDs of the neighbors of
a vertex are stored along with rest of its attributes);

Figure 6 shows the 3-stage distributed architecture of GEP.
We begin with providing a brief sketch of the process. Given
an input graph and a user query, the first two stages essentially
are responsible for gathering for each query vertex and its
2 hop neighborhood along with the weight attributes associ-
ated with each vertex in the 2-hop neighborhood. This is done
iteratively, wherein the first stage constructs the 1-hop neigh-
borhood of the query vertices specified by the query with all
the required information on a set of reducers. Subsequently,
the second stage takes the output of the first stage as input,
constructs the 2-hop neighborhoods of the query vertices

1 For input graphs represented as an edge list with the vertex attributes
available as a separate mapping, we have a minor modification to the
first stage that uses a MapReduce job to join the edge and vertex data
and produce a distributed adjacency list in the required format.

123

132 A. Quamar et al.

Input Graph
on HDFS

Stage 1&2
Construct 2- Hop Neighborhoods

Compute Shingles

Stage 3
Distributed Shingle Based

Bin Packing

Shingle
Based

Subgraph
to Bin

Mapping

Fig. 6 Distributed GEP architecture: Stages 1 and 2 construct the 2-hop
neighborhoods; Stage 3 does the distributed shingle-based bin packing
producing the final subgraph to bin mapping

and computes their shingle values in a distributed fashion,
and outputs them as keys associated with these query-vertex
neighborhoods. The final stage shuffles the neighborhoods
based on these keys to multiple reducers in an attempt to
group together neighborhoods with high overlap on a single
reducer. The reducers in stage 3 run the bin packing in par-
allel which is followed by a post-processing step to produce
the final neighborhood-to-bin mapping.

Next, we provide an in-depth description of the process.
For a node u, let N (u) = u1, . . . , uN (u) denote its neighbors.
The following steps are taken:
MapReduce Stage 1: For each vertex u that passes the filter-
ing predicates (PV), the map stage emits N (u) + 1 records:

〈key, (u, weight(u), is Query Vertex, N (u))〉,

where key = u, u1, . . . , uN (u). Thus, given a vertex u, we
have N (u)′ + 1 records that were emitted with u as the key,
one for its own information, and one for each of its N (u)′
neighbors that satisfies PV (emitted while those neighbors
are processed). In the reduce stage, the reducer responsible
for vertex u now has all the information for its 1-hop neigh-
bors and IDs of all its 2-hop neighbors (obtained from its
neighbors’ neighborhoods), but it does not have the weights
of its 2-hop neighbors or whether they satisfied the filter-
ing predicates PV . For each query vertex u, the reducer
creates a list of the nodes in its 2-hop neighborhood and
outputs that information with key u. For each vertex v and
for each of its 2-hop neighbors w, it also emits a record
〈key = w, (v, weight(v))〉.
MapReduce Stage 2: The second MapReduce stage groups
the outputs of the first MapReduce stage by the vertex ID.
Each reducer processes a subset of the vertices. There are
two types of records that a reducer might process for a vertex
u: (a) a record containing a list of u’s 1- and 2-hop neigh-
bors and the weights of its 1-hop neighbors and (b) several
records each containing the weight of a 2-hop neighbor of u.
If a reducer only sees the records of the second type, then u

is not a query vertex, and those records are discarded. Oth-
erwise, the reducer adds the weight information for 2-hop
neighbors and completes the subgraph corresponding to u.
For each of the subgraphs, the reducer then computes a min-
hash signature, i.e., a set of shingles, over the vertex set of
the subgraph and emits a record with the set of shingles as
the key and the subgraph as the value (we use four shingles in
our experiments). A shingle is computed by applying a hash
function to each of the vertex IDs in the subgraph and taking
the minimum of the hash values; it is well known that if two
sets share a large fraction of the shingles, then they are likely
to have a high overlap [36].
MapReduce Stage 3: The third MapReduce phase uses the
shingle value of the subgraphs to shuffle the subgraphs to
appropriate reducers. As a result of this shuffling, the sub-
graphs that are assigned to a reducer are likely to have high
overlap and the subgraph packing algorithm is executed on
each reducer separately. Finally, a post-processing step com-
bines the results of all the reducers by merging any partitions
that might be underutilized in the solutions produced by the
individual reducers.

Intuitively, the above sequence of MapReduce stages con-
structs the required subgraphs and then does a shuffle using
the shingles technique in an attempt to create groups that con-
tain overlapping subgraphs. Those groups are then processed
independently, and the resulting vertex-to-partition map-
pings are concatenated together.

5.2 Subgraph packing

Problem definition We now formally define the problem of
packing the extracted subgraphs into a minimum number of
partitions (or bins),2 such that each subgraph is contained
within a partition and the computation load across the par-
titions is balanced. Let SG = {SG1, SG2, . . . , SGq} be the
set of subgraphs extracted from the underlying graph data (at
a reducer). As discussed earlier, we assume that the memory
required to hold a subgraph SGi can be estimated as the sum
of weights of the nodes in it. Let BC denote the bin capacity.
This is set based on the maximum container capability of a
YARN cluster node, a configuration parameter that needs to
be set for the YARN cluster keeping in mind the maximum
allocation of resources to individual tasks on the cluster.

Without considering overlaps between subgraphs and the
load balancing objective, this problem reduces to the stan-
dard bin packing problem, where the goal is to minimize the
number of bins required to pack a given set of objects. The
variation of the problem where the objects are sets, and when
packing multiple such objects into a bin, a set union is taken
(i.e., overlaps are exploited), has been called set bin packing;

2 We use the terms partitions and bins interchangeably in this paper.

123

NScale: neighborhood-centric large-scale graph analytics in the cloud 133

that problem is considered much harder and we have found
very little prior work on that problem [20].

Further, we note that we have a dual-objective optimiza-
tion problem; we reduce it to a single-objective optimization
problem by putting a constraint on the number of subgraphs
that can be assigned to a bin. Let MAX denote the constraint,
i.e., the maximum number of subgraphs that can be assigned
to a bin.

Subgraph bin packing algorithms The subgraph bin packing
problem is NP-Hard and appears to be much harder to solve
than the standard bin packing problem, as it also exhibits
some of the features of the set cover and the graph partition-
ing problems. Next, we develop several scalable heuristics
to solve this problem. We also developed and implemented
an optimal algorithm for this problem (OPT), where we con-
struct an Integer Program for the given problem instance and
use the Gurobi Optimizer to solve the Integer Program. We
were, however, able to run OPT successfully only for a very
few small graphs; we present those results in Sect. 8.2.

5.2.1 Bin packing-based algorithms

The first set of heuristics that we develop exploit the similar-
ity between subgraph packing problem and the bin packing
problem. All of these heuristics use the standard greedy bin
packing algorithm, where the items are considered in a par-
ticular order and placed in the first bin where they fit. More
specifically, the algorithm (Algorithm 1) takes as input an
ordered list of subgraphs, as determined by the heuristic,
processes them in order, and packs each subgraph into the
first available bin that has the available residual capacity,
without violating the constraint on the maximum number of
subgraphs in a bin. The addition of a subgraph to a bin is
a set union operation that takes care of the overlap between
the subgraphs. Each bin represents a partition onto which
the actual graph data, associated with the nodes mapped to
the bin using this algorithm, would be distributed for final
execution step.

The complexity of this algorithm in the worst case in terms
of the number of comparison operations required is O(nm)

where n is the number of subgraphs and m is the number of
bins required (=n in the worst case). Each comparison opera-
tion compares the estimated size of the union (accounting for
the overlap) and the bin capacity. In addition to these compar-
isons, there would be n set union operations for inserting the
subgraphs into bins. The complexity of the comparison and
the set union operations is implementation dependent. For a
hashtable-based approach, those operations would be linear
in the number of set elements, giving us an overall complex-
ity of O(nmC), where C is the bin capacity. However this
worst-case complexity is quite pessimistic, and in practice,
the algorithms run very fast.

We now describe three different heuristics to provide the
input ordering of the subgraphs to be packed into bins.

Algorithm 1: Bin Packing Algorithm.
Input : Ordered list of subgraphs SG1, ..., SGq , each

represented as a list of vertices and edges
Input : Bin capacity BC ; Maximum number of subgraphs per

bin MAX
Output: Partitions
for i = 1, 2, ..., q do

for j = 1, 2, ..., B do
if number of subgraphs in Bin j < MAX then

if SGi fits in Bin j (accounting for overlap) then
Add SGi to Bin j ;
break;

end
end

end
if SGi not yet placed in a bin then

Create a new bin and add SGi to it;
end

end

1. First Fit bin packing algorithm The First Fit algorithm
is a standard greedy 2-approximation algorithm for bin
packing and processes the subgraphs in the order in which
they were received (i.e., in arbitrary order).

2. First Fit Decreasing bin packing algorithm The First Fit
Decreasing algorithm is a variant of the First Fit algorithm
wherein the subgraphs are considered in the decreasing
order of their sizes.

3. Shingle-basedbin packingalgorithmThe key idea behind
this heuristic is to order the subgraphs with respect to the
similarity of their vertex sets. The ordering so produced
will maximize the probability that subgraphs with high
overlap are processed together, potentially resulting in a
better overall packing.

The shingle-based ordering is based on the min-hashing
technique [36] which produces signatures for large sets that
can be used to estimate the similarity of the sets. For comput-
ing the min-hash signatures (or shingles) of the subgraphs of
interest over their vertex set, we choose a set of k different
random hash functions to simulate the effect of choosing k
random permutations of the characteristic matrix that rep-
resents the subgraphs. For each query vertex and each hash
function, we apply the hash function to the set of nodes in the
subgraph of the query vertex and find the minimum among
the hash values.

Thus the output of the shingle computation algorithm (Ref
Algorithm 2) is a list of k shingles (min-hash values) for each
subgraph of interest, where the order of the hash functions
within the list is effectively arbitrary.3 To compute the shingle

3 The higher the value of k, the better the quality of the result. We have
chosen k = 6 for our implementation which was determined experi-
mentally to strike a fine balance between the quality of shingle-based
similarity and computation time.

