
Prizm: A Wireless Access Point for
Proxy-Based Web Lifelogging

Jimmy Lin, Zhucheng Tu, Michael Rose, and Patrick White
David R. Cheriton School of Computer Science

University of Waterloo, Ontario, Canada

{jimmylin,michael.tu,msrose,ps2white}@uwaterloo.ca

ABSTRACT
We present Prizm, a prototype lifelogging device that com-
prehensively records a user’s web activity. Prizm is a wire-
less access point deployed on a Raspberry Pi that is designed
to be a substitute for the user’s normal wireless access point.
Prizm proxies all HTTP(S) requests from devices connected
to it and records all activity it observes. Although this par-
ticular design is not entirely novel, there are a few features
that are unique to our approach, most notably the physical
deployment as a wireless access point. Such a package al-
lows capture of activity from multiple devices, integration
with web archiving for preservation, and support for offline
operation. This paper describes the design of Prizm, the
current status of our project, and future plans.

1. INTRODUCTION
At the intersection of the lifelogging [5] and quantified

self [13] movements, it is now fairly mainstream for individ-
uals to monitor and record their daily activities in a con-
sistent and structured manner for subsequent analysis. For
example, wearable devices count how many steps we take
each day and monitor the quality of our sleep, a multitude
of apps are available to track the food we consume and other
activities, and various sensors measure aspects of our envi-
ronment. A noticeable gap is the lack of principled mecha-
nisms to record, monitor, and analyze our online activities.
Questions an individual might want to answer include:

• How much time have I spent on Facebook and other
social media sites in the last week?

• Do I tweet more often on weekends than I do on week-
days? Do I need to self censor?

• How many Google queries have I issued in the last
month? How many of them were repeated?

• Am I relying too much on Wikipedia for research?

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

LTA’16, October 16 2016, Amsterdam, Netherlands
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4517-0/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2983576.2983581

• Do I browse the web more from my tablet than from
my laptop? And when?

• How many YouTube videos have I watched in the last
month? How much time have I spent watching politi-
cal satire?

• Are there any unexpected connections made by ser-
vices I use that I should be aware of?

Many internet services already know the answer to these
questions, at least for specific verticals (e.g., Google, Face-
book, etc.). Somewhat ironically, these services know more
about users’ behaviours than most users themselves. Never-
theless, there does not exist a device that comprehensively
captures a user’s web activities—until now.

In this paper, we present Prizm, a prototype lifelogging
device that comprehensively captures a user’s web activity.
Prizm is a wireless access point deployed on a Raspberry
Pi, an inexpensive computer the size of a deck of playing
cards. The device is designed to be a substitute for the
user’s normal wireless access point. An integrated software
stack on the Prizm device proxies all HTTP(S) requests from
devices connected to it and Prizm records all activity it ob-
serves. Although this particular design is not entirely novel
(see discussion in related work), there are a few features
that are unique to our approach, most notably the physi-
cal deployment as a wireless access point—which addresses
multi-device usage, integration with web archiving, and sup-
port for offline operation. This paper describes the design of
Prizm, the current status of our project, and future plans.

2. BACKGROUND AND RELATED WORK
Our work is most closely related to that of d’Aquin et

al. [3], who described a tool for capturing web activity via an
HTTP proxy and presented an analysis of one individual’s
activities over a span of 2.5 months. We adopt a similar
technical approach based on proxying, which offers a much
more detailed record of user activities, as compared to, for
example, solutions based on browser plugins (e.g., [17]).

Although there exist even more comprehensive forms of
activity capture, for example, techniques that record inter-
actions with all applications on a computer [2], we believe
that our focus on web activity has one major advantage.
Web activity is more homogeneous (compared to arbitrary
application usage), thus facilitating more insightful analyses
across multiple devices (see below). Given the amount of
computer usage that occurs within a web browser and the
proliferation of web services (Gmail, Facebook, etc.) that

have become an ingrained part of our daily lives, we believe
that restricting our focus to web activity does not create
substantial gaps in coverage, even if our approach does not
yield exhaustive capture of all online activity.

