
Pyserini: A Python Toolkit for Reproducible Information
Retrieval Research with Sparse and Dense Representations

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin,

Jheng-Hong Yang, Ronak Pradeep, and Rodrigo Nogueira

David R. Cheriton School of Computer Science

University of Waterloo, Ontario, Canada

ABSTRACT
Pyserini is a Python toolkit for reproducible information retrieval

research with sparse and dense representations. It aims to pro-

vide effective, reproducible, and easy-to-use first-stage retrieval in

a multi-stage ranking architecture. Our toolkit is self-contained

as a standard Python package and comes with queries, relevance

judgments, pre-built indexes, and evaluation scripts for many com-

monly used IR test collections. We aim to support, out of the box,

the entire research lifecycle of efforts aimed at improving ranking

with modern neural approaches. In particular, Pyserini supports

sparse retrieval (e.g., BM25 scoring using bag-of-words representa-

tions), dense retrieval (e.g., nearest-neighbor search on transformer-

encoded representations), as well as hybrid retrieval that integrates

both approaches. This paper provides an overview of toolkit fea-

tures and presents empirical results that illustrate its effectiveness

on two popular ranking tasks. Around this toolkit, our group has

built a culture of reproducibility through shared norms and tools

that enable rigorous automated testing.

CCS CONCEPTS
• Information systems → Information retrieval.

KEYWORDS
Open-Source Search Engine; First-Stage Retrieval

ACM Reference Format:
Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak

Pradeep, and Rodrigo Nogueira. 2021. Pyserini: A Python Toolkit for Re-

producible Information Retrieval Research with Sparse and Dense Rep-

resentations. In Proceedings of the 44th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (SIGIR ’21), July
11–15, 2021, Virtual Event, Canada. ACM, New York, NY, USA, 7 pages.

https://doi.org/10.1145/3404835.3463238

1 INTRODUCTION
The advent of pretrained transformers has led to many exciting

recent developments in information retrieval [16]. In our view, the

two most important research directions are transformer-based re-

ranking models and learned dense representations for ranking. De-

spite many exciting opportunities and rapid research progress, the

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8037-9/21/07.

https://doi.org/10.1145/3404835.3463238

need for effective, reproducible baselines has remained a constant.

In particular, the importance of stable first-stage retrieval within a

multi-stage ranking architecture [5, 25, 34] has become even more

important, as it provides the foundation for increasingly-complex

modern approaches that leverage hybrid techniques.

We present Pyserini, our Python IR toolkit designed to serve this

role: it aims to provide a solid foundation to help researchers pursue

work on modern neural approaches to information retrieval. The

toolkit is designed to support the complete “research lifecycle” of

systems-oriented inquiries aimed at building better ranking models,

where “better” can mean more effective, more efficient, or some

tradeoff thereof. This typically involves working with one or more

standard test collections to design ranking models as part of an

end-to-end architecture, iteratively improving components and

evaluating the impact of those changes. In this context, our toolkit

provides the following key features:

• Pyserini is completely self-contained as a Python package, avail-

able via pip install. The package comes with queries, collec-

tions, and qrels for standard IR test collections, as well as pre-built

indexes and evaluation scripts. In short, batteries are included.

Pyserini supports, out of the box, the entire research lifecycle of

efforts aimed at improving ranking models.

• Pyserini can be used as a standalone module to generate batch

retrieval runs or be integrated as a library into an application

designed to support interactive retrieval.

• Pyserini supports sparse retrieval (e.g., BM25 scoring using bag-

of-words representations), dense retrieval (e.g., nearest-neighbor

search on transformer-encoded representations), as well hybrid

retrieval that integrates both approaches.

• Pyserini provides access to data structures and system internals

to support advanced users. This includes access to postings, doc-

ument vectors, and raw term statistics that allow our toolkit to

support use cases that we had not anticipated.

Pyserini began as the Python interface to Anserini [38, 39], which

our group has been developing for several years, with its roots in a

community-wide reproducibility exercise dating back to 2015 [15].

Anserini builds on the open-source Lucene search library and was

motivated by the desire to better align academic research with the

practice of building real-world search applications; see, for exam-

ple, Grand et al. [9]. More recently, we recognized that Anserini’s

reliance on the Java Virtual Machine (due to Lucene) greatly limited

its reach [2, 3], as Python has emerged as the language of choice for

both data scientists and researchers. This is particularly the case for

work on deep learning today, since the major toolkits (PyTorch [29]

and Tensorflow [1]) have both adopted Python as their front-end

This work is licensed under a Creative Commons Attribution International 4.0 License.

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8037-9/21/07.
https://doi.org/10.1145/3404835.3463238

Resource Paper I SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

2356

https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3404835.3463238
https://creativecommons.org/licenses/by/4.0/

language. Thus, Pyserini aims to be a “feature-complete” Python

interface to Anserini.

Sparse retrieval support in Pyserini comes entirely from Lucene

(via Anserini). To support dense and hybrid retrieval, Pyserini inte-

grates Facebook’s Faiss library for efficient similarity search over

dense vectors [12], which in turns integrates the HNSW library [23]

to support low-latency querying. Thus, Pyserini provides a superset

of features in Anserini; dense and hybrid retrieval capabilities are

entirely missing from the latter.

This paper is organized as follows: After a preamble on our

design philosophy, we continue with a tour of Pyserini, highlighting

its main features and providing the reader with a sense of how it

might be used in a number of common scenarios. This is followed

by a presentation of empirical results illustrating the use of Pyserini

to provide first-stage retrieval for two popular ranking tasks today.