123

134 A. Quamar et al.

Algorithm 2: Computing shingles for a subgraph
Input : Subgraph SG(V, E); A family of pairwise-independent

hash functions H
shingles[SGi] ← {};
for h ∈ H do

shingles[SG] ← {shingles[SG],minv∈V h(v)};
end
return shingles;

ordering, we sort-order the subgraphs of interest based on
this list of shingle values associated with the subgraphs in a
lexicographical fashion. The sorted order so obtained using
this technique places subgraphs with high Jaccard similarity
(i.e., overlap) in close proximity to each other. This shingle-
based order is then used to pack the neighborhoods into bins
using the greedy algorithm.
Handling skew A high variance in the sizes of subgraphs
could lead to a bin packing where some partitions have only
a few large subgraphs and few partitions have a very large
number of small subgraphs. This might lead to load imbal-
ance and skewed execution times across partitions. To handle
this skew in the sizes of the subgraphs, the bin packing algo-
rithm (Algorithm 1) accepts a constraint on the maximum
number of subgraphs (MAX) in a bin in addition to the bin
capacity. This limits the number of small subgraphs that can
be binned together in a partition and mitigates the potential
of load imbalance between partitions to some degree. The
trade-off here is that we may need to use a higher number
of bins to satisfy the constraints, while some of the bins are
not fully utilized. The MAX parameter can be set empiri-
cally depending on the nature of user computation and the
underlying graph keeping in view the above mentioned trade-
off.

5.2.2 Graph partitioning-based algorithms

The subgraph packing problem has some similarities to the
graph partitioning problem, with the key difference being
that: Standard graph partitioning problem asks for disjoint
balanced partitions, whereas the partitions that we need to
create typically have overlap in order to satisfy the require-
ment that each subgraph be completely contained within at
least one partition. Graph partitioning is very well-studied,
and a number of packages are available that can partition large
graphs efficiently, METIS perhaps being the most widely
used [29].

Despite the similarities, graph partitioning algorithms turn
out to be a bad fit for the subgraph packing problem, because
it is not easy to enforce the constraint that each subgraph of
interest be completely contained in a partition. One option
is to start with a disjoint partitioning returned by a graph
partitioning algorithm and then “grow” each of the partitions
to ensure that constraint. However, we also need to ensure

Algorithm 3: Graph Partitioning-based algorithm.
Input : Graph G(V, E); Num of over partitions k
Output: Bins B
//Over partition G into k partitions.;
P ← Metis(G); where |P| = k;
for p ∈ P do

for qv ∈ p do
if ! (k − hop neighborhood) ∈ p then

Grow: Replicate the required nodes adding them to p;
end

end
end
//Compute Shingles for each grown partition;
for i = 1 to |P| do

si = ComputeShingles(pi);
end
//Sort the partitions based on shingle values (si) ;
Sort(P);
B = BinPackingAlgo(P);
return B;

that the enlarged partitions obey the bin capacity constraint,
which is hard to achieve since different partitions may get
enlarged by different amounts.

We instead take the following approach (Algorithm 3).
We overpartition the graph using a standard graph parti-
tioning algorithm (we use METIS in our implementation)
into a large number of fine-grained partitions. We then grow
each of those partitions as needed. This requires that for
each query vertex in the fine-grained partition, we check
its k-hop neighborhood lies within the partition. If not, we
replicate the required nodes in the partition. This ensures
that each subgraph of interest is fully contained in one of
the partitions and finally uses the shingle-based bin packing
heuristic to pack those partitions into bins. While pack-
ing, we also keep track of the nodes that are owned by the
bin (or partition) and the ones that are replicated (ghosts)
from other bins, to maintain the invariant of keeping each
subgraph of interest fully in the memory of one of the parti-
tions.

5.2.3 Clustering-based algorithms

The subgraph packing problem also has similarities to clus-
tering, since our goal can be seen as identifying similar
(i.e., overlapping) subgraphs and grouping them together into
bins. We developed two heuristics based on the two com-
monly used clustering techniques.

Agglomerative clustering-based algorithm Agglomerative
clustering refers to a class of bottom-up algorithms that start
with each item being in its own cluster and recursively merge
the closest clusters till the requisite number of clusters is
reached. For handling large volumes of data, a threshold-
based approach is typically used where in each step, pairs of

123

NScale: neighborhood-centric large-scale graph analytics in the cloud 135

Algorithm 4: Agglomerative Clustering-based algo-
rithm.
Input : Set of subgraphs SG = {SG1, ..., SGq }
Input : Merge size l (Number of pairs to be considered for

merging.)
Output: Agglomerative Clusters (Bins) AC
//Compute Shingles of each subgraph;
for i = 1 to q do

si = ComputeShingles(SGi);
end
/*Sort the subgraphs based on their shingle values
(S = {s1, s2, ..sq })*/;
Sort(SG) ;
Done=false;
//Create an empty set of agglomerative clusters;
AC ← φ;
while !Done do

τ = setThreshold();
numMerges = createAggCluster(SG,AC, τ, I);
if numMerges = 0 then

Done=True;
break;

end
//adjust the merge size if required;
I = adjustMergeSize();
//Re-Compute Shingles of each merged cluster;
m = |AC|;
for i = 1 to m do

si = ComputeShingles(ACi);
end
//Sort clusters based on their shingle values (si). Sort(AC) ;
SG = AC;

end
return AC;

clusters that are sufficiently close to each other are merged,
and the threshold is slowly increased. Next we sketch our
adaptation of this technique to subgraph packing.

We start with computing a set of shingles for each sub-
graph and ordering the subgraphs in the shingle order. This
is done in order to reduce the number of pairs of clusters that
we consider for merging; in other words, we only consider
those pairs for merging that are sufficiently close to each other
in the shingle order. The function createAggClusters() in
Algorithm 4 does the actual scanning of sets and merges close
by sets together. The algorithm uses two parameters, both of
which are adapted during the execution: (1) τ , a threshold
that controls when we merge clusters and (2) l that controls
how many pairs of clusters we consider for merging. In other
words, we only merge a pair of clusters if they are less than l
apart in the shingle order, and the Jaccard distance between
them is less than τ . The set of merged clusters are available
as AC .

To reduce the number of parameters, we use a sampling-
based approach in the function setT hreshold() in Algo-
rithm 4, to set τ at the beginning of each iteration. We choose
a random sample of the eligible pairs (we use 1 % sample),
compute the Jaccard distance for each pair, and set τ such that

10 % of those pairs of clusters would have distances below τ .
We experimented with different percentage thresholds, and
we observed that 10 % gave us the best mix of quality and
running time.

After computing τ , we make a linear scan over the clus-
ters that have been constructed so far. For each cluster, we
compute its actual Jaccard distance with the l clusters that
follow it. If the smallest of those distances is less than τ , then
we merge the two clusters and re-compute shingles for the
merged cluster (this is done by simply picking the minimum
of the two values for each shingle position). This is only
done if the merged cluster does not exceed the bin capacity
(pairs of clusters whose union exceeds bin capacity are also
excluded from the computation of τ).

During computation of τ , we also keep track of the number
of pairs excluded because the size of their union is larger than
the bin capacity. If those pairs form more 50 % of sampled
pairs, then we increase l (ad justMergeSize()) to increase
the pool of eligible pairs. Since this usually happens toward
the end when the number of clusters is small, we do this
aggressively by increasing l by 50 % each time. The algo-
rithm halts when it cannot merge any pair of clusters without
violating the bin capacity constraint.

K-Means-based algorithm K-Means is perhaps the most
commonly used algorithm for clustering and is known for
its scalability and for constructing good quality clusters.
Our adaptation of K-means (Ref. Algorithm 5) is sketched
next.

We start by picking k of the subgraphs randomly as cen-
troids. We then make a linear scan over the subgraphs, and
for each subgraph, we compute the distance to each centroid
using the function computeDistance(). We assign the sub-
graph to the centroid with which it has the highest intersection
(in other words, we assign it to the centroid whose size needs
to increase the least to include the subgraph). This is only
done if the total size of the vertices in the cluster does not
exceed BC . After assigning the subgraph to the centroid, we
recompute the centroid (UpdateCentroid()) as the union of
the old centroid and the subgraph. The function also keeps
track of multiplicities of the vertices in the centroid at all
times (i.e., for each vertex in a centroid, we keep track of
how many of the assigned subgraphs contain it).

As with K-Means, we make repeated passes over the list
of subgraphs in order to improve the clustering. In the sub-
sequent iterations, for each subgraph, we check if it may
improve the solution using the function ComputeGain(). If
the swap gain is positive, i.e., there is a net decrease in the
sum of the size of the centroids involved in the swap, we
reassign the subgraph to a different centroid, using the mul-
tiplicities to remove it from one centroid and assign it to the
other centroid (Swap()). Finally, the k-clusters obtained are
packed into bins (or partitions).

123

136 A. Quamar et al.

Algorithm 5: KMeans Clustering-based algorithm.
Input : Set of subgraphs SG = {SG1, ..., SGq }; Bin Capacity

BC
Input : k: The number of K-Means Clusters; MAX: maximum

iterations
Output: Bins B
//Create an empty centroid set KC ← φ;
//Randomly pick k subgraphs and assign them as the k-centroids;
while (Sizeof(KC) < k) do

//Generate a random number from 1 to k
i=GenerateRandom(k);
KC = KC ⋃

SGi
end
//Scan over the set of subgraphs and assign them to nearest
centroid;
AssignmentMap ← φ;
for i = 1 to q do

if !(SGi ∈ KC) then
Max = −∞;
CentroidAssigned =0;
for j=1 to k do

dist = computeDistance(SGi , KC j , BC);
if (Max < dist) then

Max = dist;
CentroidAssigned = j;

end
end
UpdateCentroid(SGi , KCCentroid Assigned);
AssignmentMap.Put(i,CentroidAssigned);

end
end
//Update assignments iteratively to improve clustering;
numIterations=0;
while numI terations < MAX do

for i = to q do
CurrentAssignment = AssignmentMap.Get(i);
for j = 1 to k do

SwapGain = ComputeGain(i, CurrentAssignment, j);
if (SwapGain > 0) then

Swap(i, CurrentAssignment, j);
end

end
end
numIterations++;

end
B = BinPackingAlgo(KC);
return B;

Algorithm 6: ComputeDistance()
Input : Subgraph SG; Centroid C ; Bin Capacity BC
Output: Distance between SG and C
if |SG ∪ C | > BC then

return -∞
else

return |SG ∩ C |
end

Having to choose a value of k a priori is one of the key
disadvantages of K-Means. We estimate a value of k based
on the subgraph sizes and the bin capacity. If at the end of
first iteration, we discover that we are left with too many

unassigned subgraphs, we increase the value of k and repeat
the process till we are able to find a good clustering.