Beyond the proxy-based activity capture of d’Aquin et
al. [3], we claim three unique features:

Multi-device integration. Users access the web today
from a multitude of devices: desktops, laptops, tablets, as
well as smartphones. This means that any view of a user’s
web activity restricted to a single device will be incomplete.
Most devices, however, connect to the web via Wi-Fi within
a fixed geographic area (e.g., home, office, etc.). There-
fore, implementing activity monitoring in a wireless access
point can capture a multi-device view of a user’s web ac-
tivity. Indeed, such a deployment package also makes it
possible to monitor small groups of individuals that share
the same wireless access point (e.g., family members, room-
mates, etc.).

Web archiving. Web archiving refers to the systematic
collection and preservation of web content for future gener-
ations. The web has become an integral part of our daily
lives and captures our “collective memory”, making it an
important part of our cultural heritage. Since web pages
are ephemeral and disappear with great regularity [12], the
only sure way of preserving web content for posterity is to
proactively crawl and store portions of the web.

A longstanding question in web archiving has been: which
sites should we crawl and how frequently? Web archivists
have proposed a few different answers. The Internet Archive
has been collecting and storing web content since 1996, via
broad but relatively shallow crawls. A loosely-organized net-
work of national, academic, and other libraries build special
collections that focus on particular domains or subjects—
these are generally deeper, more focused, and take place with
greater frequency. A third approach is to drive collection ef-
forts based on social media, for example, archive pages that
are posted in tweets. Milligan et al. [11] provided a recent
comparison and discussion of these strategies.

To this discussion, we contribute a fourth answer: let us
archive content that people actually use. Since our lifelog-
ging device is already monitoring user activities, it is easy
to also store a copy of the content that passes through the
proxy. Cheap storage makes this practical today. Lin [8]
showed the feasibility of storing and accessing web archives
on a Raspberry Pi, but did not study the actual content
capture mechanism. This work, in effect, fills that gap via
proxy-based, usage-driven web archiving.

There are, of course, substantial privacy concerns for such
a web archiving mechanism, but we can imagine a few sen-
sible solutions. We could adopt an opt-in panel system
whereby users are compensated for their contributions, with
full disclosure and transparency on what exactly is cap-
tured. This would be no different from mechanisms in place
today where companies monitor users’ general web brows-
ing habits (e.g., comScore) or television viewing preferences
(e.g., Nielsen ratings) for compensation. Another plausi-
ble scenario is a framework whereby users voluntarily con-
tribute (i.e., upload) their personal archives to a trusted
third party—for example, a cultural heritage institution—
which then aggregates the captured content (suitably anony-
mizing and deduplicating data in the process). Safeguards
can be taken in this aggregation process to protect the iden-
tities of individual users.

Offline web usage. The integration of web activity mon-
itoring and personal web archiving presents an opportunity
to support offline web usage. As an example, previous stud-
ies have shown that a significant fraction of users’ search
behaviour on the web consists of “refinding” [16], or search-
ing for pages they had encountered before—in which case,
why not reduce latency by returning the contents of the
previously-cached versions? Indeed, researchers have al-
ready explored running full-text search engines on mobile
phones [1] in support of this scenario. Related, Lin [9]
demonstrated that it is possible to provide a full-text search-
able copy of Wikipedia on a Raspberry Pi, serving its con-
tents to anyone nearby via either Wi-Fi or Bluetooth. This
means that many queries can be answered without going out
to the live web.

One might argue that the ubiquity of internet connections
today makes such scenarios uncompelling. This might be
true in the developed world, but in many developing coun-
tries, internet access is unreliable and often subjected to
usage caps [10], which might make offline web usage more
attractive. For example, consider rural villages in India [15]
or Easter Island, where only satellite internet is available.
However, even in the developed world, mobile internet re-
mains subjected to data limits in one form or another (e.g.,
monthly data quotas). This is particularly bothersome if
a user travels frequently and wishes to stream videos away
from a Wi-Fi access point that offers, for the most part,
unlimited bandwidth.