2 DESIGN PHILOSOPHY
The design of Pyserini emphasizes ease of use and reproducibility.

Larry Wall, the creator of the Perl programming language, once

remarked that “easy things should be easy, and hard things should

be possible.” While aspects of the lifecycle for systems-oriented IR

research are not difficult per se, there are many details that need to

be managed: downloading the right version of a corpus, building

indexes with the appropriate settings (tokenization, stopwords, etc.),

downloading queries and relevance judgments (deciding between

available “variants”), manipulating runs into the correct output

format for the evaluation script, selecting the right metrics to obtain

meaningful results, etc. The list goes on. These myriad details often

trip up new researchers who are just learning systems-oriented

IR evaluation methodology (motivating work such as Akkalyoncu

Yilmaz et al. [2]), and occasionally subtle issues confuse experienced

researchers as well.
1
The explicit goal of Pyserini is to make these

“easy things” easy, supporting common tasks and reducing the

possibility of confusion as much as possible.

At the other end of the spectrum, “hard things should be pos-

sible”. In our context, this means that Pyserini provides access to

data structures and system internals to support researchers who

may use our toolkit in ways we had not anticipated. For sparse

retrieval, the Lucene search library that underlies Anserini pro-

vides interfaces to control various aspects of indexing and retrieval,

and Pyserini exposes a subset of features that we anticipate will

be useful for IR researchers. These include, for example, traversing

postings lists to access raw term statistics, manipulating document

vectors to reconstruct term weights, and fine-grained control over

document processing (tokenization, stemming, stopword removal,

etc.). Pyserini aims to sufficiently expose Lucene internals to make

“hard things” possible.

There is a long tradition in the information retrieval commu-

nity of sharing open-source search engines, which dates back to

Cornell’s SMART system from the mid-1980s. Today, there is a

vibrant ecosystem of search engines built by academic research

groups such as Terrier [21] and PISA [24], common infrastructure

such as ir_datasets [20], and neural ranking libraries as Capreo-

lus [40, 41], OpenNIR [19], and OpenMatch [36].

1
As a concrete example, TREC-COVID has (at least) 12 different sets of qrels. All of

them are useful for answering different research questions. Which one do you use?

There are two main aspects of our design philosophy that set

Pyserini apart from other available packages: First, Pyserini explic-

itly aims to bridge the gap between academic information retrieval

research and the practice of building real-world search applications.

This is accomplished by its reliance on Lucene for sparse retrieval,

which also powers industry-standard search platforms such as Elas-

ticsearch and Solr. Such an alignment means that academic innova-

tions built with Pyserini can be transitioned into production-ready

deployments with relative ease. Second, Pyserini does not aspire to

be a complete end-to-end neural search engine, but is rather meant

to provide a building block as part of a larger software stack. This

stands in contrast to, for example, PyTerrier, which aims to provide

end-to-end search capabilities via a domain-specific language that

allows advanced retrieval pipelines to be expressed in a declarative

manner [22].

Finally, the focal use case of Pyserini as first-stage retrieval in a

multi-stage ranking architecture means that reproducibility is of

utmost concern, since it is literally the foundation that complex

reranking pipelines are built on. In our view, reproducibility can be

divided into technical and social aspects: an example of the former

is an internal end-to-end regression framework that automatically

validates experimental results. The latter includes a commitment

to “eat our own dog food” and the adoption of shared norms.

3 PYSERINI TOUR
Pyserini is packaged as a Python module available on the Python

Package Index. Thus, the toolkit can be installed via pip, as follows:

$ pip install pyserini==0.12.0

In this paper, we are explicitly using v0.12.0, which is presently our

most recent release. Readers are advised, however, to use the latest

version available at pyserini.io. For users who may be interested

in contributing to Pyserini, we recommend a “development” in-

stallation, i.e., cloning the source repository itself. However, for

researchers interested only in using Pyserini, the module installed

via pip suffices.

In this section, we will mostly use the MS MARCO passage

ranking dataset [6] as our running example. The dataset has many

features that make it ideal for highlighting various aspects of our

toolkit: the corpus, queries, and relevance judgments are all freely

downloadable; the corpus is manageable in size and thus experi-

ments require only modest compute resources (and time); the task

is popular and thus well-studied by many researchers.

3.1 Interactive Retrieval
In Figure 1, we begin with a simple example of using Pyserini to per-

form bag-of-words ranking with BM25 (the default ranking model)

on the MS MARCO passage corpus (comprising 8.8M passages). To

establish a parallel with “dense retrieval” techniques using learned

transformer-based representations (see below), we refer to this as

“sparse retrieval”, although this is not common parlance in the IR

community at present.

The SimpleSearcher class provides a single point of entry for

sparse retrieval functionality. In (L3), we initialize the searcher with

a pre-built index. For many commonly used collections where there

are no data distribution restrictions, we have built indexes that can

Resource Paper I SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

2357

1 from pyserini.search import SimpleSearcher

2

3 searcher = SimpleSearcher.from_prebuilt_index('msmarco-passage')

4 hits = searcher.search('what␣is␣a␣lobster␣roll?', 10)

5

6 for i in range(0, 10):

7 print(f'{i+1:2}␣{hits[i].docid:7}␣{hits[i].score:.5f}')

Figure 1: Simple example of interactive sparse retrieval (i.e.,
bag-of-word BM25 ranking).