5.3 Handling very large subgraphs

Most machines today, even commodity machines, have large
amounts of RAM available and can easily handle very large
subgraphs, including 2-hop neighborhoods of high-degree
nodes in large-scale networks. However, in the rare case of
a subgraph extraction query where one of the subgraphs
extracted is too large to fit into the memory of a single
machine, we have two options. The first option is to use disk-
resident processing, by storing the subgraph on the disk and
loading it into memory as needed. The user program may
need to be modified so that it does not thrash in such a sce-
nario. We note here that our flexible programming model
makes it difficult to process the subgraph in a distributed
fashion (i.e., by partitioning the subgraph across a set of
distributed machines); if this scenario is common, we may
wish to enforce a vertex-centric programming model within
NScale and that is something we plan to consider in future
work.

The other option, which we currently support in NScale
and is arguably better suited for handling large subgraphs,
is to use sampling to reduce the size of the subgraph. We
currently assume that the subgraph skeleton (i.e., the net-
work structure of a subgraph) can be held in the memory
of a single machine during GEP; this is needed to support
many of the effective random sampling techniques like for-
est fire or random walks (independent random sampling can
be used without making this assumption) [25,34]. The key
idea here is to construct a random sample of a subgraph
during GEP, if the size of the subgraph is estimated to be
larger than the bin capacity. We provide built-in support for
two random sampling techniques: randomnode selection and
randomwalk-based sampling. The former technique chooses
an independent random sample of the nodes to be part of
the subgraph, whereas the latter technique does random
walks starting with the query vertex and including all visited
nodes in the sample (till a desired sample size is reached).
NScale also provides a flexible API for users to implement
and provide their own graph sampling/compression tech-
nique. The random sampling is performed at the reduce stage
in GEP where the subgraph skeleton is first constructed.

Figure 7 shows the effect of using our random node and
random walk-based sampling algorithms on the accuracy of
the local clustering coefficient (LCC) computation. We plot
the average LCC computed on samples of different sizes for
two different data sets and compare them to the actual result.
Each data point is an average of 10 runs. We also show the
standard deviation error bars. For the random node-based
sampling techniques, the standard deviation across multi-
ple random runs decreases and the accuracy increases as the

123

NScale: neighborhood-centric large-scale graph analytics in the cloud 137

Fig. 7 Effect of graph sampling

sampling ratio increases (as seen in that figure). This is not
surprising since the estimated LCC through this technique is
an unbiased estimator for the true average LCC (although it
has a very high variance). For the random walk-based sam-
pling, the numbers do not show any consistent trend since
the set of sampled nodes does not have any uniformity guar-
antees, and in fact, the set of sampled nodes would be biased
toward the high-degree nodes (and the effect on the esti-
mated LCC would be arbitrary since the degree of a node is
not directly correlated with the LCC for that node).

6 Distributed execution engine

The NScale distributed execution engine runs inside the
reduce stage of a MapReduce job (Fig. 5). The map stage
takes as input the original graph and the vertex-to-partition
mappings that are computed by the GEP module, and it repli-
cates and shuffles the graph data so that each of the reducers
gets the data corresponding to one of the partitions. Each
reducer constructs the graph in memory from the data that it
receives, and identifies the subgraphs owned by it (the vertex-
to-partition mappings contain this information as well). It
then uses a worker thread pool to execute the user computa-
tion on those subgraphs. The output of the graph computation
is written to HDFS.

Fig. 8 Bitmap-based parallel execution

6.1 Execution modes

The execution engine provides several different execution
modes. The vector bitmap mode associates a bit vector with
each vertex and edge in the partition graph and enables par-
allel execution of user computation on different subgraphs.
The batched bitmapmode is an optimization that uses smaller
bitmaps to reduce memory consumption, at the expense of
increased execution time. The single-bit bitmap mode asso-
ciates a single bit with each vertex and edge, consuming less
memory but allowing for only serial execution of the com-
putation on the subgraphs in a partition.
Vector bitmap mode Here each vertex and edge is associ-
ated with a bitmap, whose size is equal to the number of
subgraphs in the partition. Each vector bit position is associ-
ated with one subgraph and is set to 1 if the vertex or the edge
participates in the subgraph computation. A master process
on each partition schedules a set of worker threads in paral-
lel, one per subgraph. Each worker thread executes the user
computation on its subgraph, using the corresponding bit to
control what data the user computation sees. Specifically,
our BluePrints API implementation interprets the bitmaps
to only return the elements (vertices or edges or attributes)
that the callee should see. The use of bitmaps thus obviates
the need for state duplication and enables efficient parallel
execution of user computation on subgraphs. For consistent
and deterministic execution of the user computation, each
worker thread can only update the state of the query ver-
tex contained in its subgraph. We discuss the details of this
consistency mechanism in greater detail in Sect. 6.3.

Figure 8 shows an example bitmap setting for the sub-
graphs extracted in Fig. 3. In Bin 2, subgraphs 2 and 3 share
nodes 6 and 7 which have both the bits in the vector bitmap
set to 1, indicating that they belong to both the subgraphs.
All other nodes in the bins have only one of their bits set,
indicating appropriate subgraph membership.
Batching bitmap mode As the system scales to a very large
number of subgraphs per reducer, the memory consumed by
the bitmaps can grow rapidly. At the same time, the maximum
parallelism that can be achieved is constrained by the hard-
ware configuration, and it is likely that only a small number of
subgraphs can actually be processed in parallel. The batching

123

138 A. Quamar et al.

(b)

(a)

Fig. 9 Effect of batching on execution time and memory footprints on
two different graph datasets

bitmap mode exploits this by limiting up front the number
of subgraphs that may be processed in parallel. Specifically,
we batch the subgraphs into batches of a fixed size (called
batch size) and process the subgraphs one batch at a time. A
bitmap of length batch size is sufficient now to indicate to
which subgraphs in the batch a vertex or a node contributes.
After a batch is finished, the bitmaps are re-initialized and
the next batch commences.

The key question is how to set the batch size. A small batch
size may impact the parallelism and may lead to an increased
total execution time. A small batch size is also susceptible
to the straggler effect, where the entire batch completion
is held up for one or a few subgraphs (leading to wasted
resources and low utilization). A very large batch size, on the
other hand, can lead to high memory overheads for negligible
reductions in total execution time.

Figure 9a, b shows the results of a set of experiments that
we ran to understand the effect of batch size on total exe-
cution time and the amount of memory consumed. As we
can see, a small batch size indeed leads to underutilization
of the available parallelism and consequently higher execu-
tion times. However, we also observe that beyond a certain
value, increasing the batch size further did not lead to signif-
icant reduction in the execution time. We do a small penalty
for batching that can be attributed to the overhead of re-

initializing bitmaps across batched execution and to minor
straggler effects. However, there is a wide range of parame-
ter values where the execution time penalty is acceptable, and
the total memory consumed by the bitmaps is low. Based on
our evaluation, we set the batch size to be 3000 for most of
our experiments; a lower number should be used if the hard-
ware parallelism is lower (these experiments were done on
a 24-core machine), and a higher number is warranted for
machines with more cores.
Single-bit mode To further reduce the memory overhead
associated with bit vectors, we provide a single-bit execu-
tion mode wherein each node and edge is associated with a
single bit which is set if the node participates in the current
subgraph computation. The subgraphs are processed in a ser-
ial order, one at a time, with the bits re-initialized after each
computation is finished. This mode is supported to cater to
distributed computation on low-end commodity machines,
but it is not expected to scale to large graphs.

6.2 Bitmap implementation

Given the central role played by bitmaps in our execution
engine, we carefully analyzed and compared different bitmap
implementations that are available for use in NScale.

Java BitSet Java provides a standard BitSet class that imple-
ments a vector of bits that grows as needed. The Java BitSet
class internally uses an array of “longs” and provides generic
functionality while maintaining some additional state in
terms of an integer and a boolean. The overhead of this extra
state is ignorable for large bitmap sizes (5000 and above).

LBitSet To reduce the memory overhead of the Java BitSet
class, we implemented the LBitSet class using an array of
“Longs” which actually takes less space than an array of
“longs” if values stored in the array are small. Depending on
the bitmap size, an appropriate size of array is chosen. To
set a bit, the Long array is considered as a contiguous set of
bits and the appropriate bit position is set to 1 using binary
bit operations. To unset a bit, the corresponding bit index
position is set to 0.

CBitSet The CBitSet Java class has been implemented using
hash buckets. Each bit index in the bitmap hashes (maps)
to a unique bucket which contains all the bitmap indexes
that are set to 1. To set a bit, the bit index is added to the
corresponding hash bucket. To unset a bit, the bit index is
removed from the corresponding hash bucket if it is present.
This bitmap construction works on the lines of set asso-
ciation, wherein we can hash onto the set and do a linear
search within it, thereby avoiding allocation of space of all
bits explicitly.

123

NScale: neighborhood-centric large-scale graph analytics in the cloud 139

Table 2 Memory footprints in
bytes for different bitmap
constructions and bitmap sizes
in bits

Bitmap size Java BitSet L BitSet C BitSet (Init) C BitSet (1) C BitSet (2) C BitSet (25 %)

70 54 39 134 138 142 204

144 63 39 134 138 142 278

3252 484 254 134 138 142 3386

5000 632 321 134 138 142 5134

We conducted a micro-benchmark comparing these bitmap
implementations to get an estimate of the memory overhead
for each bitmap, using a memory mapping utility. Table 2
gives an estimate of the memory requirements per node for
each of these bitmaps. Memory footprints for CBitSet shown
in the table include a column for the initial allotment when
the bitmaps are initialized. At run time, when bits are set,
this would increase (by about 4 bytes per bit set). The table
shows the increase in CBitSet memory as 1, 2, and 25 % bits
are set. The number of bits set in each bitmap is indicative of
the overlap among them. As we can see, CBitSet would have
a lesser memory footprint if the overlap is less. In other cases
LBitSet has the least memory footprint. A more detailed per-
formance evaluation of the different bitmap implementations
can be found in Sect. 8.3.

