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ABSTRACT

Do multiple listeners to the public Twitter sample stream re-
ceive the same tweets? Due to limitations on redistribution
of Twitter data, the answer to this question is important for
the replicability and reproducibility of research findings. A
negative answer creates barriers for different research groups
to evaluate algorithms and systems on the same collection
of tweets. We describe a pilot experiment in preparation for
the TREC 2015 Microblog track that answers this question
in the affirmative, which means that an evaluation method-
ology built on geographically dispersed research groups inde-
pendently crawling the Twitter streaming API is feasible.

1. INTRODUCTION

Twitter provides a streaming API through which clients
can obtain a sample of public tweets—this is useful for re-
searchers who are developing real-time information systems
that analyze social media streams, or, alternatively, tweets
can be saved to persistent storage for offline analysis. This
level of access is available to anyone who signs up for an ac-
count. In this paper, we attempt to answer a straightforward
question: do multiple listeners to the public Twitter sample
stream receive the same tweets? Twitter’s API documenta-
tion® would seem to suggest so, but we wish to answer this
question empirically.

The outcome is important for the replicability and repro-
ducibility of research findings. Although anyone can tap into
the streaming API to gather tweets, Twitter’s terms of ser-
vice forbid redistribution of the tweets themselves. Thus, if
research group A publishes a result on a particular collection
of tweets gathered during time period 7', they are prohibited
from directly distributing the tweets on which those findings
are based. Researchers, however, are permitted to share the
ids of the tweets, from which others can “reconstruct” the
dataset by crawling the individual tweets themselves—this
was the data distribution mechanism devised for the TREC
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2011 Microblog track [4]. While tenable for sharing small
collections of tweets, this approach has scalability limita-
tions [2]. However, since anyone can access the streaming
API, another research group B might happen to have also
gathered tweets during the same time period. In this case,
would B be able to replicate the results of A on the same
collection of tweets? This is not an unrealistic scenario, as
many research groups around the world are continuously
gathering tweets for research.

This paper describes a small pilot experiment in prepara-
tion for the TREC 2015 Microblog track that answers this
question. The TREC task this year revolves around mon-
itoring a stream of social media posts (i.e., Twitter) with
respect to a user’s interest profile—the goal is for a system
to push (i.e., recommend or suggest) interesting content to
a user. The evaluation methodology involves participants
independently listening to Twitter’s streaming API to com-
plete the task. Tweets that are returned by systems will be
assessed using a standard pooling methodology. The crit-
ical question, thus, is whether such an evaluation design
is tenable—will geographically dispersed teams listening to
the Twitter stream encounter the same tweets? If no, then
there is no way to structure an evaluation in this manner.
Fortunately, our pilot experiment suggests that the answer
is yes, which gives us some confidence that the evaluation
methodology for the TREC 2015 Microblog track is feasible.

2. EXPERIMENT DESIGN

As part of the community discussion in formulating the
task in the TREC 2015 Microblog track, we asked volunteers
to independently gather tweets from the Twitter streaming
API during a defined period, from March 11, 2015 00:00:00
UTC to March 13, 2015 23:59:59 UTC. This time period
was communicated on the track mailing list and volunteers
were solicited to participate. Following the conclusion of
the crawl period, we asked the volunteers to extract the ids
of the tweets that were gathered and to send us the data
for analysis (along with the hardware configuration of the
system that performed the crawl). The participants were
provided code in Java® built on the popular twitter4j library
to crawl the streaming API as well as code for extracting and
packaging the tweet ids.

In total, four teams participated in this experiment, which
we denote T2, T3, T4, and T5. Details about these crawls
are shown in Table 1. In addition, we have two crawls (T1
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Team | Location | CPU RAM

oS Connection |

T2 Europe 1core 1.75 GB Ubuntu 14.04 0.5 Gbps, wired
T3 USA 4 core 16 GB Red Hat 4.4.7-3 1.0 Gbps, wired
T4 Asia 4 core 8 GB Windows 7 1.0 Gbps, wired
T5 USA 2 core 62 GB Debian Linux 6.0.10 1.0 Gbps, wired
T1 USA Amazon EC2, US East, instance type t2.small

T6 USA Amazon EC2, US West, instance type m1l.small

Table 1: Specifications of the crawls that participated in the experiment.