1 from pyserini.dsearch import SimpleDenseSearcher, \

2 TctColBertQueryEncoder

3

4 encoder = TctColBertQueryEncoder('castorini/tct_colbert-msmarco')

5 searcher = SimpleDenseSearcher.from_prebuilt_index(

6 'msmarco-passage-tct_colbert-hnsw',

7 encoder

8)

9 hits = searcher.search('what␣is␣a␣lobster␣roll')

Figure 2: Simple example of interactive dense retrieval (i.e.,
approximate nearest-neighbor search on dense learned rep-
resentations).

be directly downloaded from our project servers. For researchers

who simply want an “out-of-the-box” keyword retrieval baseline,

this provides a simple starting point. Specifically, the researcher

does not need to download the collection and build the index from

scratch. In this case, the complete index, which includes a copy of

all the texts, is a modest 2.6GB.

Using an instance of SimpleSearcher, we issue a query to re-

trieve the top 10 hits (L4), the results of which are stored in the

array hits. Naturally, there are methods to control ranking be-

havior, such as setting BM25 parameters and enabling the use of

pseudo-relevance feedback, but for space considerations these op-

tions are not shown here. In (L6–7), we iterate through the results

and print out rank, docid, and score. If desired, the actual text can

be fetched from the index (e.g., to feed a downstream reranker).

Figure 2 shows an example of interactive retrieval using dense

learned representations. Here, we are using TCT-ColBERT [17], a

model our group has constructed from ColBERT [14] using knowl-

edge distillation. As with sparse retrieval, we provide pre-built

indexes that can be directly downloaded from our project servers.

In this case, the pre-built dense index is 25GB, which is substantially

larger than the sparse index; this is a known weakness of dense

retrieval techniques. The SimpleDenseSearcher class serves as the
entry point to nearest-neighbor search functionality that provides

top 𝑘 retrieval on dense vectors. Here, we are taking advantage of

HNSW [23], which has been integrated into Faiss [12] to enable

low latency interactive querying (L6).

The final component needed for dense retrieval is a query en-

coder that converts user queries into the same representation space

as the documents. We initialize the query encoder in (L4), which is

passed into the method that constructs the searcher. The encoder

itself is a lightweight wrapper around the Transformers library by

HuggingFace [35]. Retrieval is performed in the same manner (L9),

and we can manipulate the returned hits array in a manner similar

to sparse retrieval (Figure 1). In addition to TCT-ColBERT [17], we

presently support a number of other models, including DPR [13],

ANCE [37], and DistilBERT KD [10]. Note that our goal here is

1 from pyserini.search import SimpleSearcher

2 from pyserini.dsearch import SimpleDenseSearcher, \

3 TctColBertQueryEncoder

4 from pyserini.hsearch import HybridSearcher

5

6 ssearcher = SimpleSearcher.from_prebuilt_index('msmarco-passage')

7 encoder = TctColBertQueryEncoder('castorini/tct_colbert-msmarco')

8 dsearcher = SimpleDenseSearcher.from_prebuilt_index(

9 'msmarco-passage-tct_colbert-hnsw',

10 encoder

11)

12 hsearcher = HybridSearcher(dsearcher, ssearcher)

13 hits = hsearcher.search('what␣is␣a␣lobster␣roll', 10)

Figure 3: Simple example of interactive search with hybrid
sparse–dense retrieval.

1 from pyserini.search import get_topics, get_qrels

2

3 topics = get_topics('msmarco-passage-dev-subset')

4 qrels = get_qrels('msmarco-passage-dev-subset')

5

6 # Compute the average length of queries:

7 sum([len(topics[t]['title'].split()) for t in topics])/len(topics)
8

9 # Compute the average number of relevance judgments per query:

10 sum([len(qrels[t]) for t in topics])/len(topics)

Figure 4: Simple example of working with queries and qrels
from the MS MARCO passage ranking test collection.

to provide retrieval capabilities based on existing encoder models;

quite explicitly, representational learning lies outside the scope of

our toolkit.

Of course, the next step is to combine sparse and dense retrieval,

which is shown in Figure 3. Our HybridSearcher takes as its con-

structor the sparse retriever and the dense retriever and performs

weighted interpolation on the individual results to arrive at a final

ranking. This is a standard approach and Pyserini adopts the spe-

cific implementation in TCT-ColBERT [17], but similar techniques

are used elsewhere as well [13, 18].

3.2 Test Collections
Beyond the corpus, topics (queries) and relevance judgments (qrels)

form indispensable components of IR test collections to support

systems-oriented research aimed at producing better ranking mod-

els. Many topics and relevance judgments are freely available for

download, but at disparate locations (in various formats)—and of-

ten it may not be obvious to a newcomer where to obtain these

resources and which exact files to use.

Pyserini tackles this challenge by packaging together these eval-

uation resources and providing a unified interface for accessing

them. Figure 4 shows an example of loading topics via get_topics
(L3) and loading qrels via get_qrels (L4) for the standard 6980-

query subset of the development set of the MS MARCO passage

ranking test collection. We have taken care to name the text descrip-

tors consistently, so the associations between topics and relevance

judgments are unambiguous.

Using Pyserini’s provided functions, the topics and qrels are

loaded into simple Python data structures and thus easy to manip-

ulate. A standard TREC topic has different fields (e.g., title, descrip-

tion, narrative), which we model as a Python dictionary. Similarly,

Resource Paper I SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

2358

qrels are nested dictionaries: query ids mapping to a dictionary of

docids to (possibly graded) relevance judgments. Our choice to use

Python data structures means that they can be manipulated using

standard constructs such as list comprehensions. For example, we

can straightforwardly compute the avg. length of queries (L7) and

the avg. number of relevance judgments per query (L10).

