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ABSTRACT
In this work, we propose an effective multi-stage neural ranking
system for the clinical trial matching problem. First, we introduce
NQS, a neural query synthesis method that leverages a zero-shot
document expansion model to generate multiple sentence-long
queries from lengthy patient descriptions. These queries are in-
dependently issued to a search engine and the results are fused.
We find that on the TREC 2021 Clinical Trials Track, this method
outperforms strong traditional baselines like BM25 and BM25 +
RM3 by about 12 points in nDCG@10, a relative improvement of
34%. This simple method is so effective that even a state-of-the-art
neural relevance ranking method trained on the medical subset of
MS MARCO passage, when reranking the results of NQS, fails to
improve on the ranked list. Second, we introduce a two-stage neu-
ral reranking pipeline trained on clinical trial matching data using
tailored ranking templates. In this setting, we can train a pointwise
reranker using just 1.1k positive examples and obtain effectiveness
improvements over NQS by 24 points. This end-to-end multi-stage
system demonstrates a 20% relative effectiveness gain compared to
the second-best submission at TREC 2021, making it an important
step towards better automated clinical trial matching.
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1 INTRODUCTION
Clinical trials are vital to the validity of scientific research and
form the foundation on which we measure progress in medicine.
However, recruiting at least the minimum number of patients for
these trials within time constraints is a challenging task and a
key reason why most fail to kick off. This has substantial negative
consequences both for the advancement of new treatments and for
the patients who miss out on the potential health benefits from
such clinical interventions.

The clinical trial matching problem we consider can be described
as such: Given a patient and the patient’s electronic health record
(EHR) as the “query” and a collection of actively recruiting clinical
trials, return those that the patient is eligible for. This is where the
information retrieval community can play a role. In the TREC 2021
Clinical Trials Track [14], participants build systems that match
patient case descriptions to eligible clinical trials. Such systems can
be of significant assistance to both parties.

The contribution of our work is an effective multi-stage ranking
system for the clinical trial matching task. More specifically:

(1) We attempt to handle challenges caused by long EHR descrip-
tion topics. We propose NQS, a neural query synthesis method
that leverages doc2query–T5 [9] trained on the MS MARCO
V2 passage ranking test collection to generate multiple single-
sentence long queries. Then, we independently issue these
queries using either BM25 or BM25 + RM3 as the ranking func-
tion and fuse the results using RRF [1] to produce our first-stage
candidate list. This model demonstrates a relative score improve-
ment of over 33% compared to the baseline of simply issuing
the entire EHR description as the query.

(2) We evaluate the effectiveness of a powerful neural sequence-
to-sequence ranking model, called “Med-Mono-T5” [12], that is
fine-tuned on the clinical trial matching dataset created by Koop-
man and Zuccon [4]. To alleviate issues caused by a scarcity
of training data, we use a ranking template that is specifically
designed for matching clinical trials. In particular, our template
includes segments from the fields “title”, “condition”, “eligibil-
ity”, and “description” in the clinical trial. Our model is used to
select the best eligibility segment and the best description seg-
ment of each candidate trial retrieved by our first-stage method.
After this, the same ranker scores the trial based on a newmulti-
field combination of both these segments. This two-step method
helps avoid the quadratic inference costs of enumerating all
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Patient Description - #23

A 39-year-old man came to the clinic with cough and shortness of breath that was not relieved by his inhaler. He had these symptoms for 5 days during
the past 2 weeks. He doubled his oral corticosteroids in the past week. He is a chef with a history of asthma for 3 years, suffering from frequent cough,
wheezing, and shortness of breath and chest tightness. The symptoms become more bothersome within 1-2 hours of starting work every day and
worsen throughout the work week. His symptoms improve within 1-2 hours outside the workplace. Spirometry was performed revealing a forced
expiratory volume in the first second (FEV1) of 63% of the predicted. His past medical history is significant for seasonal allergic rhinitis in the summer.
He doesn’t smoke or use illicit drugs. His family history is significant for asthma in his father and sister. He currently uses inhaled corticosteroid (ICS)
and fluticasone 500 mcg/salmeterol 50 mcg, one puff twice daily.

