
Infrastructure for Supporting Exploration
and Discovery in Web Archives

Jimmy Lin1,2,3, Milad Gholami2,3, Jinfeng Rao2,3

1The iSchool, 2Institute for Advanced Computer Studies, 3Dept. of Computer Science
University of Maryland, College Park

jimmylin@umd.edu, mgholami@cs.umd.edu, jinfeng@cs.umd.edu

ABSTRACT
Web archiving initiatives around the world capture ephem-
eral web content to preserve our collective digital memory.
However, unlocking the potential of web archives requires
tools that support exploration and discovery of captured
content. These tools need to be scalable and responsive,
and to this end we believe that modern“big data” infrastruc-
ture can provide a solid foundation. We present Warcbase,
an open-source platform for managing web archives built
on the distributed datastore HBase. Our system provides a
flexible data model for storing and managing raw content as
well as metadata and extracted knowledge. Tight integra-
tion with Hadoop provides powerful tools for analytics and
data processing. Relying on HBase for storage infrastruc-
ture simplifies the development of scalable and responsive
applications. We describe a service that provides tempo-
ral browsing and an interactive visualization based on topic
models that allows users to explore archived content.

Categories and Subject Descriptors: H.3.4 [Information
Storage and Retrieval]: Systems and Software—Distributed
systems

Keywords: HBase; Hadoop

1. INTRODUCTION
Web archiving refers to the systematic collection and pre-

servation of web content for future generations. Since 1996,
the Internet Archive has captured and made publicly ac-
cessible hundreds of billions of web pages totaling over ten
petabytes. Today, many libraries, universities, and other or-
ganizations have ongoing web archiving initiatives [10]. At
an intuitive level, it is obvious why such activities are valu-
able. The web has become an integral part of our daily lives
and captures our “collective memory”, recording everything
from major world events to the rhythm of commerce. Even
personal minutiae are valuable in that they offer a snapshot
of our society, much in the same way that a diary from the
17th century provides insight into what the world was like

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2579045.

back then. It would not be an exaggeration to say that the
web has become an important part of our cultural heritage,
just as worthy of preservation as old books and historical
buildings. Since web pages are ephemeral and disappear
with great regularity [19], the only sure way of preserving
web content for posterity is to proactively crawl and store
portions of the web.

Ultimately, web archives are only useful if they provide
mechanisms for users to access their contents. These may
be historians digging in the digital past, digital humanists
reinterpreting historical documents, lawyers looking for ev-
idence of malfeasance, or journalists trying to recover lost
stories. In this respect, we feel that web archives fall short
of an unequivocal success. While the Internet Archive boasts
impressive access statistics,1 a recent presentation by Hockx-
Yu of the British Library paints a more muted picture of
scholarly use [13]. The usage statistics of many national
web archives are depressingly low. Although ethical and le-
gal restrictions hamper broad web-based access, there are
additional technical hurdles that prevent web archives from
living up to their full potential.

We believe that there is a lack of responsive, scalable
tools to support exploration and discovery in web archives,
and that the construction of such tools requires modern
“big data” infrastructure to provide a stable foundation. To
this end, we present Warcbase, an open-source platform
for managing web archives.2 Our platform takes advan-
tage of HBase, the open-source implementation of Google’s
Bigtable [5], for storing web content, metadata, and ex-
tracted knowledge. We rely on Hadoop, the open-source im-
plementation of the MapReduce programming model [8], for
scalable analytics and data processing. Warcbase provides
browsing capabilities that allow users to access historical
versions of captured web pages, similar to the Wayback Ma-
chine. On top of this infrastructure, we describe processing
pipelines for analyzing web content and an interactive visu-
alization based on topic models that supports exploration
and discovery. While none of the techniques presented in
this paper are novel, we feel that our contribution lies in
articulating the design of a web archiving platform that in-
tegrates a number of mature open-source technologies.