Let us consider the following scenario: the user signals to
Prizm what YouTube videos she is interested in watching,
which triggers the device to download and store the videos
locally. This uses exactly the same mechanism that is used
for web archiving, except the scenario is better described
as proactive caching. When the user leaves for her trip,
she simply takes the Prizm device with her physically. The
device is small enough to store in a backpack, and can be
equipped with a battery to provide reasonable operating life.
While traveling (for example, on a train), she can now watch
the cached YouTube videos without consuming valuable mo-
bile bandwidth. Since Prizm remains a wireless access point
(albeit without a corresponding uplink to the internet), it
can transparently serve content it has cached. We might
think of this as a new take on the decades-old idea of “file
hoarding” [6, 14] to create the illusion of web access without
requiring an internet connection. Given that users’ online
behaviour exhibits some degree of locality (e.g., reoccurring
search queries or frequent references to Wikipedia), we be-
lieve that a reasonable offline web experience is possible with
only modest amounts of storage.

3. PRIZM ARCHITECTURE
Prizm is a prototype lifelogging device for recording and

analyzing web activity deployed as a wireless access point on
a Raspberry Pi, an inexpensive computer about the size of
a deck of playing cards that has become popular in the ed-
ucational technology and maker communities. Prizm refers
to both the device and the software running on it, but ref-
erences should be clear from context.

Our current implementation runs on two generations of
Raspberry Pi hardware: The Raspberry Pi 2 (Model B),
released in early 2015, features a 900 MHz quad-core ARM
Cortex-A7 CPU with 1GB RAM. The Raspberry Pi 3 (Model
B), released in early 2016, features a 1.2GHz 64-bit quad-

Figure 1: Prizm on a Raspberry Pi 2 (Model B).
(Image Credit: Wikipedia)

core ARMv8 CPU, also with 1GB RAM. For both, inter-
nal storage is provided by a microSD card, and the device
has four USB ports for connecting peripherals. An external
display can connect via an HDMI port, but once properly
configured, Prizm functionalities can be accessed remotely.
A Raspberry Pi 2 is shown in Figure 1.

In this section, we describe the Prizm software infrastruc-
ture that supports multi-device integration, web archiving,
and offline web usage. There are five distinct components
in our design (see Figure 2), including the proxy for chan-
neling HTTP requests, the workers for processing metadata
from the HTTP requests and responses, the message queue
for handling communication between the proxy and work-
ers, the persistent store for capturing web activity, and an
HTTP server that provides a web portal allowing users to
interact with captured data on the device.

3.1 Wireless Access Point and Proxy
Before any traffic goes through the proxy, the Raspberry

Pi itself needs to be capable of acting as a wireless access
point. For this to work, the Raspberry Pi needs to have
a WLAN interface for servicing the wireless access point
(wlan0, backed by a Wi-Fi USB dongle on the Raspberry Pi
2 or built-in 802.11n WLAN on the Raspberry Pi 3) and an-
other interface that actually connects to the internet (eth1,
backed by the Raspberry Pi’s built-in Ethernet port). We
assign a range of private IP addresses to the wireless net-
work (192.168.42.x) and configure the wlan0 interface to
use IP addresses in the wireless network range.

As a wireless access point, the Raspberry Pi must be ca-
pable of assigning IP addresses to clients that wish to con-
nect to it. This is accomplished with a DHCP server using
the wlan0 interface. We use hostapd as the access point
daemon, which also handles authentication. Traffic can be
routed between wlan0 and eth1 using iptables. We add a
rule to the Network Address Translation (NAT) table with
the MASQUERADE action to replace the sender IP address
of packets originating from the clients with the IP address
of the eth1 interface.

Web

Proxy

Clients

Message Queue
Workers

Web Interface
& UI

Raspberry Pi

Persistent	Store

Figure 2: Architecture overview of Prizm. Com-
ponents within the rectangular box reside on the
Raspberry Pi.

For the actual proxy software we use mitmproxy,1 a man-
in-the-middle proxy for HTTP with support for SSL writ-
ten in Python. This system has well-documented, easy-to-
use APIs, and based on initial experiments, performance is
reasonable. As an example, mitmproxy provides a simple
response callback API for content adaptation, where HTML
is modified on the fly. One of the uses of this feature is to
inject content from results cached locally for offline usage.