6.3 Support for iterative computation

NScale can naturally handle iterative tasks as well where
information must be exchanged across subgraphs between
iterations. Below we briefly sketch a description of NScale’s
iterative execution model.

Execution model NScale uses the Bulk Synchronous Pro-
tocol (BSP), used by Pregel, Giraph, GraphX, and several
other distributed graph processing systems. The analysis task
is executed in a number of iterations (also called super-
steps) with barrier synchronization steps in between the
iterations. Since subgraphs of interest typically overlap, the
main job of the barrier synchronization step is to ensure
that all the updates made by the user program locally to
the query vertices are propagated to other subgraphs con-
taining those vertices. During barrier synchronization, after
each superstep, the information exchange between subgraphs
co-located on the same physical partition is done through
shared state updates (saving the overhead of message pass-
ing). Information exchange between subgraphs on different
physical partitions is done using message passing which is
amenable to optimizations such as batching of all updates for
a particular partition together, to reduce the overhead.

Consistency model To provide deterministic execution of
iterative computation, the updating of state is closely linked
to the query-vertex ownership in NScale. Each partition in

NScale owns a disjoint set of query vertices and each worker
thread is responsible for one query vertex and its neighbor-
hood. We only allow updating the state of the query vertex
in each subgraph by the worker thread that owns (or is cur-
rently associated with) the query vertex. The state of the
query vertex updated in the current superstep is available
for consumption by other subgraphs in the next superstep.
This BSP-based consistency model thus does away with the
requirement of any explicit locking-based synchronization
and its associated overheads making the system easy to par-
allelize and scalable for large graphs.

We note that this restriction on the consistency model is
equivalent to the restrictions imposed by the other vertex-
centric graph processing frameworks and does not preclude
any iterative execution task that we are aware of.

Implementationdetails The barrier synchronization required
by the BSP execution model can be achieved using any mech-
anism for reliably maintaining centralized state that can be
accessed by different partitions (e.g., one option on YARN
is Zookeeper). Further, the message passing model for infor-
mation exchange between partitions can be built using an
in-memory distributed and fault-tolerant key–value store like
Cassandra [23] or a distributed in-memory key–value cache
such as Redis [37], as we do not envision the messages to
be very large. The number of components (or partitions) of
the distributed key–value store (or cache) can be set equal
to the number of partitions in NScale with one component
co-located with each partition to minimize the network over-
head. Each query vertex would mark its updated state in the
key–value store that is co-located with the partition to which
the query vertex belongs, keyed by the query-vertex ID. In
our current implementation, we use Redis for both barrier
synchronization using a counter and for message passing.
We explain the step-by-step process with an example for
computing global connected components. Note that, for this
application, each vertex in the graph is a query vertex and the
set of its 1-hop neighbors constitutes a subgraph of interest.

Example Figure 10 shows an example execution of the
global connected components algorithm using multiple
supersteps. The figure shows an input graph with vertex IDs
as labels of vertices. The GEP phase in NScale extracts the
subgraphs for each query vertex and instantiates them in two
bins (Bin 1 and 2) in an overlapped fashion. Each partition is

123

140 A. Quamar et al.

1 2

5 4

6 3

Bin 1 Bin 2

1 2

5 4

6

1 2

5 4

3

1 2

5 4

6

1 2

5 4

3Super Step 1

Barrier Synchronization

L:1; L':1

L:6; L':1

L:5;L':4

L:2

L:4

L:1 L:2; L':1

L:3; L':2

L:5

1 2

5 4

6

1 2

5 4

3

L:1

L:1

L:4

L:1

L:1

L:1 L:1

L:2

L:4

Original Graph

K:V
1:1
6:1
5:4

K:V
2:1
3:2
4:1

L:4; L':1

1 2

5 4

6

1 2

5 4

3

L:1; L':1

L:1; L':1

L:4;L':1

L:1

L:3

L:1 L:1; L':1

L:2; L':1

L:4

K:V
1:1
6:1
5:1

K:V
2:1
3:1
4:1

L:1; L':1

Super Step 2

L:1

1 2

5 4

6

1 2

5 4

3

L:1

L:1

L:1

L:1

L:1

L:1 L:1

L:1

L:1 L:1

Barrier
Synchronization

Bin 1 Bin 2

Fig. 10 Iterative execution of global connected components algorithm on an example graph on NScale

associated with a disjoint set of query vertices that it owns.
The colored vertices are the query vertices, and the other ver-
tices are copies created to enforce the 1-hop neighborhood
guarantee. A key–value store shard is also co-located with
each partition. Every vertex has an initial label value L (its
vertex ID).

In superstep 1, each query vertex accesses the labels of
its one-hop neighbors and computes the minimum label and
assigns a new value to its own label; the new label is stored in
a temporary copy denoted L ′. Also each query vertex inserts
an entry in the local shard of the distributed K-V store with
its ID as the key and its new state (L ′) as the value. Superstep
1 is followed by barrier synchronization during which the
updated values in L ′ are copied into L for each query vertex,
and all non-query vertices in the partition are updated with
the values in the distributed key–value store. This is where
the message passing takes place between partitions, which is
handled by the distributed key–value store under the hood.
For improved performance, we use multiple threads to read
and write to the Redis key–value cache. In superstep 2, each
query vertex repeats the same procedure and updates its L ′
values and the key–value store entries. In the subsequent bar-
rier synchronization phase, all the vertices converge to the
same label, hence terminating the iterations.

7 Experimental evaluation

We performed an extensive experimental evaluation of dif-
ferent design facets of NScale and also compared it with
three popular distributed graph programming platforms. We
briefly discuss some additional implementations details of
NScale here and describe the experimental setup.

Implementation details NScale has been written in Java
(version “1.7.0_45”) and deployed on a YARN cluster. The
framework implements and exports the generic BluePrints
API to write graph computations. The GEP module takes the
subgraph extraction query, the bin packing heuristic to be
used, the bin capacity, and an optional parameter for graph
compression/sampling (if required). The YARN platform
distributes the user computation and the execution engine
library using the distributed cache mechanism to the appro-
priate machines on the cluster. The execution engine has been
parametrized to vary its execution modes and use different
batch sizes and bitmap construction techniques. Although
NScale has been designed for the cloud, its deployability
and design features are not tied to any cloud-specific fea-
tures; it could be deployed on any cluster of machines or a
private cloud that supports YARN or Hadoop as the under-
lying data computation framework.
Data sets We conducted experiments using several different
datasets, majority of which have been taken from the Stanford
SNAP dataset repository [45] (see Table 3 for details and
some statistics).

• Web graphs We have used three different web graph
datasets: NotreDame Web Graph, Google Web Graph,
and ClueWeb09 Dataset; in all of these, the nodes repre-
sent web pages and directed edges represent hyperlinks
between them.

• Communication/interaction networks We use: (1) EU
Email Communication Network, generated using email
data from a European research institution for a period
from October 2003 to May 2005 and (2) The Wikipedia
Talk network, created from the talk pages of registered
users on Wikipedia until Jan 2008.

123

NScale: neighborhood-centric large-scale graph analytics in the cloud 141

Table 3 Dataset statistics

Dataset # Nodes # Edges Avg degree Avg clust. coeff. # Triangles Diameter

EU Email Comn Network 265,214 840,090 3.16 0.0671 267,313 14

NotreDame Web Graph 325,729 2,994,268 9.19 0.2346 8,910,005 46

Google Web Graph 875,713 10,210,078 11.66 0.5143 13,391,903 21

Wikipedia Talk Network 2,394,385 10,042,820 4.2 0.0526 9,203,519 9

LiveJournal Social Network 4,847,571 137,987,546 28.5 0.2741 285,730,264 16

Orkut Social Network 3,072,441 234,370,166 76.3 0.1666 627,584,181 9

ClueWeb Graph 428,136,613 1,448,223,018 3.38 0.2655 4,372,668,765 11

• Social networksWe also use two social network datasets:
theLiveJournal social network andOrkut social network.

• Small-scale synthetic graphs For comparing against the
optimal algorithm, we generated a set of small-scale syn-
thetic graphs (100–1000 nodes, 500–20000 edges) using
the Barabasi-Albert preferential attachment model.

Graph applications We evaluate NScale over 6 differ-
ent applications. Three of them, namely local clustering
coefficient (LCC), motif counting: feed-forward loop (MC),
and link prediction using personalized page rank (PPR), are
described in Sect. 3. In addition, we used:

• Triangle counting (TC): Here the goal is to count the
number of triangles each vertex is part of. These statistics
are very useful for complex network analysis [22] and
real-world applications such as spam detection and link
recommendation.

• Counting weak ties (WT): A weak tie is defined to be a
pattern where the center node is connected to two nodes
that are not connected to each other. The goal with this
task is to find the number of weak ties that each vertex is
part of. Number of weak ties is considered an important
metric in social science [14].

In addition to the above graph applications that involve
single-pass analytics, we also evaluated NScale using a
global iterative graph application, computing the connected
components, as described in Sect. 6.3.
Comparison platforms We compare NScale with three
widely used graph programming frameworks.

• Apache Giraph [2] The open-source version of Pregel,
written in Java, is a vertex-centric graph programming
framework and widely used in many production systems
(e.g., at Facebook). We deploy Apache Giraph (Version
1.0.0) on Apache YARN with Zookeeper for synchro-
nization for the BSP model of computation. Deploying
Apache Giraph on YARN with HDFS as the underly-
ing storage layer enables us to provide a fair comparison
using the same datasets and graph applications.

• GraphLab [26] GraphLab, a distributed graph-parallel
API written in C++, is an open-source vertex-centric pro-
gramming model that supports both synchronous and
asynchronous execution. GraphLab uses the GAS model
of execution wherein each vertex program is decomposed
into gather, apply, and scatter phases; the framework
uses MPI for message passing across machines. We
deployed GraphLab v2.2 which supports OpenMPI 1.3.2
and MPICH2 1.5 on our cluster.

• GraphX [13] GraphX is a graph programming library
that sits on top of Apache Spark. We used the GraphX
library version 2.10 over Spark version 1.3.0 which was
deployed on Apache YARN with HDFS as the underlying
storage layer.