3.3 Batch Retrieval
Putting everything discussed above together, it is easy in Pyserini

to perform an end-to-end batch retrieval run with queries from

a standard test collection. For example, the following command

generates a run on the development queries of the MS MARCO

passage ranking task (with BM25):

$ python -m pyserini.search --topics msmarco-passage-dev-subset \
--index msmarco-passage --output run.msmarco-passage.txt \
--bm25 --output-format msmarco

Following completion, we can evaluate the effectiveness of the run

with another simple command:

$ python -m pyserini.eval.msmarco_passage_eval \
msmarco-passage-dev-subset run.msmarco-passage.txt

The expected MRR@10 score is 0.1874 over 6980 queries. Pyserini

includes a copy of the official evaluation script and provides a

lightweight convenience wrapper around it. The toolkit manages

qrels internally, so the user simply needs to provide the name of

the test collection, without having to worry about downloading,

storing, and specifying external files. Otherwise, the usage of the

evaluation module is exactly the same as the official evaluation

script; in fact, Pyserini simply dispatches to the underlying script

after it translates the qrels mapping internally.

The above result corresponds to an Anserini baseline on the

MS MARCO passage leaderboard. This is worth emphasizing and

illustrates our goal of making Pyserini easy to use: with one simple

command, it is possible to reproduce a run that serves as a com-

mon baseline on a popular leaderboard, providing a springboard

to experimenting with different ranking models in a multi-stage

architecture. Similar commands allow anyone to reproduce baseline

results using batch retrieval with dense representations as well as

hybrid retrieval.

3.4 Working with Custom Collections
Beyond existing corpora and test collections, a common use case

for Pyserini is users who wish to search their own collections. For

bag-of-words sparse retrieval, we have built in Anserini (written in

Java) custom parsers and ingestion pipelines for common document

formats used in IR research, for example, the TREC SGML format

used in many newswire collections and the WARC format for web

collections. However, exposing the right interfaces and hooks to

support custom implementations in Python is awkward. Instead,

we have implemented support for a generic and flexible JSON-

formatted collection in Anserini, and Pyserini’s indexer directly

accesses the underlying capabilities in Anserini. Thus, searching

custom collections in Pyserini necessitates first writing a simple

script to reformat existing documents into our JSON specification,

and then invoking the indexer. For dense retrieval, support for

custom collections is less mature at present, but we provide utility

1 from pyserini.index import IndexReader

2

3 # Initialize from a pre-built index:

4 reader = IndexReader.from_prebuilt_index('robust04')

5

6 # Iterate over index terms and fetch term statistics:

7 import itertools

8 for term in itertools.islice(reader.terms(), 10):

9 print(f'{term.term}␣(df={term.df},␣cf={term.cf})')
10

11 # Analyze a term:

12 term = 'atomic'

13 analyzed = reader.analyze(term)

14 print(f'The␣analyzed␣form␣of␣"{term}"␣is␣"{analyzed[0]}"')
15

16 # Directly fetch term statistics for a term:

17 df, cf = reader.get_term_counts(term)

18 print(f'term␣"{term}":␣df={df},␣cf={cf}')
19

20 # Traverse postings for a term:

21 postings_list = reader.get_postings_list(term)

22 for p in postings_list:

23 print(f'docid={p.docid},␣tf={p.tf},␣pos={p.positions}')
24

25 # Examples of manipulating document vectors:

26 tf = reader.get_document_vector('LA071090-0047')

27 tp = reader.get_term_positions('LA071090-0047')

28 df = {

29 term: (reader.get_term_counts(term, analyzer=None))[0]

30 for term in tf.keys()

31 }

32 bm25_vector = {

33 term: reader.compute_bm25_term_weight('LA071090-0047',

34 term,

35 analyzer=None)

36 for term in tf.keys()

37 }

Figure 5: Examples of using Pyserini to access system inter-
nals such as term statistics and postings lists.

scripts that take an encoder model to convert documents into dense

representations, and then build indexes that support querying.

The design of Pyserini makes it easy to use as a standalone

module or to integrate as a library in another application. In the first

use case, a researcher can reproduce a baseline (first-stage retrieval)

run with a simple invocation, take the output run file (which is just

plain text) to serve as input for downstream reranking, or as part of

ensembles [7, 8]. As an alternative, Pyserini can be used as a library

that is tightly integrated into another system.

3.5 Access to System Internals
Beyond simplifying the research lifecycle of working with standard

IR test collections, Pyserini provides access to system internals to

support use cases that we might not have anticipated. A number

of these features for sparse retrieval are illustrated in Figure 5 and

available via the IndexReader object, which can be initialized with

pre-built indexes in the same way as the searcher classes. For these

examples, we use the Robust04 index because access to many of the

features requires positional indexes and storing document vectors.

Due to size considerations, this information is not included in the

pre-built MS MARCO indexes.

In (L7–9), we illustrate how to iterate over all terms in a corpus

(i.e., its dictionary) and access each term’s document frequency and

Resource Paper I SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

2359

collection frequency. Here, we use standard Python tools to select

and print out the first 10 terms alphabetically. In the next example,

(L12–14), we show how to “analyze” a word (what Lucene calls

tokenization, stemming, etc.). For example, the analyzed form of

“atomic” is “atom”. Since terms in the dictionary (and document

vectors, see below) are stored in analyzed form, these methods

are necessary to access system internals. Another way to access

collection statistics is shown in (L17–18) by direct lookup.