Clinical Trial

Title: Salmeterol/Fluticasone Easyhaler in the Treatment of Asthma and COPD

Eligibility:
Main Inclusion Criteria:
• Male or female patients with asthma or COPD who have been using salmeterol/fluticasone propionate combination treatment for at least 3 months
before the study

• Age ≥ 18 years.
• Written informed consent obtained.
Main Exclusion Criteria:
• Pregnant or lactating female patients.
• Participation in other clinical studies during the study.
• Known hypersensitivity (allergy) to salmeterol, fluticasone propionate or the excipient lactose.

Condition: N/A

Description: A prospective, open-label, non-interventional, multicentre study in adult patients with asthma or COPD who are treated with Salme-
terol/fluticasone Easyhaler. During the study the Salmeterol/fluticasone Easyhaler will be used according to the Summary of Product Characteristics.
Clinical effectiveness of the treatment will be evaluated with change in asthma or COPD symptoms during 12 weeks treatment.

Table 1: Example of a patient’s EHR description and a relevant clinical trial from the TREC 2021 Clinical Trials Track.

eligibility and description segment pairs and feeding them to
the computationally expensive neural ranker.

This multi-stage neural ranking architecture that leverages NQS for
first-stage retrieval was the best automatic system at the TREC 2021
Clinical Trials Track [14] by at least a 20% relative improvement
over submissions from other teams in terms of the primary metrics.

2 TASK DESCRIPTION AND DATA
In the Clinical Trials Track [14] at TREC 2021, participants were
required to retrieve eligible clinical trial descriptions given lengthy
topics (5–10 sentences) comprising patient case descriptions taken
from EHRs. System outputs were then graded on a 3-level scale:
eligible if the patient is eligible for the trial based on the inclu-
sion/exclusion criteria, excluded if the clinical trial is relevant to
the patient but is excluded, and non-relevant otherwise.

The clinical trial matching task at TREC comprised a corpus of
375,580 clinical trials and 75 patient notes forming the topics. Each
clinical trial has a title, condition, summary, description, and eligi-
bility field. Here, the eligibility field holds the inclusion/exclusion
criteria, a core aspect of the clinical trial matching task. Table 1 pro-
vides an example of a patient’s EHR description (top) and excerpts
from a relevant clinical trial (bottom). We can see that treating the
EHR as a bag-of-words query may be problematic: while it provides
vital information, the EHR also contains many unimportant terms.

Most similar to the target task is the work by Koopman and
Zuccon [4]. The collection they created has 204,855 clinical trials

forming the corpus, 60 patient notes providing the topics, and 3870
relevance judgment labels. The labels represent a three-point scale
for relevance judgments: 0 if the patient is not referred to the clinical
trial, 1 for possible referral, and 2 for highly possible referral. There
are 2764 trials judged a 0, 685 trials a 1, and 421 trials a 2. We use
this collection in our experiments as the training set. Since we only
have 1106 positives, we work in a data-poor regime.

3 SYSTEM ARCHITECTURE
3.1 Neural Query Synthesis
Since IR researchers develop most retrieval methods with sentence-
length (or shorter) queries in mind, the systems are not adept at
tackling long patient descriptions that comprise the topics. These
descriptions run between 5–10 sentences long. To address this
limitation, we hypothesized that using doc2query–T5 [9], a neural
document expansion technique, can help generate multiple single-
sentence long queries for the longer patient description.

Nogueira and Lin [9] use a T5-base model trained on the MS
MARCO V1 passage ranking task for document expansion to gener-
ate multiple queries for the entire corpus, comprising approximately
8.8 million passages. In this task, since we only need to generate
multiple queries for 75 topics, and since the community has now
moved on to the newer and cleaner MSMARCOV2 passage ranking
test collection, we instead choose to use a T5-3B model trained on
the newer dataset.