Although HTTP traffic can be intercepted and modified
out of the box using mitmproxy, doing the same with HTTPS
traffic requires additional steps. HTTPS adds a SSL/TLS
encryption layer on top of HTTP, which is designed to pre-
vent interception by a third party between the client and the
server. When an SSL connection is established, the client
needs to verify the certificate provided by the server to es-
tablish its identity. The client does this by checking if it
trusts the certificate or if the certificate is trusted by one of
the Certificate Authorities (CAs) that it trusts. Note that
any CA can essentially issue certificates for any website. By
installing the mitmproxy CA certificate on the client, the
client will in general trust any dummy certificates for the
SSL sites that the client visits. Hence, Prizm can be used to
monitor HTTPS traffic in the same way it is used to monitor
regular HTTP traffic.

Recently, Public Key Pinning Extension for HTTP (cer-
tificate pinning) was proposed in RFC 7469 [4] to combat
CAs mis-issuing certificates. In certificate pinning, websites
tell the client to remember (“pin”) a set of cryptographic
identities for a period of time, and during this time the
client can only accept certificate chains that include at least
one key whose fingerprint matches that of a pinned iden-
tity. This means that mitmproxy’s certificates will not be
accepted by applications that employ certificate pinning.
Currently, the only way to use such applications is to tell
the mitmproxy to ignore these domains so they are not in-
tercepted by the proxy.

To integrate mitmproxy with the wireless access point, we
redirect traffic on ports 80 and 443 for HTTP and HTTPS
traffic, respectively, to the proxy using iptables. One cur-
rent weakness is that mitmproxy does not support websock-
ets, but we are currently developing workarounds.

1https://mitmproxy.org

3.2 Message Queue
As HTTP and HTTPS requests and responses are chan-

neled through the proxy, we implemented a callback via an
API provided by mitmproxy to insert corresponding mes-
sages into a message queue for further processing. Each re-
quest/response pair generates one message: these messages
encapsulate metadata about the requests and responses, in-
cluding the time, domain name/IP address, URL path, ref-
erer, user-agent, content type, and content length.

We adopted an architecture based on a message queue
because it allows us to decouple producers (the proxy) from
downstream consumers; this is sometimes called“event sourc-
ing”2 and is a popular architecture today for building dis-
tributed systems [7]. Such an architecture allows potentially
I/O-intensive operations such as writing to a persistent store
(more details below) to proceed asynchronously, without af-
fecting the performance of the proxy. This architecture also
allows us to add an arbitrary number of workers to handle
multiple tasks in a loosely-coordinated manner.

We currently use RabbitMQ3 as our message queue, since
it has a large community, rich features, and can run rea-
sonably well on a Raspberry Pi. We use the Python client
pika4 to communicate with RabbitMQ.

3.3 Workers and the Persistent Store
In the current implementation of Prizm, we have one type

of worker that retrieves messages from the queue, performs
extraction and normalization of the data, and persists the
output to a MySQL database running on the Raspberry Pi.
An example of normalization is entity resolution of the do-
main name: www.google.com and google.com should sensi-
bly be treated as the same entity. In Section 3.5, we describe
additional workers for supporting web archiving and offline
operations.

We use MySQL to store detailed metadata about each
request/response pair that passes through the mitmproxy,
hereafter referred to as just a request. Using the request
time and the domain and URL path of the request, we can
answer a variety of questions about the distribution (across
services and time) of web usage. With simple regular expres-
sions and additional post-processing, we can extract query
strings for web searches. From the referer, we can construct
a graph of how users navigate from one page to another
during browsing sessions. The user-agent can be used to
determine which device connected to the access point sent
the request. Finally, the content type and content length
can be used to determine what types of media users request
and how much data they consume. Various analyses can be
formulated in terms of SQL queries, which we hide behind
visualizations (more details later).

The database also stores category labels for popular web-
sites, such as “News” for cnn.com and “Social Media” for
twitter.com. Users can define custom categories so that
they can understand their web activities based on aggregate
groups rather than individual websites. Questions such as
“how long did I spend on social media websites compared to
educational websites” can be answered easily based on these
labels. Users can edit the domain categorization via the web
application discussed in the next section.

2http://martinfowler.com/eaaDev/EventSourcing.html
3https://www.rabbitmq.com
4https://github.com/pika/pika

Figure 3: A simple visualization of data collected by
Prizm. Domains visited during the browsing session
are represented by bars, and the length of each bar
shows the number of page visits to that domain.