Pyserini also provides raw access to index structures, both the

inverted index as well as the forward index (i.e., to fetch docu-

ment vectors). In (L21–23), we show an example of looking up a

term’s postings list and traversing its postings, printing out term

frequency and term position occurrences. Access to the forward

index is shown in (L26–27) based on a docid: In the first case, Py-

serini returns a dictionary mapping from terms in the document

to their term frequencies. In the second case, Pyserini returns a

dictionary mapping from terms to their term positions in the docu-

ment. From these methods, we can, for example, look up document

frequencies for all terms in a document using a list comprehension

in Python (L28–31). This might be further manipulated to compute

tf–idf scores. Finally, the toolkit provides a convenience method for

computing BM25 term weights, using which we can reconstruct

the BM25-weighted document vector (L32–37).

At present, access to system internals focuses on manipulating

sparse representations. Dense retrieval capabilities in Pyserini are

less mature. It is not entirely clear what advanced features would

be desired by researchers, but we anticipate adding support as the

needs and use cases become clearer.

4 EXPERIMENTAL RESULTS
Having provided a “tour” of Pyserini and some of the toolkit’s

features, in this section we present experimental results to quantify

its effectiveness for first-stage retrieval. Currently, Pyserini provides

support for approximately three dozen test collections; here, we

focus on two popular leaderboards.

Pyserini provides baselines for two MS MARCO datasets [6]:

the passage ranking task (Table 1) and the document ranking task

(Table 2). In both cases, we report the official metric (MRR@10

for passage, MRR@100 for document). For the development set,

we additionally report recall at rank 1000, which is useful in es-

tablishing an upper bound on reranking effectiveness. Note that

evaluation results on the test sets are only available via submissions

to the leaderboard, and therefore we do not have access to recall

figures. Furthermore, since the organizers discourage submissions

that are “too similar” (e.g., minor differences in parameter settings)

and actively limit the number of submissions to the leaderboard,

we follow their guidance and hence do not have test results for all

of our experimental conditions.

For the passage ranking task, Pyserini supports sparse retrieval,

dense retrieval, as well as hybrid dense–sparse retrieval; all results

in rows (1) through (3) are reproducible with our toolkit. Row

(1a) reports the effectiveness of sparse bag-of-words ranking using

BM25 with default parameter settings on the original text; row

(1b) shows results after tuning the parameters on a subset of the

dev queries via simple grid search to maximize recall at rank 1000.

Parameter tuning makes a small difference in this case. Pyserini

MS MARCO Passage

Development Test

Method MRR@10 R@1k MRR@10

Pyserini: sparse

(1a) Original text 0.184 0.853 0.186

BM25, default (𝑘1 = 0.9, 𝑏 = 0.4)

(1b) Original text 0.187 0.857 0.190

BM25, tuned (𝑘1 = 0.82, 𝑏 = 0.68)

(1c) doc2query–T5 0.272 0.947 0.277

BM25, default (𝑘1 = 0.9, 𝑏 = 0.4)

(1d) doc2query–T5 0.282 0.951 -

BM25, tuned (𝑘1 = 2.18, 𝑏 = 0.86)

Pyserini: dense

(2a) TCT-ColBERT (brute-force) 0.335 0.964 -

(2b) TCT-ColBERT (HNSW) 0.335 0.962 -

Pyserini: dense–sparse hybrid

(3a) TCT-ColBERT + original text 0.353 0.970 -

(3a) TCT-ColBERT + doc2query–T5 0.365 0.975 -

(4a) BM25 (Microsoft Baseline) 0.167 - 0.165

(4b) ANCE [37] 0.330 0.959 -

(4c) DistilBERTdot [11] 0.323 0.957 -

Pyserini: multi-stage pipelines

(4d) monoBERT [27] 0.372 - 0.365

(4e) Expando-Mono-DuoT5 [32] 0.420 - 0.408

Table 1: Results on the MS MARCO passage ranking task.

also provides document expansion baselines using our doc2query

method [28]; the latest model uses T5 [33] as described in Nogueira

and Lin [26]. Bag-of-words BM25 ranking over the corpus with

document expansion is shown in rows (1c) and (1d) for default and

tuned parameters. We see that doc2query yields a large jump in

effectiveness, while still using bag-of-words retrieval, since neural

inference is applied to generate expansions prior to indexing. With

doc2query, parameter tuning also makes a difference.

For dense retrieval, results using TCT-ColBERT [17] are shown

in rows (2) using different indexes. Row (2a) refers to brute-force

scans over the document vectors in Faiss [12], which provides exact

nearest-neighbor search. Row (2b) refers to approximate nearest-

neighbor search using HNSW [23]; the latter yields a small loss in

effectiveness, but enables interactive querying. We see that retrieval

using dense learned representations is much more effective than

retrieval using sparse bag-of-words representations, even taking

into account document expansion techniques.

Results of hybrid techniques that combine sparse and dense

retrieval using weighted interpolation are shown next in Table 1.

Row (3a) shows the results of combining TCT-ColBERT with BM25

bag-of-words search over the original texts, while row (3b) shows

results that combine document expansion using doc2query with

the T5 model. In both cases we used a brute-force approach. Results

show that combining sparse and dense signals is more effective than

either alone, and that the hybrid technique continues to benefit

from document expansion.