We train the model using the same general approach: given a
passage, the task is to generate a query for which the passage is
relevant. We use the same experimental setup, fine-tuning using
a constant learning rate of 1 · 10−3 and a batch size of 256. The
model is fine-tuned for 4k iterations, corresponding to roughly four
epochs with the MS MARCO V2 passage ranking training set. We
use a maximum of 512 input tokens and 64 output tokens.

During inference, we utilize top-𝑘 sampling (𝑘 = 10) to generate
the single-sentence queries for each topic patient description 𝑝 . We
vary the number of single-sentence queries we sample and whether
or not we include the topic description to form a query set 𝑄𝑝 for
a particular 𝑝 . The method that includes the patient description is
denoted NQS+PD, distinguished from NQS, which does not.

Given this query set 𝑄𝑝 , we issue each query independently to
retrieve the top-1000 results based on a choice of scoring functions,
either BM25 or BM25 + RM3. We accomplish this using the default
parameters of the Pyserini IR Toolkit [5]. Reciprocal rank fusion [1]
is then used to fuse the multiple ranked lists for each query in 𝑄𝑝

to give us the final ranked list, which is passed on to the neural
ranking modules downstream. We believe that this step is essen-
tial to alleviate concerns from the model hallucinating unfaithful
information [7] and being detrimental to retrieval effectiveness.

3.2 Zero-Shot T5-Based Relevance Ranking
Inspired by the success of T5 [13], where the researchers formulate
every natural language processing task as feeding a sequence-to-
sequence model some input text and training it to generate some
output text, Nogueira et al. [8] proposed an adaptation for relevance
ranking. Their approach is based on an input template to capture
the pointwise ranking task:

Query: 𝑞 Document: 𝑑 Relevant: (1)

where 𝑞 and 𝑑 are replaced with the query and the (candidate)
document text, respectively. The target is one of the “true” or “false”
tokens. In other words, ranking is formulated as feeding the model
the query and a segment of text, and “asking” the model to predict
relevance as an output token.

Given a model trained with this sequence input/output behavior,
which Nogueira et al. [8] dub monoT5, at inference time, a soft-
max is applied to only the logits corresponding to the “true” and
“false” tokens to extract meaningful probabilities. In other words,
the model estimates Pr[relevant = 1|𝑞, 𝑑] as the probability score
assigned to the “true” token normalized in this manner. The candi-
dates from a first-stage retriever are then reranked based on these
scores. This model forms a vital backbone of various state-of-the-art
systems for knowledge intensive tasks [3, 10–12]

In this work, our base ranker is a monoT5-3B model [8] fine-
tuned on the MS MARCO V1 passage ranking test collection with
a batch size of 128 and a learning rate of 1 · 10−3 for 10k iterations
and then fine-tuned again on Med-MARCO, which is a subset of
the MS MARCO V1 passage ranking collection where only queries
containing medical terms are retained [6]. For this second stage
fine-tuning process, we train the model for another 1k iterations
using a batch size of 128 and a learning rate of 1 · 10−3. This model,
which we denote monoT5MED, was first described in Pradeep et al.
[12] and was shown to be successful in biomedical retrieval tasks

like TREC-COVID. This application of monoT5MED on the clinical
trial matching task can be thought of as zero-shot.

Beginning here, we make careful choices trying to design the
best domain-specific ranking template for the task of clinical trial
matching. All the neural rankers use the entire patient description
𝑝 as the query. Since we are optimizing for early precision here in
the reranking stage, as opposed to recall in the NQS retrieval stage
(i.e., first-stage retrieval), we believe that it is critical for the model
to properly attend to every part of the patient description given the
clinical trial to be scored.