EvaluationmetricsWe use the following evaluation metrics
to evaluate the performance of NScale.

• Computational effort (CE) CE captures the total cost
of doing analytics on a cluster of nodes deployed in the
cloud. Let T = {T1, T2, . . . , TN } be the set of tasks (or
processes) deployed by the framework on the cluster dur-
ing execution of the analytics task. Also, let ti be the time
taken by the task Ti to be executed on node i . We define
CE = ∑N

i=1 ti . The metric captures the cost of doing data
analytics in terms of node-secs which is appropriate for
the cloud environment.

• Execution time This is the measure of the wall clock
time or elapsed time for executing an end-to-end graph
computation on a cluster of machines. It includes the
time taken by the GEP phase for extracting the subgraphs
as well as the time taken by the distributed execution
engine to execute the user computation on all subgraphs
of interest.

• Cluster memory Here we measure the maximum total
physical memory used across all nodes in the cluster.

Experimental setup We use two 16 node clusters wherein
each data node has two 4-core Intel Xeon E5520 processors,
24 GB RAM, and three 2 TB disks. The first cluster runs

123

142 A. Quamar et al.

Apache YARN (MRv2 on Cloudera’s CDH version 5.1.2)
and Apache Zookeeper for coordination. Each process on
this cluster runs in a container with a max memory capac-
ity restricted to 15 GB with a maximum of 6 processes per
physical machine. We run NScale, Giraph, and GraphX
experiments on this cluster. The second cluster supports MPI
for message passing and uses a TORQUE (Terascale Open-
Source Resource and QUEue) Manager. We run GraphLab
in this cluster and restrict the max memory per process on
each machine to 15 GB for a fair comparison.

For all our baseline comparisons and scalability experi-
ments, we have used the shingle-based bin packing heuristic
as the GEP algorithm for packing subgraphs into bins. We
have chosen shingle-based bin packing as it finds good qual-
ity solutions efficiently, while consuming fewer resources
as compared to the other heuristics. Also, for smaller graphs
such as NotreDame web graph and Google web graph, where
the filtered structure can fit onto a single machine, we used
the centralized GEP solution (Ref Case 1, Sect. 5.1). On the
other hand, for larger graphs such as the Clue Web graph, we
use the distributed GEP solution (Ref Case 2 Sect. 5.1).

8 Experimental results

8.1 Baseline comparisons

We begin with comparing NScale with Apache Giraph and
GraphLab for different datasets for the five different applica-
tions. For four of the applications (LCC, MC, TC, WT), the
subgraphs of interest are specified as 1-hop neighborhoods
of a set of query vertices which could be chosen randomly or
specified using query-vertex predicates. On the other hand,
personalized page rank (PPR) is computed on the 2-hop
neighborhood of a set of query vertices. For a fair compar-
ison with all the other baselines, we choose each vertex as
a query vertex for NScale and run the first four applica-
tions (LCC, MC, TC, WT) on their 1-hop neighborhoods in
a single pass. For the personalized page rank application, we
choose different number of source (or query) vertices for dif-
ferent datasets. The personalized page rank is computed with
respect to these source vertices on their 2-hop neighborhoods
in all frameworks.

Table 4 shows the results for the baseline comparisons.
Since all of these applications require access to neighbor-
hoods, Apache Giraph runs them using multiple iterations. In
the first superstep, it gathers neighbor information using mes-
sage passing, and in the second superstep, it does the required
graph computation (for PPR, Giraph needs two supersteps to
gather the 2-hop neighborhoods).

As we can see, for most of the graph analytics tasks,
Giraph does not scale to larger graphs. It runs out of mem-
ory (OOM) a short while into the map phase and does not

complete (DNC) the computation. Hence these baseline com-
parisons have been shown on relatively smaller graphs. The
cluster logs confirmed that the poor scalability of Giraph for
such applications is due to the high message passing over-
head between the vertices, characteristic of vertex-centric
approaches like Giraph, and high memory requirements due
to duplication of state at each vertex.

Compared to Giraph, GraphLab performs a little better.
For smaller graphs such as NotreDame and Google Web,
GraphLab’s performance is comparable to NScale and for
some applications like Local Clustering Coefficient, it is
a little better than NScale in terms of CE . However, in
all cases, GraphLab consumes much more cluster mem-
ory depending on the graph partitioning mechanism and the
replication factor it uses, the latter of which varies with the
number of machines on which the job is executed. Like
Giraph, GraphLab too does not scale to larger graphs for
neighborhood-centric applications.

GraphX does well for 1-hop graph applications such as
LCC and TC on smaller graphs both in terms of memory
and CE (node-secs). However as the graph size increases,
CE grows rapidly and surpasses that of NScale, quite sig-
nificantly. For applications such as MC and WT, GraphX
performs poorly as these applications require explicit edge
information between the 1-hop neighbors of the query ver-
tex which necessitates joins and triplet aggregations across
the vertex and edge RDDs, leading to poor scalability for
larger graphs for such applications. For similar reasons,
the performance of GraphX further deteriorates for 2-hop
neighborhood applications such as PPR and it does not com-
plete for any of the larger graph datasets (Web-Google and
beyond).

Table 5 shows the performance gain of NScale, over
Giraph, GraphLab, and GraphX both in terms of CE and
cluster memory consumption. Even for the smaller graphs,
depending on the type of application and the size of neigh-
borhood, NScale performs 3X–22X better in terms of CE
and consumes a lot less (up to 5X less) total cluster memory
as compared to Giraph.

GraphLab follows a similar trend. As can be seen, for all
the five applications, as the graph size increases, both CE
and required memory increase sharply, and GraphLab fails
to complete, running out of memory, for real-world graphs
such as WikiTalk, Orkut, and LiveJournal. Even for relatively
smaller graphs, the performance difference is significant,
especially for 2-hop applications such as personalized page
rank where GraphLab is up to 13X slower and consumes up
to 8X more memory.

GraphX performs better for smaller graphs for applica-
tions such as LC and TC. However, for relatively larger
graphs, NScale is up to 10X better in terms of CE and con-
sumes up to 2X less memory. For MC and WT applications,
NScale is up to 30X better in terms of CE and consumes up

123

NScale: neighborhood-centric large-scale graph analytics in the cloud 143

Ta
bl
e
4

C
om

pa
ri

ng
N
Sc

a
le

w
ith

G
ir

ap
h,

G
ra

ph
L

ab
an

d
G

ra
ph

X

D
at

as
et

N
Sc

a
le

G
ir

ap
h

G
ra

ph
L

ab
G

ra
ph

X

CE
(N

od
e-

Se
cs

)
C

lu
st

er
M

em
(G

B
)

CE
(N

od
e-

Se
cs

)
C

lu
st

er
M

em
(G

B
)

CE
(N

od
e-

Se
cs

)
C

lu
st

er
M

em
(G

B
)

CE
(N

od
e-

Se
cs

)
C

lu
st

er
M

em
(G

B
)

L
oc
al

cl
us
te
ri
ng

co
ef
fic
ie
nt

E
U

E
m

ai
l

37
7

9.
00

11
50

26
.1

7
36

5
20

.1
22

5
4.

95

N
ot

re
D

am
e

62
0

19
.0

7
15

64
30

.1
4

55
0

21
.4

34
0

9.
75

G
oo

gl
eW

eb
65

8
25

.8
2

20
24

35
.3

5
60

0
33

.5
14

85
21

.9
2

W
ik

iT
al

k
72

6
24

.1
6

D
N

C
O

O
M

11
25

37
.2

2
18

60
32

L
iv

eJ
ou

rn
al

18
00

50
D

N
C

O
O

M
55

00
12

8.
62

45
15

84

O
rk

ut
20

00
62

D
N

C
O

O
M

D
N

C
O

O
M

20
17

5
12

5

M
ot
if
co
un
ti
ng
:
fe
ed
-f
or
w
ar
d
lo
op

E
U

E
m

ai
l

27
9

8.
76

13
71

24
.4

3
28

5
20

.8
41

25
7.

2

N
ot

re
D

am
e

52
4

18
.0

2
19

23
28

.9
8

57
5

21
.6

10
87

5
15

.6

G
oo

gl
eW

eb
81

2
23

.6
4

21
64

37
.2

7
62

5
31

.9
D

N
C

–

W
ik

iT
al

k
99

1
29

.3
4

D
N

C
O

O
M

11
50

36
.8

1
D

N
C

–

L
iv

eJ
ou

rn
al

18
86

51
D

N
C

O
O

M
47

50
13

0.
74

D
N

C
–

O
rk

ut
20

24
63

D
N

C
O

O
M

D
N

C
O

O
M

D
N

C
–

Pe
r-
ve
rt
ex

tr
ia
ng
le
co
un
ti
ng

E
U

E
m

ai
l

26
4

15
.3

6
10

12
26

.1
0

25
0

21
.1

24
0

4.
5

N
ot

re
D

am
e

47
7

17
.6

2
15

18
30

.1
6

42
5

22
.7

27
0

9

G
oo

gl
eW

eb
66

3
25

.8
6

19
78

35
.3

9
55

0
31

.3
12

30
21

W
ik

iT
al

k
71

5
21

.2
9

D
N

C
O

O
M

97
5

32
.2

2
15

90
30

.2

L
iv

eJ
ou

rn
al

17
92

49
.3

4
D

N
C

O
O

M
47

50
12

9.
61

43
35

74

O
rk

ut
19

86
61

.3
2

D
N

C
O

O
M

D
N

C
O

O
M

13
87

5
11

5

Id
en
ti
fy
in
g
w
ea
k
ti
es

E
U

E
m

ai
l

27
8

7.
34

14
72

25
.4

9
28

1
20

.4
42

15
7.