2. BACKGROUND AND RELATED WORK
Web archiving is a complex activity that includes many

interlocking processes and workflows, many of which are not

1
twitter.com/brewster_kahle/status/364834158285041665

2
warcbase.org

851



primarily technical in nature. Any effort begins with decid-
ing what material to archive, the scope of collection efforts,
and the periodicity of acquisition attempts—these decisions
are primarily based on the objectives of the organization
and the amount of resources available. Then comes the task
of crawling itself, a non-trivial engineering feat. Despite its
conceptual simplicity, crawling at volume is non-trivial, and
many aspects of crawl management are more of an art than
a science. These aspects of web archiving are not the fo-
cus of our work—we simply assume that web content has
already been harvested and stored in standard WARC or
ARC containers.

Researchers and practitioners have developed a number
of open-source tools for managing web archives. The most
basic of these capabilities is to browse archived content—to
view a particular version of a web page, to move forward and
backward in time to examine different captured versions,
and to follow links to contemporaneous pages. The open-
source Wayback Machine3 is the most popular and widely
deployed application that provides these capabilities. How-
ever, the system was primarily designed to run on a sin-
gle server and engineered as a monolithic, tightly-integrated
stack—as a result, it can be difficult to scale in produc-
tion environments. In particular, CDX-based indexes are
cumbersome to maintain and update for large collections.
While it is possible to scale by exploiting more powerful in-
dividual servers backed by network-attached storage with
large capacities, this is an expensive proposition. Running
multiple Wayback instances over a partitioned collection is
possible, but the software itself does not provide any guid-
ance on how to integrate temporal browsing services with
large-scale storage infrastructures. We believe that Warc-
base provides a solution to these challenges: by using HBase
to manage storage, we can scale out on commodity machines
using proven infrastructure (HDFS), and temporal browsing
can be supplied by a lightweight HBase client.

Browsing capabilities are only useful if one knows the
exact URL of the desired content. Since this is often not
the case, temporal search capabilities are the next most de-
sired feature in web archives [7]. Unfortunately, most web
archives do not support full-text search, with a few excep-
tions such as the Portuguese Web Archive [9], the British Li-
brary, and the Internet Archive’s Archive-It service. There
has been academic work on searching timestamped collec-
tions [18, 12, 3, 11, 22], but these systems have not been
deployed in production at scale. Regardless, most previous
work on full-text search in web archives has focused on tech-
nical issues such as the layout and organization of inverted
index structures and index compression optimizations. Al-
though important, such work is not sufficient, as we have
little insight on archive-based search tasks and the types of
interfaces that are needed to support them. While temporal
search is an important problem, it is not the focus of our
project. However, there has been work in integrating search
into the Hadoop environment (e.g., Cloudera Search4) that
we hope to leverage in the future.

Big data technologies such as Hadoop, HBase, and Pig
have rapidly matured over the past few years. Hadoop
has emerged as the de facto standard platform for large-
scale data analytics, with widespread adoption in industry

3
github.com/iipc/openwayback

4
blog.cloudera.com/blog/2013/06/cloudera-search

and substantial research interest from academia. HBase, in
part due to its tight integration with the Hadoop ecosystem,
has gained significant popularity for storing semi-structured
data and for applications that require low-latency access.
However, there are surprisingly few studies applying Hadoop
and HBase to web archiving and, more generally, cultural
preservation. A comprehensive review of big data technolo-
gies is beyond the scope of this paper, so here we focus
specifically on archives, libraries, and other cultural her-
itage institutions. Rasheed [21] explored using the Hadoop
Distributed File System (HDFS) as the storage backend
for the Fedora Commons digital object repository system.
The feasibility study confirmed that such a design was in-
deed possible and provided attractive properties, but Fe-
dora Commons was not specifically designed for web archiv-
ing. Neudecker and Schlarb described Hadoop-based work-
flows at the Austrian and Dutch national libraries [17], but
their study was exploratory in nature. While the Internet
Archive uses Hadoop for certain processing and analytical
tasks, the platform is not widely deployed within the orga-
nization. HBase has been used for assisting in the web crawl-
ing process, but deployment is at best limited.5 Mignify [2]
is a platform for storing web documents as well as extracted
knowledge in HBase. It shares many of the goals of our
project, but unlike our effort, is not open-source.