Each clinical trial document has two lengthy multi-sentence
fields, “eligibility” and “description”, and two much smaller fields,
“title” and “condition”. Hence, during inference, we run sliding-
window segmentation using (𝑛length, 𝑛stride) = (6, 3) on the eligi-
bility and description fields independently and always make sure to
include the other two smaller fields entirely. More specifically, we
run monoT5MED across various eligibility segments of a particular
trial 𝑡 using the ranking template:

Query: 𝑝 Document: title: 𝑡title
condition: 𝑡condition
eligibility: 𝑡eligibility Relevant:

(2)

We also run monoT5MED across various description segments of a
particular trial 𝑡 using the ranking template:

Query: 𝑝 Document: title: 𝑡title
condition: 𝑡condition
description: 𝑡description Relevant:

(3)

Then, the standard MaxP approach [2] is used to assign single
scores to a patient and clinical trial pair based on either just the
eligibility field or just the description field, or both, denoted by
monoT5EMED, monoT5DMED, and monoT5AMED, respectively. To
clarify, the monoT5AMED setting takes the highest score over all
segments considered in templates (2) and (3).

We design the ranking template this way because monoT5MED is
trained using the input template “Query: 𝑞 Document: 𝑑”. During
inference, we want the fields of the clinical trial document that
replace the document “𝑑” to respect the original input template
while also providing the model with domain-specific information.

3.3 Multi-Field Ranking Templates
Ideally, we want our input template to capture all the fields of the
clinical trial (e.g., description and eligibility), each having a suf-
ficient window length while being considerate of the total input
sequence length limits on T5. However, we face two major issues
in building an effective ranker given such constraints. First, such a
model would need to flourish in a data-scarce setting during train-
ing, given that we have a small training set of only 1.1k positive
pairs. Second, even if we can train an effective model, inference
needs to be performed over all pairs of description and eligibility
segments; since both these fields are lengthy, this is a computation-
ally expensive task. We call these the “training problem” and the
“inference problem”, respectively.

We first attempt to solve the “training problem”. Given the
domain-specific input template used in Section 3.2, we further ex-
plore if we can train a more effective monoT5 model specific to the
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Figure 1: nDCG@10 (left) and Recall@1k (right) for the four NQS settings while varying the number of synthetic queries.

task of clinical trial matching. The caveat here is that we work in a
data-scarce regime since we only have 1.1k positive (query, trial)
pairs. Our hypothesis is that leveraging a domain-specific ranking
template that accounts for the various fields of a trial in conjunction
with fine-tuning from a pretrained monoT5MED model will help us
successfully train such a ranker. The latter is motivated by previous
success in another task [10].

We fine-tune monoT5MED on the clinical trial test collection
curated by Koopman and Zuccon [4]. We call this model monoT5CT.
A clinical trial is labeled positive if it had a graded relevance score
of at least one and negative otherwise. We use monoT5MED to select
two segments per positive trial as input for training monoT5CT:
one being its highest-scoring description segment and the other its
highest-scoring eligibility segment.

Given these two segments, we add to the training set as positive
examples, the templates (2), (3), and the following:

Query: 𝑝 Document: title: 𝑡title
condition: 𝑡condition
eligibility: 𝑡eligibility
description: 𝑡description Relevant:

(4)

We sample negative segments from negative trials for training.More
specifically, we construct a “hard” negatives set including the three
templates that would come with the highest-scoring monoT5MED
description and eligibility segment for each of the negative trials.
We also have a “weak” negative set that includes any of the seg-
ments from all the negative trials. Then, for each positive template
realized with the segments, we sample with a probability 1

4 a “weak”
negative and with a probability 3

4 a “strong” negative. We include
a smaller fraction of “weak” negatives with the hopes of pushing
our model in the right direction during training, especially if the
“strong” negatives are hard to distinguish from the positives given
the scarcity of training data. We train our model for 1k steps with
a batch size of 128 and a learning rate of 1 · 10−3.

Given this trained model, we run inference in a manner simi-
lar to monoT5MED, using the same sliding-window segmentation
approach and MaxP settings to give us monoT5ECT, monoT5DCT,
and monoT5ACT. We also introduce a new setting, which we dub
monoT5’CT, that takes the highest-scoring monoT5ECT segment

and the highest-scoring monoT5DCT segment, rephrases them us-
ing template (4) and passes this new input through our trained
model. To account for the larger input size, we use a larger input
token limit of 1024, an expansion allowed in T5 because it uses
relative positional embeddings.