To put these results in context, rows (4) provide a few additional

points of comparison. Row (4a) shows the BM25 baseline provided

by the MS MARCO leaderboard organizers, which appears to be

less effective than Pyserini’s implementation. Rows (4b) and (4c)

refer to two alternative dense-retrieval techniques; these results

show that our TCT-ColBERT model performs on par with com-

peting models. Finally, rows (4d) and (4e) show results from two

Resource Paper I SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

2360

MS MARCO Document

Development Test

Method MRR@100 R@1k MRR@100

Pyserini: sparse

(1a) Original text (doc) 0.230 0.886 0.201

BM25, default (𝑘1 = 0.9, 𝑏 = 0.4)

(1b) Original text (doc) 0.277 0.936 -

BM25, tuned (𝑘1 = 4.46, 𝑏 = 0.82)

(1c) Original text (passage) 0.268 0.918 -

BM25, default (𝑘1 = 0.9, 𝑏 = 0.4)

(1d) Original text (passage) 0.275 0.931 0.246

BM25, tuned (𝑘1 = 2.16, 𝑏 = 0.61)

(1e) doc2query–T5 (doc) 0.327 0.955 0.291

BM25, tuned (𝑘1 = 4.68, 𝑏 = 0.87)

(1f) doc2query–T5 (passage) 0.321 0.953 0.290

BM25, tuned (𝑘1 = 2.56, 𝑏 = 0.59)

Pyserini: dense

(2) TCT-ColBERT 0.332 - -

Pyserini: dense–sparse hybrid

(3a) TCT-ColBERT + original text 0.370 - -

(3b) TCT-ColBERT + doc2query–T5 0.378 - -

(4a) BM25 (Microsoft Baseline) - - 0.192

(4b) ANCE [37] 0.384 - 0.342

Pyserini: multi-stage pipelines

(4c) Expando-Mono-DuoT5 [32] 0.426 - 0.370

Table 2: Results on the MARCO document ranking task.

of our own reranking pipelines built using Pyserini for first-stage

retrieval: monoBERT, a standard BERT-based reranker [27], and our

“Expando-Mono-Duo” design pattern with T5 [32]. These illustrate

how Pyserini can serve as the foundation for further explorations

in neural ranking techniques.

Results on the MS MARCO document ranking task are shown

in Table 2. For this task, there are two common configurations,

what we call “per-document” vs. “per-passage” indexing. In the

former, each document in the corpus is indexed separately (as is

standard). In the latter, each document is first segmented into multi-

ple passages, and each passage is indexed as a separate “document”.

For the “per-passage” index, a document ranking is constructed by

simply taking the maximum of per-passage scores; the motivation

for this design is to reduce the amount of text that computationally

expensive downstream rerankers need to process. Rows (1a)–(1d)

show the per-document and per-passage approaches on the origi-

nal texts, using default parameters and after tuning for recall@100

using grid search. With default parameters, there appears to be a

large effectiveness gap between the per-document and per-passage

approaches, but with properly tuned parameters, (1b) vs. (1d), we

see that they achieve comparable effectiveness. As with passage

retrieval, we can include document expansion with either the per-

document or per-passage approaches (the difference is whether

we append the expansions to each document or each passage);

these results are shown in (1e) and (1f). Similarly, the differences

in effectiveness between the two approaches are quite small.

Dense retrieval using TCT-ColBERT is shown in row (2); this is

a new experimental condition that was not reported in Lin et al.

[17]. Here, we are simply using the encoder that has been trained

on the MS MARCO passage data in a zero-shot manner. Since these

encoders were not designed to process long segments of text, only

the per-passage condition makes sense. In row (3a), we combine

row (2) with the per-passage sparse retrieval results on the original

text, and in row (3b), with the per-passage sparse retrieval results

using document expansion. Overall, the findings are consistent

with the passage ranking task: Dense retrieval is more effective

than sparse retrieval (although the improvements for document

ranking are smaller, likely due to zero-shot application). Dense and

sparse signals are complementary, shown by the effectiveness of

the dense–sparse hybrid, which further benefits from document

expansion (although the gains appear to be smaller).

Similar to passage ranking, Table 2 provides a few additional

points of comparison. Row (4a) shows the effectiveness of the BM25

baseline provided by the leaderboard organizers (which we see are

worse than Pyserini). Row (4b) shows results from ANCE [37],

which appears to be more effective than TCT-ColBERT, although

the comparison isn’t quite fair since our models were not trained

on MS MARCO document data. Finally, Row (4c) shows the results

of applying our “Expando-Mono-Duo” design pattern with T5 [32]

in a zero-shot manner.

In summary, Pyserini “covers all the bases” in terms of provid-

ing first-stage retrieval for modern research on neural ranking

approaches: sparse retrieval, dense retrieval, as well as hybrid tech-

niques combining both approaches. Experimental results on two

popular leaderboards show that our toolkit provides a firm founda-

tion for building multi-stage ranking architectures for a range of

retrieval tasks, for example, searching the COVID-19 literature [43]

and podcasts [42]. Beyond search, Pyserini has also been used for

other applications such as question answering [43], fact verifica-

tion [30], and combating misinformation [31].

5 CONCLUSIONS
Due to page limits, we do not have sufficient space to discuss two

important aspects of Pyserini: (1) reproducibility, both the social

and technical aspects thereof in the context of our project, and

(2) future developments, including discussions of what our toolkit

explicitly isn’t going to do. For these details, we refer readers to an

extended version of this paper on arXiv.