3. ARCHITECTURE AND DATA MODEL
This section describes the data model of our open-source

Warcbase platform for web archiving. We present an ap-
plication for temporal browsing and elaborate on the ad-
vantages of HBase in supporting scalable data processing
via Hadoop MapReduce and management of knowledge ex-
tracted from raw web content. We conclude by describ-
ing a prototype interactive visualization for exploring web
archives based on topic modeling.

HBase is best described as a sparse, persistent, multiple-
dimensional sorted map.6 An HBase table maintains a map-
ping from a 4-tuple to arbitrary values as follows:

(row key, column family, column qualifier,
timestamp) → value

Conceptually, values are identified by rows and columns. A
row is identified by its row key. Each column is decomposed
into “family” and “qualifier”, where the family provides a
mechanism for the developer to specify groupings of quali-
fiers that should be physically co-located. The timestamp
supports storage of multi-versioned values. Rows are lexico-
graphically sorted, and thus an important element in HBase
schema design is to leverage this property for the applica-
tion’s benefit. HBase provides a number of basic operations
on the client end, including gets, puts, and range scans,
along with so-called co-processors that allow processing to
be pushed over to the server side. The consistency model
guarantees single row transactions, but nothing more.

A table in HBase is divided into regions, which are ranges
of consecutive rows. Each region is assigned to a Region-
Server, which is responsible for handling operations on rows
in the assigned regions. RegionServers coordinate assign-
ment of regions via ZooKeeper [14], a highly-available repli-
cated state machine and coordination service. HBase data
5Internet Archive, personal communication.
6Although HBase is derived from Google’s Bigtable [5], in this
paper we adopt the terminology of HBase.

852



are physically stored in HFiles, which reside on the Hadoop
Distributed File System (HDFS). HDFS achieves durabil-
ity and availability through replication, and HBase benefits
from this design transparently. The entire stack was de-
signed to be fault-tolerant and scalable, and in production
has been demonstrated to scale to petabytes [1].

Since one of Bigtable’s original use case was storing web
crawls, schema design for Warcbase is relatively straightfor-
ward. In Warcbase, each collection is kept in a separate
HBase table. We assume that each resource (e.g., web page,
image, PDF, etc.) can be uniquely identified by its URL
and a timestamp (the crawl date). Each resource’s domain-
reversed URL serves as its row key, i.e., www.house.gov be-
comes gov.house.www. This design allows different pages
from the same domain to be physically kept together, thus
allowing client requests to benefit from reference locality.
The raw content of a resource (HTML, PDF, image, etc.) is
stored as a value in the column family “c” with the MIME
type (e.g., “text/html”) as the qualifier. Each version of
the crawl has a different timestamp. The use of the MIME
type as the column qualifier saves us from a separate query,
compared to an alternative design in which the MIME type
is stored separately. The tradeoff, however, is that we no
longer know the qualifier a priori when issuing a “get” to
fetch a resource, and therefore must execute a (short) scan
of the columns. This, however, does not have a material
performance impact since in many cases we do not know
the exact timestamp of a resource and need to scan through
different versions to find the most appropriate one anyway.

As previously discussed, web crawling is beyond the scope
of our work, as we assume that content has already been cap-
tured in existing ARC or WARC containers—we have built
an ingest program that populates the appropriate HBase
table according to this schema.

In addition to the raw content, HBase provides a flexible
and extensible framework for storing extracted information
alongside the raw content, thus allowing us to accumulate
rich metadata and knowledge about the archived resources.
Metadata are stored in separate column families: because
qualifiers belonging to different column families are physi-
cally separated, operations on metadata will be more effi-
cient since they will not require scanning the much larger
column family holding the raw content. Within the meta-
data column family, extracted information such as language,
plain text extracted from HTML pages, etc., are kept as val-
ues with different qualifiers. Finally, hyperlinks and anchor
text are separately handled, since links are a pervasive and
important part of the web. Following Chang et al. [5], we
reserve a special column family “a”. In it, source URLs serve
as qualifiers, with the anchor texts as values.