Figure 4: Visualization of page visits for one domain.
The x-axis denotes time, while the y-axis shows the
frequency of visits. This particular graph aggregates
page visit frequencies at 30-minute intervals.

3.4 Web Portal
The final component of Prizm is the portal—a web ap-

plication served directly from the Raspberry Pi that allows
users to interact with and configure the system.

Upon first connecting to a Raspberry Pi running Prizm,
the user visits the portal in her browser to conduct the neces-
sary setup. The setup consists of downloading and trusting
the SSL certificate generated by mitmproxy, and setting a
custom SSID and password for the wireless access point.

Once the user has connected to Prizm and starts using the
access point, the primary function of the portal is to provide
visualizations and analyses of web usage. Users can select a
date range and then view different graphs describing web ac-
tivity within that date range. Figure 3 shows an example of a
visualization of the number of page visits to all domains from
a short browsing session. Underlying data is retrieved from
the persistent store via a REST API written using Flask,5

a lightweight Python library for building web applications.
The UI is built with the React JavaScript framework.6 This
design decouples the back-end and front-end in order to ac-
commodate data sources generated by other Prizm workers
(see Section 3.5).

We provide a few additional examples of visualizations
that we are developing. Figure 4 displays the number of
page visits to a particular domain over time. A Prizm user
can harness such a graph to see what time of day she usually
visits a particular site; she can also observe the background
activity of specific applications over the course of time.

5http://flask.pocoo.org
6https://facebook.github.io/react/

Figure 5: An example heatmap visualization of over-
all web usage. Darker colours indicate periods of
heavier usage (i.e., more total page visits).

Figure 6: An example pie chart depicting which
agents a user most commonly employs to make page
requests.

Figure 5 shows an example of a heatmap, similar to the
one used to track contributions on GitHub.7 This heatmap
depicts the total number of page visits made on a given day,
where darker colours indicate periods of higher activity. A
Prizm user can quickly discern, for example, which day of
the week has the highest web usage (and when).

Figure 6 breaks down the various agents used to access the
web, and allows a user to see exactly how she accesses online
content. As we previously discussed, multi-device integra-
tion is a major benefit of deploying Prizm on a Raspberry Pi
(see Section 2)—by drilling down into different agent types
(not shown here), a user is able to determine, for example,
how much web browsing she does from her smartphone ver-
sus her laptop.

Beyond analytics and visualizations, user preferences can
be configured from the portal. A user can exclude domains
from the analyses, manage customized categorizations for
the domains to provide higher-level summaries, and define
customized visualizations of web activity.

As part of future work, when web archiving functionali-
ties are integrated into Prizm, the portal will serve as the
entry point to the offline search engine, providing users with
an interface to manage and locate content stored on the
Raspberry Pi (see Section 3.5). In our architecture, the por-
tal front-end is not directly coupled to any back-end data
source, making it easy to extend.

7https://github.com/blog/1360-introducing-contributions

3.5 Web Archiving and Offline Usage
The current implementation of Prizm has only one type

of worker, to persist records of web activity into MySQL.
However, as we discussed in Section 2, the Prizm concept
provides support for web archiving and offline web usage,
which we discuss in this section. These capabilities can be
implemented via other types of workers that consume mes-
sages in the message queue, and our architecture supports
loosely-coupled integration of additional functionalities with
minimal coordination. In particular, our architecture allows
flexible worker scheduling and deferred execution of certain
tasks for performance considerations. As a simple example,
we can delay I/O-intensive operations to a time when the
device is mostly idle.

We have investigated web archiving and offline operations
in an early experimental prototype of the system, although
these functionalities have yet to be integrated into the cur-
rent Prizm implementation. We discuss in more detail:

Web archive creation. We are currently exploring two
alternative designs for web archiving. In the first, given a
URL (or a set of URLs) that we wish to archive (retrieved
from the message queue), we can invoke the utility wget to
capture the content, along with all stylesheet, image, and
related assets. Data can be written in WARC format, which
is a web archiving standard—thus supporting interoperabil-
ity with a large ecosystem of web archiving tools. In the
alternative design, we could insert all content payload (not
just metadata) directly into the message queue, so that the
worker can directly persist the content without refetching
the pages over the network. Data in this design can simi-
larly be stored in WARC format. In both cases, it may not
be desirable to archive everything that the user browses,
e.g., videos or certain sensitive pages such as banking in-
formation, so we must implement some type of whitelist or
blacklist mechanism. This is possible in both designs.