3

N
ot

re
D

am
e

39
0

13
.2

6
20

24
29

.9
9

40
0

20
.6

11
79

5
16

.6

G
oo

gl
eW

eb
55

5
21

.6
0

22
54

39
.2

6
52

5
30

.7
D

N
C

–

W
ik

iT
al

k
59

2
18

.1
8

D
N

C
O

O
M

92
5

31
.7

1
D

N
C

–

L
iv

eJ
ou

rn
al

17
62

48
.3

2
D

N
C

O
O

M
46

25
12

6.
71

D
N

C
–

O
rk

ut
19

72
60

.4
5

D
N

C
O

O
M

D
N

C
O

O
M

D
N

C
–

#S
ou
rc
e
ve
rt
ic
es

N
Sc

a
le

G
ir

ap
h

G
ra

ph
L

ab
G

ra
ph

X

CE
(N

od
e-

Se
cs

)
C

lu
st

er
M

em
(G

B
)

CE
(N

od
e-

Se
cs

)
C

lu
st

er
M

em
(G

B
)

CE
(N

od
e-

Se
cs

)
C

lu
st

er
M

em
(G

B
)

CE
(N

od
e-

Se
cs

)
C

lu
st

er
M

em
(G

B
)

Pe
rs
on
al
iz
ed

pa
ge

ra
nk

on
2-
ho
p
ne
ig
hb
or
ho
od

E
U

E
m

ai
l

32
00

52
3.

35
78

2
17

.1
0

71
0

28
.8

7
99

75
85

.5

N
ot

re
D

am
e

35
00

11
9

9.
56

10
58

31
.7

6
87

0
70

.5
4

50
59

5
95

G
oo

gl
eW

eb
41

50
46

4
21

.5
2

10
48

2
64

.1
6

10
80

10
8.

28
D

N
C

–

W
ik

iT
al

k
12

,0
00

33
43

79
.4

3
D

N
C

O
O

M
D

N
C

O
O

M
D

N
C

–

L
iv

eJ
ou

rn
al

20
,0

00
42

86
84

.9
4

D
N

C
O

O
M

D
N

C
O

O
M

D
N

C
–

O
rk

ut
20

,0
00

46
91

93
.0

7
D

N
C

O
O

M
D

N
C

O
O

M
D

N
C

–

123

144 A. Quamar et al.

Ta
bl
e
5

Pe
rf

or
m

an
ce

(X
)

im
pr

ov
em

en
to

f
N
Sc

a
le

ov
er

G
ir

ap
h,

G
ra

ph
L

ab
,a

nd
G

ra
ph

X
;a

“–
”

in
di

ca
te

s
th

at
th

e
ot

he
r

sy
st

em
ra

n
ou

to
f

m
em

or
y

or
di

d
no

tc
om

pl
et

e

D
at

as
et

G
ir

ap
h

G
ra

ph
L

ab
G

ra
ph

X
G

ir
ap

h
G

ra
ph

L
ab

G
ra

ph
X

CE
(N

od
e-

Se
cs

)
C

lu
st

er
M

em
(G

B
)

CE (N
od

e-
Se

cs
)

C
lu

st
er

M
em

(G
B

)
CE (N

od
e-

Se
cs

)
C

lu
st

er
M

em
(G

B
)

CE (N
od

e-
Se

cs
)

C
lu

st
er

M
em

(G
B

)
CE (N

od
e-

Se
cs

)
C

lu
st

er
M

em
(G

B
)

CE (N
od

e-
Se

cs
)

C
lu

st
er

M
em

(G
B

)

L
oc
al

cl
us
te
ri
ng

co
ef
fic
ie
nt

M
ot
if
co
un
ti
ng
:
fe
ed
-f
or
w
ar
d
lo
op

E
U

E
m

ai
l

3.
05

X
2.

9X
0.

96
X

2.
23

X
0.

66
X

0.
55

X
4.

91
X

2.
78

X
1.

02
X

2.
37

X
14

.7
8

0.
82

X

N
ot

re
D

am
e

2.
52

X
1.

58
X

0.
88

X
1.

12
X

0.
54

0.
51

3.
66

X
1.

60
X

1.
09

X
1.

19
X

20
.7

5X
0.

86
X

G
oo

gl
eW

eb
3.

07
X

1.
36

X
0.

91
X

1.
29

X
2.

25
X

0.
84

X
2.

66
X

1.
57

X
0.

76
X

1.
34

X
–

–

W
ik

iT
al

k
–

–
1.

54
X

1.
54

X
2.

56
X

1.
32

X
–

–
1.

16
X

1.
25

X
–

–

L
iv

eJ
ou

rn
al

–
–

3.
05

X
2.

57
X

2.
50

X
1.

68
X

–
–

2.
51

X
2.

56
X

–
–

O
rk

ut
–

–
–

–
10

.0
8X

2.
01

X
–

–
–

–
–

–

Pe
r-
ve
rt
ex

tr
ia
ng

le
co
un

ti
ng

Id
en
ti
fy
in
g
w
ea
k
ti
es

E
U

E
m

ai
l

3.
83

X
1.

69
X

0.
94

X
1.

37
X

0.
90

X
0.

29
X

5.
29

X
3.

47
X

1.
01

X
2.

77
X

15
.1

6X
0.

99
X

N
ot

re
D

am
e

3.
18

X
1.

71
X

0.
89

X
1.

28
X

0.
56

X
0.

51
X

5.
18

X
2.

26
X

1.
02

X
1.

55
X

30
.2

4X
1.

25
X

G
oo

gl
eW

eb
2.

98
X

1.
36

X
0.

82
X

1.
21

X
1.

85
X

0.
81

X
4.

06
X

1.
81

X
0.

94
X

1.
42

X
–

–

W
ik

iT
al

k
–

–
1.

36
X

1.
51

X
2.

22
X

1.
41

X
–

–
1.

56
X

1.
74

X
–

–

L
iv

eJ
ou

rn
al

–
–

2.
65

X
2.

62
X

2.
41

X
1.

49
X

–
–

2.
62

X
2.

62
X

–
-

O
rk

ut
–

–
–

–
6.

98
X

1.
87

X
–

–
–

–
–

–

G
ir

ap
h

G
ra

ph
L

ab
G

ra
ph

X

CE
(N

od
e-

Se
cs

)
C

lu
st

er
M

em
(G

B
)

CE
(N

od
e-

Se
cs

)
C

lu
st

er
M

em
(G

B
)

CE
(N

od
e-

Se
cs

)
C

lu
st

er
M

em
(G

B
)

Pe
rs
on
al
iz
ed

pa
ge

ra
nk

E
U

E
m

ai
l

15
.0

3X
5.

10
X

13
.6

5X
8.

61
X

19
1.

82
X

25
.5

2X

N
ot

re
D

am
e

8.
89

X
3.

32
X

7.
31

X
7.

37
X

42
5.

16
X

9.
93

X

G
oo

gl
eW

eb
22

.5
9X

2.
98

X
2.

32
X

5.
03

X
–

–

W
ik

iT
al

k
–

–
–

–
–

–

L
iv

eJ
ou

rn
al

–
–

–
–

–
–

O
rk

ut
–

–
–

–
–

–

123

NScale: neighborhood-centric large-scale graph analytics in the cloud 145

(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

Fig. 11 For the different shingle-based subgraph packing heuristics,
we compare: a #bins required; b total computational effort required; c
total elapsed time (wall clock time) for running the LCC computation on
the subgraphs; d total cluster memory required for GEP and execution
of the LCC computation; e, f distribution of # subgraphs and of execu-

tion engine running times over the bins; comparison of shingle-based
subgraph packing heuristics with the other bin packing heuristics; we
compare: g #bins required; h total time taken for bin packing; i memory
required

to 1.25X less memory for smaller graphs. For larger graphs,
GraphX fails to complete. The most significant difference
is seen for PPR where NScale performs up to 425X bet-
ter in terms of CE and consumes up to 25X lesser memory
for smaller graphs. Again, for larger graphs, GraphX fails to
complete.

The improved performance of NScale can be attributed
to the NScale computation and execution models which (1)
allow a user computation to access the entire subgraph state
and hence do not require multiple iterations avoiding the mes-
sage passing overhead and (2) avoid duplication of state at
each vertex reducing memory requirements drastically. Fur-
ther, the extraction and loading of required subgraphs by the
GEP module helps NScale to scale to larger graphs using
minimal resources.

8.2 GEP evaluation

Comparing subgraph bin packing (SBP) algorithms We first
evaluated the performance and quality of the bin packing-
based algorithms: First Fit, First Fit Decreasing and Shingle-
based bin packing on the LiveJournal data set.

Figure 11a shows the number of bins required to partition
the subgraphs as we vary the number of subgraphs speci-

fied by the query (using predicates on the query vertices).
The number of bins increases as the number of subgraphs
increases for all the three heuristics. We see that the First Fit
algorithm requires the maximum number of bins as expected,
whereas the shingle-based packing algorithm performs the
best in terms of packing the subgraphs into a minimum num-
ber of bins. This is due to the fact that the shingle-based bin
packing algorithm orders the subgraphs based on neighbor-
hood similarity, thereby taking maximum advantage of the
overlap among them.

To ascertain the cost of data analytics, we study the effect
of bin packing on the computation effort CE . Figure 11b
shows that the CE for the First Fit algorithm is the maximum
making it the most expensive, while the CE for shingle-
based packing algorithm is the minimum making it the most
cost-effective bin packing solution. Figure 11c, d shows the
execution (elapsed) time and the total cluster memory usage
for binning and execution with respect to these three heuris-
tics and different number of subgraphs. The First Fit has the
best execution time, and the shingle-based bin packing algo-
rithm has an execution time which closely follows that of the
First Fit algorithm. On the other hand, the First Fit Decreas-
ing algorithm takes the largest execution time. This can be
attributed to the fact the First Fit is expected to produce the

123

146 A. Quamar et al.

most uniform distribution of subgraphs across the bins and
the First Fit Decreasing is likely to produce a skewed distri-
bution (packing a large number of smaller subgraphs in later
bins) leading to larger execution times due to the straggler
effect.

We further study the distribution of the number of sub-
graphs (or query vertices) packed per bin and the distribution
of running times of each instance of a execution engine on
a bin (partition). Figure 11e, f shows the box plots with
whiskers for both the distributions. As expected the First Fit
algorithm has the most uniform distribution across the bins
in both cases. The shingle-based packing algorithm also per-
forms well and provides a distribution almost as good as the
First Fit algorithm, while First Fit Decreasing has the most
skewed distribution in both cases, which also explains the
highest end-to-end execution timings for the heuristic. We
thus see that the shingle-based packing algorithm performs
the best in terms of minimizing the # bins and CE , having
low execution times and almost uniform bin distributions,
thus minimizing the straggler effect.