We can view this design as an instantiation of multi-stage rank-
ing. Here, instead of enumerating all possible description and eligi-
bility segment pairs (similar to the duoT5 ranking model in Pradeep
et al. [12]), which is a computationally expensive task, we instead
first independently find the highest-scoring description and eligi-
bility segment. We then combine these to give the model additional
context, to better rank the clinical trials. This ends up as our solu-
tion to the “inference problem”. To be clear, all of our settings use
the same trained model.

4 RESULTS
4.1 Neural Query Synthesis
The effectiveness of our neural query synthesis (NQS) technique
is shown in Figure 1, where we plot the nDCG@10 (left) and Re-
call@1k scores (right) for topics from the TREC 2021 Clinical Trials
Track as a function of the number of synthetic queries for the four
different settings described in Section 3.1. Recall that the NQS+PD
settings additionally include the ranked lists attained by querying
with the entire EHR description in the fusion.

In both plots, for the NQS+PDBM25 and NQS+PDBM25+RM3 set-
tings, using zero synthetic queries (i.e., the left edge of the plots)
corresponds to using only the EHR description as the query. We
also call these settings BaseBM25 and BaseBM25+RM3, respectively,
as they represent baseline effectiveness without NQS.

From the left plot, we see that for all four settings, nDCG@10
increases as we increase the number of synthetic queries to around
40. After this point, the effectiveness plateaus and remains roughly
in the same region. Using RM3 yields better scores than BM25,
which is consistent with the literature. We also see that including
the patient description 𝑝 in 𝑄𝑝 results in an effectiveness boost at
smaller values of |𝑄𝑝 |. However, for larger values, we do not see
any value in including 𝑝 . Considering the most effective setting,
NQS+PDBM25+RM3, we find that the model goes from an nDCG@10
score of 0.3539, when the number of synthetic queries is zero, i.e.,
BaseBM25+RM3, to an nDCG@10 score of 0.4726, when the number



Patient Description - #23: A 39-year-old man came to the clinic with
cough and shortness of breath that was not relieved by his inhaler. · · ·

Query 1: causes for wheezing and shortness of breath
Query 2: what could be wrong when a chef has a cough and is short of
breath all of a sudden
Query 3: how often should fluticasone be used for asthma
Query 4: what causes shortness of breath even with inhaler
.
.
.

Table 2: Examples of synthetic queries for the patient de-
scription in Table 1.

of generated queries is 40. This represents a 33.5% relative bump in
terms of nDCG@10.

Moving on to the right plot, we see a slightly different picture.
For all settings, Recall@1k scores increase until the number of
synthetic queries reaches 5, after which scores remain mostly flat
until we add around 80 queries. After this point, Recall@1k drops
gradually until we reach 120 queries, the limit in our experiments.
Here again, BM25 + RM3 performs consistently better. Based on
these two plots, it appears that 40 synthetic queries represents a
good setting to maximize both Recall@1k and nDCG@10.

Table 2 provides a qualitative example of a patient description
topic from the TREC 2021 Clinical Trials Track and four corre-
sponding synthetic queries that are generated by our model. As
we can see, NQS generates diverse queries that capture critical as-
pects of the patient description. For this topic, we note that the first
single-sentence query is concise and includes terms like “wheezing”
and “shortness of breath”. The second captures the occupation of
the patient and includes the term “cough” that could be relevant.
The third query is more scientific and looks for the ideal dosage
of “fluticasone”. The fourth query is a reformulation of the first
query and introduces a new term, “inhaler”. Given that different
synthetic queries capture diverse aspects of the patient descrip-
tion, we can independently issue bag-of-words queries using these
single-sentence long segments and then fuse the results to create a
strong first-stage retriever.