In the first design we are essentially redownloading URLs,
even though the contents have already passed through the
mitmproxy. The second design introduces a potential per-
formance bottleneck in the message queue. In both designs,
since web archiving is considered a secondary functionality
in Prizm, it makes sense to perform the operation when the
system is mostly idle, as to not affect the core user expe-
rience. This is likely easier with the first design, as there
is a danger of overflowing the queue in the second design
and the larger message sizes may interfere with the latency
of other operations. The redownloading approach is more
conducive to performing web archiving in batch and allows
us to generate efficient compressed output while avoiding
needless file manipulations, e.g., aggregating small files into
larger bundles (in the alternative design there will always
be pressure to clear the message queue relatively quickly to
prevent overflow). Redownloading, however, means that the
archived pages may differ from the actual page that the user
viewed. Overall, it is unclear which design is better; we are
exploring both implementations and will evaluate the alter-
natives empirically.

Offline browsing of cached content. Captured web con-
tent (stored as WARC files) can be “replayed” using a sys-
tem such as pywb,8 which allows a user to browse the archive
pages and navigate links to contemporaneous pages (to the
extent that they are also captured in the web archive). This

8https://pypi.python.org/pypi/pywb/

functionality has already been demonstrated on a Raspberry
Pi [8], and therefore we anticipate straightforward integra-
tion into Prizm. When the device is not connected to the
internet, the mitmproxy provides an API that lets us in-
tercept HTTP requests and provide responses from cached
content in pywb, thus supporting transparent offline usage.

Archive indexing and search. The creation of the web
archive can trigger full-text indexing of page content using
the Lucene search engine. Search capabilities can be pro-
vided in two modes: first, when the user explicitly wishes to
search previously-encountered content, and second, trans-
parently redirecting web searches to local data when Prizm
is disconnected from the internet.

4. USAGE EXPERIENCE
We have completed the initial Prizm prototype as de-

scribed in Section 3. A subset of the authors have begun
to use the device in their daily activities—we are in what
is colloquially known as the “dogfooding” phase. After the
prototype matures, the next stage of our project is a user
study in which we actually deploy the device to end users.

Overall, the user experience for most websites we visit and
applications we use connected to Prizm is not markedly dif-
ferent from the experience when connected to a home wire-
less network directly, in terms of response load times and
preserving site features. We performed a simple page load
timing experiment to record the response load times quan-
titatively. To simulate the load times for web pages typical
users will actually visit, we use the homepages of the top 100
domains in the ALEXA ranking.9 Our experiments compare
the response times of accessing these homepages in the fol-
lowing configurations:

• using a home wireless router,

• using either the Raspberry Pi 2 (Model B) or Rasp-
berry Pi 3 (Model B) as a wireless router only, and

• using the same devices with the entire Prizm software
stack in its current implementation.

For each configuration, three trials were performed. Fig-
ure 7 shows our results in terms of average load times, mea-
sured in seconds; the bars are annotated with relative load
time increases compared to the baseline of using the home
wireless router. These figures show that there is indeed la-
tency overhead that is introduced by Prizm, which is the cost
of the additional features provided by the device (specifi-
cally, 41% increase in load times on the latest Raspberry
Pi 3). Reducing this overhead is the focus of ongoing work,
although we note that much of this problem will likely be
solved with newer generation hardware over time—compare
the performance difference between the Raspberry Pi 2 and
Raspberry Pi 3. However, the measurable overhead of Prizm
seems to be tolerable based on our own usage experience.