Crawl | T1 T2 T3 T4 TS T6
T1 - 29994 9995 .9966 .9997 .9994
T2 - - 9997 9967 9996 .9994
T3 - - - 9968 19998  .9996
T4 - - - - 9968 .9966
T5 - - - - - .9996
T6 - - - - - -

Table 2: Pairwise Jaccard overlap between the dif-
ferent crawls.

and T6), which are crawls by us that have been running
continuously for some time. From Table 1, we see a good
variety in terms of hardware configuration, operating sys-
tem, and geographic location. T1 and T6 were crawled
from Amazon’s EC2 service, which provides a comparison
between crawling from virtual vs. physical machines. For all
crawls, T1-T6, we analyzed the gathered tweets from March
11 to March 13 (the crawl period discussed above). For T1
and T6, we additionally analyzed the crawled tweets during
all of March 2015.

In addition to providing access to a (supposedly unbiased)
sample of the tweet stream, Twitter’s streaming API also
allows users to specify a set of keywords or a geographic
bounding box to restrict the retrieved tweets. Previous work
has shown that tweets acquired in this manner may exhib-
ited biases and that they may not be representative of overall
Twitter activity (as reflected in the complete “Firehose”) [3].
A follow-up study shows that multiple instances tracking the
same keywords receive essentially the same tweets [1]. Our
study, however, is different in two substantive ways. First,
we do not utilize filtering based on keywords or geographic
bounding boxes. Second, we are primarily concerned with
whether independent “unfiltered” crawls receive the same
tweets. Our focus is on reproducibility of results, whereas
Morstatter et al. [3] are more concerned with external valid-
ity of conclusions drawn from observing the sample stream.

3. ANALYSIS

In our first analysis, we computed the pairwise similarity
of all participating crawls in term of their Jaccard overlap:
|AN B

Jaccard(A, B) = AUB| (1)

These results are presented in Table 2, which shows that dur-
ing the March 11-13 evaluation period, teams independently
listening to the Twitter stream received almost exactly the
same tweets. The lowest Jaccard observed was 0.9966, while
the highest was 0.9998.

There were 12,785,329 distinct tweets crawled by the six
teams combined, i.e., the cardinality of the union. Table 3

Crawl | Distinct Tweets Missing Tweets
T1 12,781,339 3,990
T2 12,781,706 3,623
T3 12,782,842 2,487
T4 12,746,068 39,261
T5 12,783,638 1,691
T6 12,780,614 4,715
Union 12,785,329 -

Table 3: Total and missing tweets by crawl.

shows the size of each crawl and the number of missing
tweets with respect to this union. We see that crawl T5
was able to gather the most tweets among the teams, while
T4 crawled the fewest tweets (about an order of magnitude
more missing tweets compared to the other crawls). Never-
theless, the fraction of tweets missing from the T4 crawl is
negligible in absolute terms (0.31%).

Cross-referencing the above two tables with the descrip-
tion of the crawls in Table 1, we make a few observations:
First, it appears that the bandwidth requirements of gath-
ering tweet samples from the Twitter streaming API are
relatively modest. Crawl T2 used a connection that has
lower bandwidth than T4 and yet T2 managed to collect
more tweets than T4 did. Second, the CPU and memory
requirements of performing the crawl are similarly modest
as well. This bodes well for evaluations on the sample Twit-
ter stream, as it suggests that a single machine is sufficient
for processing and participants likely do not need to deal
with distributing computations across a cluster (more on
this later). Third, it is unclear if there are any geographic
effects on the crawled tweets: the crawl from Asia had many
more missing tweets, but as previously mentioned, the frac-
tion of missing tweets is negligible overall (0.31%). Finally,
there does not seem to be noticeable differences between
crawling from a virtualized environment (T1 and T6, on
Amazon’s EC2 service) and from physical machines (the
other crawls). One might have expected the managed envi-
ronment of a cloud service to provide an advantage, but this
does not appear to be the case, as three of the four on-site
crawls had fewer missing tweets.