To summarize, our results showed that our proposed
shingle-based packing algorithm performs much better than
the other two algorithms in terms of minimizing the #
bins and CE . It also has low execution times and almost
uniform bin distributions, thus minimizing the straggler
effect.

We next compare the shingle-based bin packing heuristic
with the two clustering-based algorithms and the METIS-
based algorithm. Figure 11g–i shows the performance of the
four subgraph packing approaches for three different real-
world datasets. We see that K-Means provides generally
found solutions with minimum number of bins, but takes
much longer and consumes significantly more memory. The
shingle-based solution finds almost as good solutions, but is
much more efficient. METIS-based partitioning does poorly
both in terms of binning quality and the efficiency (notice the
log scale in Fig. 11h), and we did not consider it for the rest
of experimental evaluation.

To better evaluate the performance of the heuristics, we
also compared them with an optimal algorithm (OPT) that
constructs an Integer Program for the problem instance and
uses the Gurobi Optimizer to find an optimal solution. Unfor-
tunately, even after many hours on a powerful server per
problem instance, OPT was unable to find a solution for most
of our small-scale synthetically generated problem instances;
for 14 of 64 synthetic datasets, it found either an optimal
solution or reasonable bounds, and we have plotted those in
Fig. 12a (the x-axis is sorted by the value of the best solu-
tion found by OPT). We note that the only instances where
OPT found the optimal solution (i.e., where upper bound =
lower bound) were solutions with 2 or 4 bins. As we can
see, for almost all of these problem instances, our K-Means
heuristics was able to match the OPT solution.

(a) (b)

Fig. 12 Comparing subgraph packing heuristics to a the optimal solu-
tion and b each other, for synthetic graphs

Overall, the reason K-Means performs so well can be
attributed to the fact that it explores the solution space
more extensively and in general does more pairwise com-
parisons between the sets (corresponding to the subgraphs).
The behavior was consistent across a wide range of experi-
ments that we did. The shingle-based heuristic, on the other
hand, restricts the comparisons to subgraphs that are close in
the shingle order and thus may miss out on pairs of sets that
have high overlap. At the same time, we want to note that K-
Means takes much longer to run and consumes significantly
more memory, whereas the shingle-based heuristic is much
faster and finds solutions with comparable quality.

Figure 12b compares the K-Means heuristics against
the other two heuristics for all 64 datasets. The results
are consistent with the results we saw on the real-world
datasets—K-Means is consistently better than both of those
heuristics, but the shingle-based heuristic comes quite close
to its performance.

Distributed GEP evaluation Figure 13a–c compares the
distributed implementation of the GEP module with the cen-
tralized version (we use LiveJournal dataset for this purpose,
which is small enough for a centralized solution, and we
use six machines in the distributed case). We see that, for a
small number of extracted subgraphs, the time taken by the
centralized solution is comparable to the time taken by the
distributed solution. However as we scale to a large number
of subgraphs, the distributed solution scales much better, and
more importantly, the maximum memory required on any sin-
gle machine is much lower, thus removing a key bottleneck
of the centralized solution. The binning quality of the cen-
tralized solution is somewhat better, which is to be expected,
and hence, it would still be preferable to run the GEP phase
in a centralized fashion. However, the gap is not significant,
and for large graphs where running GEP in a centralized
fashion is not feasible, distributed GEP generates reasonable
solutions.

Figure 13d–f shows the effect of increasing the number of
machines used for distributed GEP on the time taken, mem-
ory required per machine, and the quality of binning solution

123

NScale: neighborhood-centric large-scale graph analytics in the cloud 147

(a) (b) (c)

(f)(e)(d)

Fig. 13 GEP architecture: a–c comparison of centralized and distributed GEP architectures; d–f distributed GEP architecture: impact on graph
extraction and packing time, max memory required per bin, and #bins required for packing with increase in number of machines

provided in terms of number of bins required, for three data
sets. We see that our distributed GEP mechanism exhibits
good scaling behavior without compromising much on the
quality of binning. It can thus handle very large graphs quite
effectively. Note that the number of query vertices was set
to 3 M, so the relative performance for the different graph
does not correlate with the original graph sizes (in particular,
ClueWeb has low average degree and hence requires fewer
bins for the same number of neighborhoods).

8.3 Execution engine evaluation

Effect of choosing different execution modes In Fig. 14a, we
plot the total running times for the single-bit serial (SEM) and
vector bitmap parallel (PEM) execution modes, for the Live-
Journal graph, for 25000 extracted subgraphs. We see that
for 70 partitions, the performance of the two modes is com-
parable since each partition does a small amount of work.
However as the number of partitions decreases, PEM per-
forms much better compared to SEM which times out as the
number of partitions becomes very small. On the other hand,
SEM uses a single-bit bitmap per vertex or edge and hence
requires significantly less memory and may be useful when
we have a large number of low-memory machines available
for graph computation.

Bitmap constructions Figure 14b, c compares the different
bitmap implementations for different numbers of partitions
(the setup is the same as above, and hence, decreasing number
of partitions implies increasing number of subgraphs per par-
tition). Java BitSet and LBitSet perform better than CBitSet
in terms of execution time, while LBitSet consumes the least
amount of memory as the number of subgraphs in each par-

tition increases. As mentioned in Sect. 6.2, CBitSet is useful
in cases where the overlap between subgraphs is minimum,
requiring a small number of bits to be set. We use LBitSet
for most of our experiments.

8.4 System evaluation

End-to-end testing We evaluate the overall performance of
the system for a fixed bin capacity (8 GB) for the LiveJournal
graph. We vary the number of subgraphs to be extracted from
the underlying graph and study the effect on the number of
bins required to pack them into memory using the shingle-
based bin packing heuristic. We measure the total end-to-
end running time of the LCC computation on each of these
subgraphs in PEM mode using LBitSet bitmap construction.
Figure 14d shows that as the number of subgraphs increases,
the system distributes the computation on a larger number of
bins and scales well with respect to the increase in the total
running time with increase in number of subgraphs which
includes the time required by the GEP phase and the actual
graph computation by each instance of the execution engine
on each partition.

Performance breakdown Figure 14e shows the breakdown in
terms of the %CE required for the different stages of NScale.
The figure shows the performance for two different appli-
cations: LCC and motif counting and two different graphs:
LiveJournal and Web-Google. For the smaller graphs like
Web-Google, the % time taken for execution is comparable
to the graph loading time. For larger graphs like LiveJour-
nal, the % graph loading time dominates all other times as it
includes the time taken to read the disk-resident graph and
associated data, filter, and shuffle based on the partitioning

123

148 A. Quamar et al.

(a) (b) (c)

(f)(e)(d)

Fig. 14 a Effect of different execution modes on the running time; b,
c effect of different bitmap implementations on the memory footprints
and the running times of the execution engine; d end-to-end running
time and #partitions required for different numbers of subgraphs; e

performance breakdown of different stages of NScale for graphs of
different sizes and different applications; f scalability: NScale perfor-
mance over large graphs

obtained from GEP. In all cases, GEP constitutes a small
fraction of the total time and is the crucial component that
enables the efficient execution of the graph computation on
the materialized subgraphs in distributed memory using min-
imal resources. As can be seen in the baseline comparisons,
without the GEP phase, other vertex-centric approaches have
a very high CE as compared to NScale for the same under-
lying datasets and graph computations.
NScale performance for larger graphsTo ascertain the scal-
ability of NScale, we conducted experiments with larger
datasets for the motif counting application. Figure 14f shows
the results for the scalability experiments on the Social
LiveJournal graph, the Orkut social network graph, and the
largest of our datasets, the ClueWeb graph (428 M nodes,
1.5B edges). The results show the CE in node-secs and
total cluster memory required in GB. The results indicate
that NScale scales well for egocentric graph computation
applications over larger graphs unlike other vertex-centric
approaches such as Apache Giraph and GraphLab.

8.5 Evaluation of support for iterative applications

We evaluated the support for iterative applications using the
global connected components application.
Performance breakdown We studied the performance
breakdown for the connected components application across
different iterations over two different datasets (LiveJournal
and Orkut). Figure 15a–d shows the performance break-
down in terms of compute time, synchronization time (time
spent waiting at the barriers), and message passing time
(time spent in updating the key–value store and fetching

updated values from the key–value store). We studied the
performance breakdown for two different scenario, where
the graph was partitioned across five or ten machines (we
adjusted the bin capacity parameter to find the setting which
forced NScale to use the appropriate number of machines).
As expected, with five partitions, the synchronization over-
head is more as compared to the message passing overhead
since the number of ghost vertices that require message pass-
ing is smaller. In comparison, with ten partitions, the message
passing overhead is more as the number of ghost vertices is
relatively higher. The synchronization overhead is less as
each partition does less work and inter-partition skew is
smaller.
Performance comparison Figure 15e, f compares the per-
formance of NScale against GraphX and GraphLab for the
connected components application in terms of the running
time (wall clock time) and CE (node-secs) on 10 machines.
As we can see, our relatively unoptimized implementa-
tion compares favorably to both, and, in fact, outperforms
GraphX in some of the cases. Overall, GraphLab performs
better in terms of both runtime and CE for both graph
datasets. This superior performance of GraphLab for iterative
computations can be attributed to its highly optimized MPI-
based message passing layer, as well as its implementation
in C++.

8.6 Discussion

In summary, our comprehensive experimental evaluation
illustrates that NScale has comparable performance to the
other graph processing frameworks for iterative tasks like

123

NScale: neighborhood-centric large-scale graph analytics in the cloud 149

(a) (b) (c)

(f)(e)(d)

Fig. 15 Connected components: a–d performance breakdown for different iterations; e–f performance comparison with GraphX and GraphLab
in terms of running time and CE (node-secs)

connected components, while vastly outperforming them for
more complex analysis tasks. Although NScale is able to
scale better than the other systems, we compared against
for most of the tasks and it uses fewer resources in general,
there is certainly a limit to the graph sizes that our current
implementation can handle given limited resources and those
can be seen or extrapolated from our reported numbers (e.g.,
NScale would not be able to do LCC on a graph with 250 M
edges without at least 62 GB of cluster memory). However,
NScale can process the partitions in sequence on a sin-
gle machine (for such one-pass analytics tasks) by loading
them one by one, and thus the maximum memory needed
at any specific time point can be lower (at the expense of
increased wall clock time). On the other hand, for iterative
tasks, NScale’s limits mirror those of Giraph or GraphLab
in that there must be enough cluster memory to load all the
partitions. Some of the recent graph processing systems like
X-Stream and GraphChi do not have this restriction because
of their use of disk-based processing; in future work, we plan
to investigate how the NScale programming model may be
adapted to such settings.