4.2 Multi-Stage Clinical Trial Matching
Table 3 shows the results from the TREC 2021 Clinical Trials Track.
We include scores for the primary metrics nDCG@10, P@10, and
RR. It is worth noting that for measures based on binary judgments,
only trials labeled “eligible” are treated as relevant.

For reference, row (1) provides the median score across all runs
submitted. Rows (2a) and (2b) present the second and third-ranked
submissions (from unique groups) in the track. Rows (3a) and (3b)
present our bag-of-words baselines that use the EHR description
as the query. Row (3c) presents our NQS+PDBM25+RM3 run with
40 synthetic queries. The zero-shot pointwise relevance ranking
models are shown in rows (4a)–(4c). Rows (4d)–(4f) refer to our
domain-specific ranking model. Row (4g) shows the result of the
multi-stage method discussed at the end of Section 3.3. This row
corresponds to the top-scoring run in the evaluation.

As already discussed, moving the first-stage retrieval method
fromBaseBM25+RM3, row (3b), to NQS+PDBM25+RM3, row (3c), brings

Run nDCG@10 P@10 RR
(1) Median 0.3040 0.1613 0.2942
(2a)* damoebrtog 0.5953 0.4093 0.6083
(2b)* CSIROmed_inc 0.5320 0.3173 -
(3a) BaseBM25 0.2923 0.1680 0.3015
(3b)* BaseBM25+RM3 0.3539 0.2040 0.3659
(3c)* NQS+PDBM25+RM3 0.4726 0.2760 0.4304

(4a) + monoT5AMED 0.2994 0.1973 0.3560
(4b) + monoT5DMED 0.2311 0.1507 0.3223
(4c)* + monoT5EMED 0.4715 0.2987 0.4830
(4d) + monoT5ACT 0.6763 0.5480 0.7253
(4e) + monoT5DCT 0.4493 0.3267 0.6260
(4f)* + monoT5ECT 0.6792 0.5493 0.7161
(4g)* + monoT5’CT 0.7118 0.5933 0.8162

Table 3: Results in the TREC 2021 Clinical Trials Track. Rows
corresponding to officially submitted runs are denoted as (·)*.

large improvements in effectiveness across the board. This observa-
tion highlights the benefits of the NQSmethod. All neural rerankers
we describe here use this run as the base run (i.e., first-stage re-
triever). Among the zero-shot neural rankers, rows (4a)–(4c), we
see that only monoT5EMED, row (4c), shows effectiveness compa-
rable to the base run in row (3c). The fact that this simple NQS
method alone performs on par with the state-of-the-art monoT5MED
model (albeit applied in a zero-shot manner) further demonstrates
its effectiveness.

Training the base model on the clinical trial matching task us-
ing templates tailored to the domain brings improvements over
their zero-shot counterparts, rows (4d)–(4f) vs. (4a)–(4c). It is also
clear that scoring only the description segments, row (4e), leads
to worse effectiveness than evaluating all segments or only the
eligibility segments, rows (4d) and (4e), both of which process the
inclusion/exclusion criteria, which are critical parts of the clinical
trial under consideration.

Finally, we see that multi-stage ranking using the clever selection
of the eligibility and description segments and then combining them
using template (4) results in the most effective system across the
board, row (4g). Comparing this run to the second top-scoring
submission, row (2a), we note a 20% relative effectiveness gain
based on the nDCG@10 score, demonstrating the effectiveness of
our architecture.

5 CONCLUSION
In this paper, we design an effective multi-stage clinical trial match-
ing system. We introduced NQS, a neural query synthesis method
that leverages doc2query–T5 to generate synthetic single-sentence
queries to replace lengthy patient descriptions. When these queries
are independently issued using BM25 + RM3 and the results fused
using RRF, the final ranked list is an effective first-stage retrieval
method, performing on par with zero-shot state-of-the-art neu-
ral ranking methods. Additionally, we train a pointwise reranking
model leveraging domain-specific ranking templates to efficiently
learn the matching task in a data-poor regime. We believe these
techniques represent an important step towards better automated
clinical trial matching and can provide a foundation for future work.
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