3.1 Browsing Captured Web Content
Once a web crawl has been ingested into Warcbase, HBase

handles the complexities of storage management in a scal-
able, fault-tolerant, and distributed manner. This includes
maintaining the mapping from rows to RegionServers re-
sponsible for serving the records, splitting regions as more
data are ingested, rebalancing region-to-RegionServer as-
signments, etc. When a RegionServer fails, HBase trans-
parently handles failover to ensure availability. Underneath
HBase, HDFS handles replication and other aspects of man-
aging the raw data blocks. Because of this design, user-

Figure 1: Screenshot of the Warcbase browser which
provides access to archived content.

facing services can be implemented as HBase clients that
encapsulate the custom application logic.

The Warcbase browser is one such application. It is writ-
ten as a Jetty service that provides a webapp to the user.
A standard webform allows the user to enter a URL and
select a version of the content to examine. A screenshot is
shown in Figure 1. Currently, we have been experimenting
with crawls of the U.S. Congress in collaboration with the
Library of Congress (more details later). On top of the ren-
dered page a banner supplies metadata, including the URL
of the content and the number of captured versions avail-
able. Clicking on a link takes the user to a contemporaneous
version of the target page inside the archive.

The browser maintains a persistent connection to HBase
and translates users’ input into appropriate HBase queries.
Retrieved raw content is transformed on the fly for correct
page rendering, i.e., redirecting image links to content inside
Warcbase and rewriting hyperlinks to point to a contempo-
raneous version inside the archive. Following the design of
the Wayback Machine, all resources in the archive can be
referenced with the following URL scheme:

congress108/20040124034300/http://www.house.gov/

which specifies the collection, the timestamp, and the URL
requested. If a resource is not available with a matching
timestamp, the closest version is returned.

The Warcbase browser mirrors the functionalities of the
Wayback Machine (down to the URL schema) but has sev-
eral advantages. The browser handles user interactions and
page rendering, while offloading the storage management to
HBase. This separation of concerns leads to a cleaner over-
all architecture and a much higher degree of scalability—the
size of the web archive is limited only by the scalability of
HBase itself, and since the browser service is stateless, we
can load balance across multiple instances easily.

3.2 Scalable Analytics
Our use of HBase to store web archives provides two ad-

ditional advantages. First, we gain access to tools in the
Hadoop ecosystem for analytics and data processing. HBase
seamlessly integrates with Hadoop MapReduce as both a
data source and a data sink, which means that HBase rows

853



can serve as input key–value pairs to MapReduce jobs and
that reducer output can be written back into HBase tables.
HBase also integrates seamlessly with higher-level dataflow
languages built on Hadoop and other open-source packages.
Second, our data model provides a flexible and extensible
framework for storing extracted information in HBase along-
side the raw content, thus allowing us to accumulate rich
metadata and knowledge about the archived resources.

In the simplest case, with Hadoop MapReduce we have
a flexible scale-out execution framework to run analytical
pipelines on web content in an embarrassingly-parallel man-
ner. Components in a basic pipeline might perform webpage
cleanup, boilerplate removal, language identification, and
conversion of PDF and other file formats into plain text.
A more advanced processing pipeline might apply natural
language processing tools, starting with sentence chunking,
part-of-speech tagging, named-entity recognition, and rela-
tion extraction. At each stage, intermediate data can be
stored and managed in HBase, e.g., in a separate column
family. Clients can easily access metadata and extracted
knowledge for a wide variety of applications.

Beyond simple per-document processing, we have also im-
plemented basic tools for extracting and manipulating web-
graphs from archived content. We begin by first constructing
a mapping from URLs to unique integer ids. Minimal finite-
state transducers (FSTs) provide a compact and efficient
way of encoding such a mapping (we use the implementa-
tion in the open-source Lucene search engine). With this
mapping, we can then straightforwardly extract the web-
graph contained in the archive and encode it using a com-
pact integer-based adjacency list representation. From this,
it is easy to run a variety of graph algorithms such as Page-
Rank using well-known implementations [15]. One challenge
of webgraphs in web archives is that the hyperlinks are of-
ten “temporally entangled”. We need to make sure that a
hyperlink does not to point to a future or past version of
the page. Similarly, a web page should only receive an in-
bound link from a contemporaneous page. We solve the
problem in a manner similar to Gomes et al. [9] by leverag-
ing the fact that most web content is gathered in periodic
(e.g., monthly) crawls, and thus we can process the web-
graph from each crawl separately. We can easily determine
where these “break points” should be with a Hadoop job to
build a histogram of document timestamps.

