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Abstract: Nogueira et al. [7] used a simple sequence-to-sequence transformer [9] for document
expansion. We replace the transformer with T5 [8] and observe large effectiveness gains.

Code and Data: https://github.com/castorini/docTTTTTquery

The idea behind doc2query [7], a form of document expansion, is to train a model, that when given
an input document, generates questions that the document might answer. These predicted questions
are then appended to the original documents, which are then indexed as before.

The setup in this work follows doc2query, but with T5 [8] as the expansion model. T5 is a sequence-to-
sequence model that uses a similar pretraining objective as BERT [3] to pretrain its encoder-decoder
architecture. In this model, all target tasks are cast as sequence-to-sequence tasks. In our case, we
feed as input the passage and train the model to generate the question. We train the model with a
constant learning rate of 10−4 for 4k iterations with batches of 256, which corresponds to 2 epochs
with the MS MARCO training set. We use a maximum of 512 input tokens and 64 output tokens. In
the MS MARCO dataset, none of the inputs or outputs have to be truncated when using these lengths.
Similar to Nogueira et al. [7], we find that the top-k sampling decoder [4] produces more effective
queries than beam search. We use k = 10. In all experiments, we use T5-base as we did not notice
any improvement in retrieval effectiveness with the large model. We did not experiment with T5-3B
and T5-11B due to their computational cost.

We use Google’s TPU v3s to train and run inference. Training takes less than 1.5 hours on a single
TPU. For inference, sampling 5 queries per document for 8.8M documents requires approximately
40 hours on a single TPU, costing $96 USD (40 hours × $2.40 USD/hour) using preemptible TPUs.
Note that inference is trivially parallelizable and linear with respect to the number of samples.

All expanded documents are then indexed with the Anserini IR toolkit [10] (post-v0.6.0); the expanded
queries are appended to the original documents, but not specially delimited. For evaluation, dev/test
questions are issued against the index as “bag of words” queries, using the BM25 ranking function
with Anserini’s default parameters.

Table 1 shows results in terms of effectiveness on the dev and test sets as well as query latency.
Latency for docTTTTTquery is the average time to retrieve 1000 documents per query on an Intel
Xeon E5-2690v4 2.6GHz CPU “Broadwell” with 64GB of memory. The BM25 + BERT Large
latency figures are copied from Nogueira et al. [7]. Since neural inference is applied prior to indexing,
the increase in query latency is attributable solely to longer documents. Note that in a multi-stage
reranking architecture, this represents the initial candidate generation stage; other techniques, such as
mono/duoBERT [6], can be applied to further improve effectiveness. We have not done so (yet).

Table 1 also provides points of comparison: BM25 (Anserini) baseline; doc2query and BERT-based
reranking (high score but very slow), both taken from Nogueira et al. [7]; Hofstätter et al. [5], which
is, from what we can tell, the best non-ensemble, non-BERT method from the leaderboard with an
associated paper; and DeepCT [2], a recently-introduced BERT-based document expansion method.

We also evaluate the queries produced by the models against the ground truth dev queries in terms of
BLEU: docTTTTTquery scores 0.21 BLEU, which is much higher than doc2query, 0.088 BLEU.
We attribute this large difference in output quality to pretraining and not to the size of the model

https://github.com/castorini/docTTTTTquery


MRR@10 R@1000 Latency
Dev Test Dev (ms/query)

BM25 (Anserini) 0.184 0.186 0.853 55
doc2query, top-k, 10 samples 0.218 0.215 0.891 61

docTTTTTquery, top-k, 5 samples 0.259 - 0.929 58
docTTTTTquery, top-k, 10 samples 0.265 - 0.939 61
docTTTTTquery, top-k, 20 samples 0.272 - 0.944 62
docTTTTTquery, top-k, 40 samples 0.277 0.272 0.947 64
docTTTTTquery, top-k, 80 samples 0.278 - 0.945 66

DeepCT [2] 0.243 0.239 0.913 55
Best non-ensemble, non-BERT [5] 0.290 0.277 - -
BM25 + BERT Large [7] 0.375 0.368 0.853 3,500

Table 1: Main results on MS MARCO the passage retrieval task.

itself, as even the T5-small model, which has a similar number of parameters as the doc2query model,
achieves 0.18 BLEU.

Interestingly, doc2query and docTTTTTquery produce similar proportions of copied (67%) and
new words (33%) with respect to the original document. This analysis was performed for both
models using 10 samples drawn from the top-k sampling decoder; stopwords are not considered
when computing these statistics. As noted by Nogueira et al. [7], copying terms has the effect of
term re-weighting while expanding with new terms mitigates the vocabulary mismatch problem, thus
increasing recall.
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