We wanted to gain a better understanding of the miss-
ing tweets from the crawls: in particular, what is their dis-
tribution? Is it a “slow trickle”, i.e., more or less uniform
distribution of missing tweets, or “peaky”, which might cor-
respond to transient issues? This analysis is shown in Fig-
ure 1, which plots the distribution of missing tweets for all
six crawls broken down by hour (total of 72 hours for three
days). Note that the figure plots the distribution (i.e., frac-
tion) of missing tweets; we had to normalize for presentation
purposes since the absolute number of missing tweets varied
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Figure 1: Distribution of missing tweets by hour across all crawls.
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Figure 2: Counts of observed tweets per hour (crawl T5).

by crawl. It is clear that the distributions are non-uniform,
without any apparent patterns. For example, most of the
tweets missing from T'1 are near the beginning of the crawl,
whereas other crawls have missing tweets near the end of
the observation period. The missing tweets from crawl T4,
which had the most missing tweets, were concentrated in a
period between hour 31 and hour 35. These results seem to
suggest that missing tweets arise from transient issues, as
opposed to any persistent systemic effects. These transient
issues might stem from the network, system load, or a va-
riety of other issues, but there is nothing we can definitely
conclude beyond this.

In our next analysis, we focused on the hourly volume of
tweets across the evaluation period. For this, we used crawl
T5, which had the fewest missing tweets overall. Figure 2
shows the number of observed tweets in each hour across the
three days (starting from midnight UTC). We see variations
in tweet volumes that correspond to diurnal cycles of Twit-
ter users (as expected). Note that these volumes represent
the composite activities of Twitter users worldwide, not a
particular time zone. Each day follows the same general pat-
tern, although there are also deviations from the “typical”
daily cycle—for example, near the end of day one.

In Figure 3, we plot the maximum observed tweets per
second across all crawls over the experiment period. The
overall maximum across these three days is 168 and the
minimum is 14. These values are interesting because they
quantify the typical and burst volumes that must be han-
dled for systems wishing to operating on the tweet stream

in real time—as is the case in the setup of the TREC Mi-
croblog track in 2015. These results show that, at least for
the sample stream, only modest processing resources are re-
quired (with modern hardware). That is, participants likely
do not need a distributed online processing framework such
as Spark Streaming [6].

The analyses above compare six different crawls from the
evaluation period of March 11 to March 13. However, for
two of the crawls (T1 and T6), we have tweets gathered from
a much longer time frame: our final analysis compared these
two crawls across all of March (from the Ist to the 31th,
inclusive). We find that T1 crawled 140,993,129 tweets and
T6 crawled 140,980,902 tweets, with 140,994,338 tweets in
the union. The observed Jaccard is 0.9998. These results
suggest that nearly perfect overlap is observed across longer
periods of time.

Finally, Figure 4 plots the number of tweets gathered per
day throughout all of March. We see that the lines for both
T1 and T6 are nearly identical. Another interesting observa-
tion is that we do not see any clear weekly patterns, unlike in
previous work [5]. That work, however, was over all tweets
and restricted to certain geographic areas, so perhaps some
differences are to be expected.

4. CONCLUSION

Twitter presents unique challenges from the perspective
of evaluation for both technical and non-technical reasons,
which has necessitated the development of novel evaluation
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Figure 3: Maximum of tweets observed per second (across all crawls).
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methodologies for community evaluations such as TREC.
These new methodologies require validation before their re-
sults can be considered trustworthy. In this paper, we ex-
plored an evaluation approach where multiple geographi-
cally dispersed teams independently crawl the public Twit-
ter sample stream. Analyses show that teams receive nearly
the same set of tweets, which means that it is possible to
run a “true” real-time evaluation using Twitter data using
this approach.
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