In many cases, however, we do not believe that Map-
Reduce is the best abstraction for data analytics and build-
ing analytical pipelines. Writing raw Hadoop MapReduce
programs is slow and verbose. In industry, where data sci-
entists are more interested in insights than algorithms, using
a higher-level dataflow language has become the norm. One
popular choice is Pig [20], which is a high-level dataflow lan-
guage that “compiles down” to Hadoop jobs. Pig allows the
user to manipulate large datasets in terms of relational oper-
ations such as group bys, joins, projections, etc. Along with
many built-in primitives for manipulating atomic datatypes,
Pig allows arbitrary code to be executed via custom user-
defined functions (UDFs). This dataflow language allows
users to perform complex analytical processing without writ-
ing Hadoop code in Java, potentially opening up the con-
tents of web archives to users with more limited technical
backgrounds. As a simple example, a Pig script to perform
anchor text inversion, a standard webgraph processing task,
takes only around half a dozen lines. Scripts to perform

Figure 2: Interactive visualization of topic models.

temporal trend analysis, e.g., to generate graphs similar to
the Google n-gram browser, are similarly succinct.

Finally, since HBase is well integrated into the Hadoop
ecosystem, we gain access to a variety of open-source tools
for complex data analysis. Examples include different pro-
cessing frameworks such as Apache Giraph [16], specifically
designed for iterative graph processing, and Spark [23], an
alternative general-purpose data analytics engine capable of
taking advantage of distributed memory. Additional exam-
ples include Apache Mahout, a popular package for machine
learning at scale, and Mr.LDA [24], which provides a scalable
MapReduce implementation of Latent Dirichlet Allocation
(LDA) and related topic modeling techniques.

3.3 Exploration and Discovery
To illustrate how Warcbase enables applications that sup-

port exploration and discovery in web archives, we present
an interactive visualization that takes advantage of topic
modeling. The problem we are attempting to address is
that users of an archive often don’t know “where to start”
and desire a tool that provides an overview of collection
content. Latent Dirichlet Allocation (LDA) [4] is a popular
technique for uncovering latent “topics” that are in the form
of multinomial distributions over terms.

Currently, we view the collection as a sequence of tempo-
ral slices, where each slice corresponds to a monthly crawl.
On each slice we run LDA, and the induced topic models
are then visualized with a custom variant of Termite [6], as
shown in Figure 2. The main visualization area displays a
person-by-topic matrix, where the rows represent websites
that are associated with U.S. senators and the columns rep-
resent the topics (due to space restrictions not all senators
are shown). Names of Democrats are shown in blue and

854



Republicans in red; the sizes of the circles encode the preva-
lence of topics on that senator’s website. Although there are
quality issues due to the noisy nature of web pages, we can
clearly identify topics that are part of the political discourse,
e.g., topic 1 is about the environment, topic 2 is about Iraq,
topics 9 and 10 are both about health care, topic 18 is about
education, etc. Our interface provides drill-down capabili-
ties whereby users can examine pages in which a topic is
prominently expressed. We hope that such a tool provides
a useful entry point for browsing archived content.

4. CURRENT STATUS
We have completed a working prototype of Warcbase in

Java that includes components of all the functionalities de-
scribed in this paper, including the core data model, the tem-
poral browsing application, bindings for Pig support, simple
analytical pipelines, and a simple interactive visualization
based on topic models. Development and experimentation
have been conducted on a Hadoop (YARN) and HBase clus-
ter running Cloudera’s Distribution of Hadoop (CDH) at the
University of Maryland. The cluster comprises 16 compute
nodes, each of which has two quad-core Xeon processors,
24GB RAM, and three 2TB disks.

Our current working dataset is a crawl of the 108th U.S.
Congress gathered by the Library of Congress. It can be
characterized as a “narrow but deep” crawl of the websites
of members of the House of Representatives and the Senate
from January 2003 to January 2005 at monthly intervals.
The collection totals 1.15 TB of gzipped ARC files, contain-
ing approximately 29 million captures of 7.8 million unique
URLs; of those, 23.8 million captures are HTML pages. We
are exploring novel uses of this archive for applications in
computational social science and digital humanities.