Our group’s efforts to promote and support reproducible research

dates back to at least 2015 [4, 15], and the landscape has changed

quite a bit since then. Today, there is much more awareness of

reproducibility issues; norms such as the sharing of source code

have become more entrenched than before, and we have access

to better tools now (e.g., Docker, package mangers, etc.) than we

did before. At the same time, however, today’s software ecosystem

has become much more complex; ranking models have become

more sophisticated and modern multi-stage ranking architectures

involve more complex components than before. In this changing

environment, the need for stable foundations on which to build

remains. With Pyserini, it has been and will remain our goal to pro-

vide effective, easy-to-use tools in support of reproducible research

in information retrieval and beyond.

ACKNOWLEDGEMENTS
This research was supported in part by the Canada First Research

Excellence Fund, the Natural Sciences and Engineering Research

Council (NSERC) of Canada, and the Waterloo–Huawei Joint Inno-

vation Laboratory.

Resource Paper I SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

2361

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-

junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,

Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan

Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A system for large-scale machine

learning. In Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’16). 265–283.

[2] Zeynep Akkalyoncu Yilmaz, Charles L. A. Clarke, and Jimmy Lin. 2020. A

Lightweight Environment for Learning Experimental IR Research Practices. In

Proceedings of the 43rd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR 2020). 2113–2116.

[3] Zeynep Akkalyoncu Yilmaz, Shengjin Wang, Wei Yang, Haotian Zhang, and

Jimmy Lin. 2019. Applying BERT toDocument Retrieval with Birch. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP): System Demonstrations. Hong Kong, China, 19–24.

[4] Jaime Arguello, Matt Crane, Fernando Diaz, Jimmy Lin, and Andrew Trotman.

2015. Report on the SIGIR 2015 Workshop on Reproducibility, Inexplicability,

and Generalizability of Results (RIGOR). SIGIR Forum 49, 2 (2015), 107–116.

[5] Nima Asadi and Jimmy Lin. 2013. Effectiveness/Efficiency Tradeoffs for Candidate

Generation in Multi-Stage Retrieval Architectures. In Proceedings of the 36th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2013). Dublin, Ireland, 997–1000.

[6] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong

Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir

Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, and Tong Wang. 2018.

MS MARCO: A Human Generated MAchine Reading COmprehension Dataset.

arXiv:1611.09268v3 (2018).
[7] Michael Bendersky, Honglei Zhuang, Ji Ma, Shuguang Han, Keith Hall, and Ryan

McDonald. 2020. RRF102: Meeting the TREC-COVID Challenge with a 100+ Runs

Ensemble. arXiv:2010.00200 (2020).
[8] Andre Esteva, Anuprit Kale, Romain Paulus, Kazuma Hashimoto, Wenpeng Yin,

Dragomir Radev, and Richard Socher. 2020. CO-Search: COVID-19 Information

Retrieval with Semantic Search, Question Answering, and Abstractive Summa-

rization. arXiv:2006.09595 (2020).
[9] Adrien Grand, Robert Muir, Jim Ferenczi, and Jimmy Lin. 2020. From Max-

Score to Block-Max WAND: The Story of How Lucene Significantly Improved

Query Evaluation Performance. In Proceedings of the 42nd European Conference
on Information Retrieval, Part II (ECIR 2020). 20–27.

[10] Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan, and

Allan Hanbury. 2020. Improving Efficient Neural Ranking Models with Cross-

Architecture Knowledge Distillation. arXiv:2010.02666 (2020).
[11] Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan, and

Allan Hanbury. 2021. Improving Efficient Neural Ranking Models with Cross-

Architecture Knowledge Distillation. arXiv:2010.02666 (2021).
[12] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity

search with GPUs. arXiv:1702.08734 (2017).
[13] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey

Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-

Domain Question Answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 6769–6781.

[14] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective Passage

Search via Contextualized Late Interaction over BERT. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2020). 39–48.

[15] Jimmy Lin, Matt Crane, Andrew Trotman, Jamie Callan, Ishan Chattopadhyaya,

John Foley, Grant Ingersoll, Craig Macdonald, and Sebastiano Vigna. 2016. To-

ward Reproducible Baselines: The Open-Source IR Reproducibility Challenge. In

Proceedings of the 38th European Conference on Information Retrieval (ECIR 2016).
Padua, Italy, 408–420.

[16] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2020. Pretrained Transformers

for Text Ranking: BERT and Beyond. arXiv:2010.06467 (2020).

[17] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. 2020. Distilling Dense

Representations for Ranking using Tightly-Coupled Teachers. arXiv:2010.11386
(2020).

[18] Xueguang Ma, Kai Sun, Ronak Pradeep, and Jimmy Lin. 2021. A Replication

Study of Dense Passage Retriever. arXiv:2104.05740 (2021).
[19] Sean MacAvaney. 2020. OpenNIR: A Complete Neural Ad-Hoc Ranking Pipeline.

In Proceedings of the 13th ACM International Conference on Web Search and Data
Mining (WSDM 2020). Houston, Texas, 845–848.

[20] Sean MacAvaney, Andrew Yates, Sergey Feldman, Doug Downey, Arman Co-

han, and Nazli Goharian. 2021. Simplified Data Wrangling with ir_datasets.
arXiv:2103.02280 (2021).

[21] Craig Macdonald, Richard McCreadie, Rodrygo L.T. Santos, and Iadh Ounis. 2012.

From Puppy to Maturity: Experiences in Developing Terrier. In Proceedings of
the SIGIR 2012 Workshop on Open Source Information Retrieval. Portland, Oregon.