In terms of website features, we are able to perform band-
width-intensive activities such as watching YouTube videos
or streaming Spotify music seamlessly. However, due to the
lack of support for websockets, web services that depend on
websockets cannot be used smoothly through the proxy. A
workaround we’ve currently implemented is to exclude a list
of user-configurable domains from the proxy so users can still

9http://www.alexa.com

0 0.2 0.4 0.6 0.8 1 1.2

Home Wi-Fi

Raspberry Pi 3 (Wi-Fi only)

Raspberry Pi 3 (Prizm)

Raspberry Pi 2 (Wi-Fi only)

Raspberry Pi 2 (Prizm)

Average Time (seconds) to Load a ALEXA Top 100 Site

+13%

+41%

+27%

+89%

Figure 7: Average time to load an ALEXA top 100
site in seconds, comparing different configurations
with home Wi-Fi. Bars are annotated with percent
increase over home Wi-Fi. Lower is better.

enjoy these services without being affected. We are working
on a more robust solution that can record activities for all
domains. Another limitation of Prizm we have encountered
concerns the security issues we discussed in Section 3.1 re-
garding the trust of certificates generated by the mitmproxy
CA. Handling the untrusted certificates is also a part of our
future work in hopes of delivering an even more seamless
user experience.

5. CONCLUSIONS
In today’s world, big internet companies such as Google,

Facebook, and Netflix know more about our online presence
than we do ourselves. We aim to change that: Prizm is
an inexpensive lifelogging device that can comprehensively
record our web activities. Week, months, or even years later,
we can recollect, reminisce, and reflect on our previous ac-
tivities [5]. The current Prizm prototype has an extensible
architecture to support additional capabilities in the future,
including web archiving, offline usage, and full-text indexing.
We are enthusiastic about the future potential of this device
in particular, and more generally, the concept of monitoring
one’s own online activities as a form of lifelogging.

6. REFERENCES
[1] A. Balasubramanian, N. Balasubramanian, S. J.

Huston, D. Metzler, and D. J. Wetherall. FindAll: A
local search engine for mobile phones. CoNEXT, 2012.

[2] G. Barata, H. Nicolau, and D. Gonçalves. AppInsight:
What have I been doing? AVI, 2012.

[3] M. d’Aquin, S. Elahi, and E. Motta. Personal
monitoring of web information exchange: Towards
web lifelogging. WebSci, 2010.

[4] C. Evans, C. Palmer, and R. Sleevi. Public key
pinning extension for HTTP. RFC 7469, Internet
Engineering Task Force, 2015.

[5] C. Gurrin, A. F. Smeaton, and A. R. Doherty.
LifeLogging: Personal big data. Foundation and
Trends in Information Retrieval, 8(1):1–107, 2014.

[6] J. J. Kistler and M. Satyanarayanan. Disconnected
operation in the Coda File System. ACM Transactions
on Computer Systems, 10(1):3–25, 1992.

[7] M. Kleppmann. Making Sense of Stream Processing.
O’Reilly, Sebastopol, California, 2016.

[8] J. Lin. Scaling down distributed infrastructure on
wimpy machines for personal web archiving. WWW
Companion, 2015.

[9] J. Lin. The sum of all human knowledge in your
pocket: Full-text searchable Wikipedia on a
Raspberry Pi. JCDL, 2015.

[10] A. Mathur, B. Schlotfeldt, and M. Chetty. A
mixed-methods study of mobile users’ data usage
practices in South Africa. UbiComp, 2015.

[11] I. Milligan, N. Ruest, and J. Lin. Content selection
and curation for web archiving: The gatekeepers vs.
the masses. JCDL, 2016.

[12] A. Ntoulas, J. Cho, and C. Olston. What’s new on the
web? the evolution of the web from a search engine
perspective. WWW, 2004.

[13] M. Swan. The quantified self: Fundamental disruption
in big data science and biological discovery. Big Data,
1(2):85–99, 2013.

[14] C. Tait, H. Lei, S. Acharya, and H. Chang. Intelligent
file hoarding for mobile computers. MobiCom, 1995.

[15] W. Thies, J. Prevost, T. Mahtab, G. T. Cuevas,
S. Shakhshir, A. Artola, B. D. Vo, Y. Litvak, S. Chan,
S. Henderson, M. Halsey, L. Levison, and
S. Amarasinghe. Searching the world wide web in
low-connectivity communities. WWW, 2002.

[16] S. K. Tyler and J. Teevan. Large scale query log
analysis of re-finding. WSDM, 2010.

[17] D. Zagorodnov, L. Brenna, C. Gurrin, and
D. Johansen. WAIFR: Web-browsing attention
recorder based on a state-transition model. CAMA,
2006.