5. CONCLUSION
This paper presents Warcbase, an open-source platform

for web archiving built on HBase and Hadoop. Since our
system is built on proven “big data” technologies, it provides
a scalable foundation for content analytics and applications
that support exploration and discovery. We described an in-
teractive visualization tool based on topic models, and pos-
sibilities abound for future innovative applications that help
users derive value from web archives.

6. ACKNOWLEDGMENTS
This work has been supported by NSF under awards IIS-
1144034 and IIS-1218043. Any opinions, findings, conclu-
sions, or recommendations expressed are the authors’ and
do not necessarily reflect those of the sponsor. We thank
the Library of Congress for providing web archive data and
Andy Jackson for helpful comments. The first author is
grateful to Esther for her loving support and dedicates this
work to Joshua and Jacob.

7. REFERENCES
[1] A. Aiyer, M. Bautin, G. Chen, P. Khemani,

K. Muthukkaruppan, K. Spiegelberg, L. Tang, and
M. Vaidya. Storage infrastructure behind Facebook
Messages: Using HBase at scale. IEEE Data
Engineering Bulletin, 35(2):4–13, 2012.

[2] S. Barton. Mignify: A big data refinery built on
HBase. HBaseCon, 2012.

[3] K. Berberich, S. Bedathur, T. Neumann, and
G. Weikum. A time machine for text search. SIGIR,
2007.

[4] D. Blei, A. Ng, and M. Jordan. Latent dirichlet
allocation. JMLR, 3:993–1022, 2003.

[5] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. Gruber. Bigtable: A distributed storage system for
structured data. OSDI, 2006.

[6] J. Chuang, C. Manning, and J. Heer. Termite:
Visualization techniques for assessing textual topic
models. AVI, 2012.

[7] M. Costa, D. Gomes, F. Couto, and M. Silva. A
survey of web archive search architectures. WWW
Companion, 2013.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. OSDI, 2004.

[9] D. Gomes, D. Cruz, J. Miranda, M. Costa, and
S. Fontes. Search the past with the Portuguese web
archive. WWW Companion, 2013.

[10] D. Gomes, J. Miranda, and M. Costa. A survey on
web archiving initiatives. TPDL, 2011.

[11] J. He, J. Zeng, and T. Suel. Improved index
compression techniques for versioned document
collections. CIKM, 2010.

[12] M. Herscovici, R. Lempel, and S. Yogev. Efficient
indexing of versioned document sequences. ECIR,
2007.

[13] H. Hockx-Yu. Scholarly use of web archives, 2013.

[14] P. Hunt, M. Konar, F. Junqueira, and B. Reed.
ZooKeeper: Wait-free coordination for Internet-scale
systems. USENIX, 2010.

[15] J. Lin and C. Dyer. Data-Intensive Text Processing
with MapReduce. Morgan & Claypool Publishers, 2010.

[16] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A system for
large-scale graph processing. SIGMOD, 2010.

[17] C. Neudecker and S. Schlarb. The elephant in the
library: Integrating Hadoop. Hadoop Summit Europe,
2013.

[18] K. Nørv̊ag. Space-efficient support for temporal text
indexing in a document archive context. ECDL, 2003.

[19] A. Ntoulas, J. Cho, and C. Olston. What’s new on the
web? the evolution of the web from a search engine
perspective. WWW, 2004.

[20] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A not-so-foreign language for
data processing. SIGMOD, 2008.

[21] M. Rasheed. Fedora Commons with Apache Hadoop:
A research study. code4lib Journal, 22, 2013.

[22] S. Song. Long-Term Information Preservation and
Access. PhD thesis, University of Maryland, 2010.

[23] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. Franklin, S. Shenker, and I. Stoica.
Resilient Distributed Datasets: A fault-tolerant
abstraction for in-memory cluster computing. NSDI,
2012.

[24] K. Zhai, J. Boyd-Graber, N. Asadi, and M. Alkhouja.
Mr. LDA: A flexible large scale topic modeling
package using variational inference in MapReduce.
WWW, 2012.

855