[22] Craig Macdonald and Nicola Tonellotto. 2020. Declarative Experimentation in

Information Retrieval using PyTerrier. In Proceedings of the 2020 International
Conference on the Theory of Information Retrieval (ICTIR 2020). 161–168.

[23] Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate

Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.

Transactions on Pattern Analysis and Machine Intelligence 42, 4 (2020), 824–836.
[24] Antonio Mallia, Michał Siedlaczek, Joel Mackenzie, and Torsten Suel. 2019. PISA:

Performant Indexes and Search for Academia. In Proceedings of the Open-Source
IR Replicability Challenge (OSIRRC 2019): CEUR Workshop Proceedings Vol-2409.
Paris, France, 50–56.

[25] Irina Matveeva, Chris Burges, Timo Burkard, Andy Laucius, and Leon Wong.

2006. High Accuracy Retrieval with Multiple Nested Ranker. In Proceedings of the
29th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2006). Seattle, Washington, 437–444.

[26] Rodrigo Nogueira and Jimmy Lin. 2019. From doc2query to docTTTTTquery.

[27] Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019. Multi-Stage

Document Ranking with BERT. arXiv:1910.14424 (2019).
[28] Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. 2019. Document

Expansion by Query Prediction. arXiv:1904.08375 (2019).
[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban

Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning

Library. In Advances in Neural Information Processing Systems. 8024–8035.
[30] Ronak Pradeep, Xueguang Ma, Rodrigo Nogueira, and Jimmy Lin. 2021. Scien-

tific Claim Verification with VerT5erini. In Proceedings of the 12th International
Workshop on Health Text Mining and Information Analysis. 94–103.

[31] Ronak Pradeep, Xueguang Ma, Rodrigo Nogueira, and Jimmy Lin. 2021. Vera:

Prediction Techniques for ReducingHarmfulMisinformation in Consumer Health

Search. In Proceedings of the 44th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 2021).

[32] Ronak Pradeep, Rodrigo Nogueira, and Jimmy Lin. 2021. The Expando-Mono-

Duo Design Pattern for Text Ranking with Pretrained Sequence-to-Sequence

Models. arXiv:2101.05667 (2021).

[33] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the

Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of
Machine Learning Research 21, 140 (2020), 1–67.

[34] Lidan Wang, Jimmy Lin, and Donald Metzler. 2011. A Cascade Ranking Model for

Efficient Ranked Retrieval. In Proceedings of the 34th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR
2011). Beijing, China, 105–114.

[35] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,

Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe

Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,

Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,

and Alexander Rush. 2020. Transformers: State-of-the-Art Natural Language

Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. 38–45.

[36] Chenyan Xiong, Zhenghao Liu, Si Sun, Zhuyun Dai, Kaitao Zhang, Shi Yu,

Zhiyuan Liu, Hoifung Poon, Jianfeng Gao, and Paul Bennett. 2020. CMT in

TREC-COVID Round 2: Mitigating the Generalization Gaps from Web to Special

Domain Search. arXiv:2011.01580 (2020).
[37] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett,

Junaid Ahmed, and Arnold Overwijk. 2020. Approximate Nearest Neighbor

Negative Contrastive Learning for Dense Text Retrieval. arXiv:2007.00808 (2020).
[38] Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini: Enabling the Use of

Lucene for Information Retrieval Research. In Proceedings of the 40th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2017). Tokyo, Japan, 1253–1256.

[39] Peilin Yang, Hui Fang, and Jimmy Lin. 2018. Anserini: Reproducible Ranking

Baselines Using Lucene. Journal of Data and Information Quality 10, 4 (2018),

Article 16.

[40] Andrew Yates, Siddhant Arora, Xinyu Zhang, Wei Yang, Kevin Martin Jose, and

Jimmy Lin. 2020. Capreolus: A Toolkit for End-to-End Neural Ad Hoc Retrieval.

In Proceedings of the 13th ACM International Conference on Web Search and Data
Mining (WSDM 2020). Houston, Texas, 861–864.

[41] Andrew Yates, Kevin Martin Jose, Xinyu Zhang, and Jimmy Lin. 2020. Flexible

IR Pipelines with Capreolus. In Proceedings of the 29th International Conference
on Information and Knowledge Management (CIKM 2020). 3181–3188.

[42] Yongze Yu, Jussi Karlgren, Hamed Bonab, Ann Clifton, Md Iftekhar Tanveer, and

Rosie Jones. 2020. Spotify at the TREC 2020 Podcasts Track: Segment Retrieval.

In Proceedings of the Twenty-Ninth Text REtrieval Conference (TREC 2020).
[43] Edwin Zhang, Nikhil Gupta, Raphael Tang, Xiao Han, Ronak Pradeep, Kuang

Lu, Yue Zhang, Rodrigo Nogueira, Kyunghyun Cho, Hui Fang, and Jimmy Lin.

2020. Covidex: Neural Ranking Models and Keyword Search Infrastructure for

the COVID-19 Open Research Dataset. In Proceedings of the First Workshop on
Scholarly Document Processing. 31–41.

Resource Paper I SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

2362

	Abstract
	1 Introduction
	2 Design Philosophy
	3 Pyserini Tour
	3.1 Interactive Retrieval
	3.2 Test Collections
	3.3 Batch Retrieval
	3.4 Working with Custom Collections
	3.5 Access to System Internals

	4 Experimental Results
	5 Conclusions
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 48.39, 56.64 Width 254.29 Height 104.37 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 48.3913 56.6426 254.2913 104.3733

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 7
 0
 1

 1

 HistoryList_V1
 qi2base