9 Conclusion

Increasing interest in performing graph analytics over very
large volumes of graph data has led to much work on develop-
ing distributed graph processing frameworks in recent years,
with the vertex-centric frameworks being the most popular.
Those frameworks are, however, severely limited in their
ability to express and/or efficiently execute complex and rich
graph analytics tasks that network analysts want to pose. We
argue that both for ease of use and efficiency, a more natural
abstraction is a subgraph-centric framework, where the users

can write computations against entire subgraphs or multi-hop
neighborhoods in the graph. We show how this abstraction
generalized the vertex-centric programming framework, how
it is a natural fit for many commonly used graph analytics
tasks, and how it leads to more efficient execution by reducing
the communication and memory overheads. We also argue
that the graph extraction and loading phase should be care-
fully optimized to reduce the number of machines required
to execute a graph analytics task, because of the nonlinear
relationship between that parameter and the total execution
cost; we developed a novel framework for solving this prob-
lem, and we show that it can lead to significant savings in
total execution time. Our comprehensive experimental eval-
uation illustrates the ability of our framework to execute a
variety of graph analytics tasks on very large graphs, when
Apache Giraph, GraphLab, and GraphX fail to execute them
on relatively small graphs.

References

1. Akoglu, L., McGlohon, M., Faloutsos, C.: OddBall: spotting anom-
alies in weighted graphs. In: PAKDD (2010)

2. Apache Giraph. http://giraph.apache.org
3. Backstrom, L., Leskovec, J.: Supervised random walks: predicting

and recommending links in social networks. In: WSDM (2011)
4. BluePrints API. https://github.com/tinkerpop/blueprints/wiki
5. Burt, R.S.: Secondhand brokerage: evidence on the importance of

local structure for managers, bankers, and analysts. Acad. Manag.
J. 50(1), 119–148 (2007)

6. Burt, R.S.: Structural Holes: The Social Structure of Competition.
Harvard University Press, Cambridge (2009)

7. Cheng, J., Ke, Y., Ng, W., Lu, A.: Fg-index: towards verification-
free query processing on graph databases. In: SIGMOD (2007)

8. Cheng, R., Hong, J., Kyrola, A., Miao, Y., Weng, X., Wu, M.,
Yang, F., Zhou, L., Zhao, F., Chen, E.: Kineograph: taking pulse of
a fast-changing and connected world. In: EuroSys (2012)

123

http://giraph.apache.org
https://github.com/tinkerpop/blueprints/wiki

150 A. Quamar et al.

9. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph
isomorphism algorithm for matching large graphs. IEEE Trans.
Pattern Anal. Mach. Intell. 26, 1367–1372 (2004)

10. Curtiss, M., Becker, I., Bosman, T., Doroshenko, S., Grijincu, L.,
Jackson, T., Kunnatur, S., Lassen, S., Pronin, P., Sankar, S., Shen,
G., Woss, G., Yang, C., Zhang, N.: Unicorn: a system for searching
the social graph. In: Proceedings of VLDB Endowment (2013)

11. Everett, M., Borgatti, S.P.: Ego network betweenness. Soc. Netw.
27(1), 31–38 (2005)

12. Furnace. https://github.com/tinkerpop/furnace/wiki
13. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin,

M.J., Stoica, I.: GraphX: graph processing in a distributed dataflow
framework. In: OSDI (2014)

14. Granovetter, M.S.: The strength of weak ties. Am. J. Sociol. 78,
1360–1380 (1973)

15. Gremlin. http://github.com/tinkerpop/gremlin/wiki
16. Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., Zadeh, R.: WTF:

the who to follow service at twitter. In: WWW (2013)
17. He H., Singh, A.K.: Graphs-at-a-time: query language and access

methods for graph databases. In: SIGMOD (2008)
18. Hoque, I., Gupta, I.: Lfgraph: simple and fast distributed graph

analytics. In: TRIOS (2013)
19. Huang, J., Abadi, D.J., Ren, K.: Scalable SPARQL querying of

large RDF graphs. In: PVLDB (2011)
20. Izumi, T., Yokomaru, T., Takahashi, A., Kajitani, Y.: Computational

complexity analysis of set-bin-packing problem. IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci. 81(5), 842–849 (1998)

21. Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling
algorithm for estimating subgraph concentrations and detecting
network motifs. Bioinformatics 20, 1746–1758 (2004)

22. Kolountzakis, M.N., Miller, G.L., Peng, R., Tsourakakis, C.E.:
Efficient triangle counting in large graphs via degree-based ver-
tex partitioning. Internet Math. 8, 161–185 (2012)

23. Lakshman, A., Malik, P.: Cassandra: a decentralized structured
storage system. SIGOPS Oper. Syst. Rev. 44, 35–40 (2010)

24. Lee, J., Han, W.-S., Kasperovics, R., Lee, J.-H.: An in-depth com-
parison of subgraph isomorphism algorithms in graph databases.
In: PVLDB (2013)

25. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In:
SIGKDD (2006)

26. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C.,
Hellerstein, J.M.: Distributed GraphLab: a framework for machine
learning in the cloud. In: PVLDB (2012)

27. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I.,
Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph
processing. In: SIGMOD (2010)

28. McAuley, J., Leskovec, J.: Learning to discover social circles in
ego networks. In: NIPS (2012)

29. Metis. http://glaros.dtc.umn.edu/gkhome/metis
30. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D.,

Alon, U.: Network motifs: simple building blocks of complex net-
works. Science 298, 824–827 (2002)

31. Mongiov, M., Natale, R.D., Giugno, R., Pulvirenti, A., Ferro, A.,
Sharan, R.: Sigma: a set-cover-based inexact graph matching algo-
rithm. J. Bioinform. Comput. Biol. 8, 199–218 (2010)

32. Moustafa, W.E., Namata, G., Deshpande, A., Getoor, L.: Declara-
tive analysis of noisy information networks. In: ICDE Workshops
(2011)

33. Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure
for graph analytics. In: SOSP (2013)

34. Popescu, A.D., Balmin, A., Ercegovac, V., Ailamaki, A.: PREDIcT:
towards predicting the runtime of large scale iterative analytics. In:
Proceedings of VLDB Endowment (2013)

35. Pujol, J.M., Erramilli, V., Siganos, G., Xiaoyuan, Y., Laoutaris, N.,
Chhabra, P., Rodriguez, P.: The little engine(s) that could: scaling
online social networks. In: SIGCOMM (2010)

36. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cam-
bridge University Press, Cambridge (2011)

37. Redis. http://redis.io/
38. Roy, A., Mihailovic, I., Zwaenepoel, W.: X-stream: edge-centric

graph processing using streaming partitions. In: SOSP (2013)
39. Salihoglu, S., Widom, J.: GPS: a graph processing system. In:

SSDBM (2013)
40. Seo, J., Guo, S., Lam, M.S.: Socialite: datalog extensions for effi-

cient social network analysis. In: ICDE (2013)
41. Seo, J., Park, J., Shin, J., Lam, M.S.: Distributed socialite: a datalog-

based language for large-scale graph analysis. In: PVLDB (2013)
42. Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hard-

ness: an efficient algorithm for testing subgraph isomorphism. In:
VLDB (2008)

43. Shasha, D., Wang, J.T.L., Giugno, R.: Algorithmics and applica-
tions of tree and graph searching. In: PODS (2002)

44. Simmhan, Y., Kumbhare, A.G., Wickramaarachchi, C., Nagarkar,
S., Ravi, S., Raghavendra, C.S., Prasanna, V.K.: Goffish: a sub-
graph centric framework for large-scale graph analytics. In: CoRR
(2013)

45. Stanford Network Analysis Project. https://snap.stanford.edu
46. Tian, Y., Balmin, A., Corsten, S.A., Tatikonda, S., McPherson, J.:

From “Think Like a Vertex” to “Think Like a Graph”. In: PVLDB
(2013)

47. Tian, Y., Patel, J.M.: TALE: a tool for approximate large graph
matching. In: ICDE (2008)

48. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM
23, 31–42 (1976)

49. Wang, G., Xie, W., Demers, A.J., Gehrke, J.: Asynchronous large-
scale graph processing made easy. In: CIDR (2013)

50. Yan, X., Yu, P.S., Han, J.: Graph indexing: a frequent structure-
based approach. In: SIGMOD (2004)

51. Zhao, P., Yu, J.X., Yu, P.S.: Graph indexing: tree + delta less than
equal to graph. In: VLDB (2007)

52. Zou, L., Chen, L., Yu, J.X., Lu, Y.: A novel spectral coding in a
large graph database. In: EDBT (2008)

123

https://github.com/tinkerpop/furnace/wiki
http://github.com/tinkerpop/gremlin/wiki
http://glaros.dtc.umn.edu/gkhome/metis
http://redis.io/
https://snap.stanford.edu

	NScale: neighborhood-centric large-scale graph analytics in the cloud
	Abstract
	1 Introduction
	2 Related work
	3 Application scenarios
	4 NScale overview
	4.1 Programming model
	4.2 System architecture

	5 Graph extraction and packing
	5.1 Subgraph extraction
	5.2 Subgraph packing
	5.2.1 Bin packing-based algorithms
	5.2.2 Graph partitioning-based algorithms
	5.2.3 Clustering-based algorithms

	5.3 Handling very large subgraphs

	6 Distributed execution engine
	6.1 Execution modes
	6.2 Bitmap implementation
	6.3 Support for iterative computation

	7 Experimental evaluation
	8 Experimental results
	8.1 Baseline comparisons
	8.2 GEP evaluation
	8.3 Execution engine evaluation
	8.4 System evaluation
	8.5 Evaluation of support for iterative applications
	8.6 Discussion

	9 Conclusion
	References

