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Talk in one slide	



  “Fast data” = data at high velocity	


  Need for fast, constant-space, constant-time algorithms	



  Problem: topic detection in the tweet stream	



  Solution: adaptive streaming language models	


  Design considerations: recency and sparsity	



  Conclusion: simple techniques work well… K.I.S.S.	





No data like more data!	
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Twitter by the numbers…	



  140 characters	



  200m+ users	



  200m+ tweets per day	



  Delivering 350b tweets per day	



We need fast, constant-space, constant-time, algorithms!	





Problem… and Solution	



  Topic tracking: show me tweets of interest	


  Stable interests, denoted by hashtags (#nfl, #apple, #glee, etc.)	



  Definition of convenience: lots of (free) annotated data	



  Relatively small number, human curation not impossible	



  K.I.S.S.	



  Proposed solution:	


  Model topics using language models (streaming!)	



  Classify tweets based on perplexity	





Language Models	



  Probability distribution	



  Unigram LMs:	



  Bigram LMs:	



  Perplexity	


  Captures “surprise”:	



  Classify based on perplexity threshold	



  Different thresholds realize different precision/recall tradeoffs 	
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Important Issues	



  Recency: need to keep track of recent events	



  Sparsity: need to smooth	



  General strategy = integrate two components	


  “Foreground model” to keep (recent) up-to-date statistics	



  “Background model” to combat sparsity	



  Key questions:	


  How do we keep track of history?	



  How do we smooth?	





History	



  Context size:	


  1000 terms, 10000 terms	



  Think of it as a “buffer”	



  Different methods for maintaining context:	


  “Forget”: forget everything periodically	



  “Queue”: moving window	


  “Epoch”: throw away infrequent events periodically (Goyal et al., NAACL 2009)	





Smoothing (1)	



  Notation	


  Count of term within context (i.e., history):	



  Background model (MLE over one month):	



  Absolute Discounting	



  Jelinek-Mercer smoothing	
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Smoothing	



  Bayesian smoothing using Dirichlet priors	



  “Normalized” Stupid Backoff (Brants et al., EMNLP 2007)	
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Experimental Setup	



  Data	


  Week 10/1/2010 to 10/7/2010	



  ~94m tweets per day, ~11m contain hashtags	



  Background model: 2.7b tweets from entire month of 9/2010	



  Ten topics:	



  #nfl	


  #apple	



  #glee	



  #jerseryshore	



  #teaparty	



  #fashion	


  …	





Intrinsic Evaluation: Methodology	



  Separate experimental run for each topic	



  Replay tweets:	


  Discard tweets without appropriate hashtag	



  Remove hashtag	



  Compute perplexity wrt model	



  Update model	



  Compared perplexity of	



  Baseline “background” only	


  Different “background” + “foreground” combinations: smoothing and 

history retention techniques	





Intrinsic Evaluation: Results	



  Generally, Jelinek-Mercer achieves lowest perplexity	


   Normalized stupid backoff not very good…	



  Context:	


  Longer is better, but shorter isn’t that bad	



  “Queue” works well, but “Forget” isn’t that bad	



  Observations:	


  Per topic perplexity varies a lot: ���

#apple (low), #fashion (high)	



  Adding “foreground” helps to varying degrees: ���
#apple (not much), #nfl (a lot)	





Extrinsic Evaluation: Methodology	



  Separate experimental run for each topic	



  Replay tweets:	


  Remove hashtag	



  Classify (given perplexity threshold)	



  Update model	



  Plot precision/recall graphs by varying perplexity thresholds	





Extrinsic Evaluation: Results	
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Normalized stupid backoff is at least as good as other smoothing techniques	



Unigram LM	





Extrinsic Evaluation: Results	
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Extrinsic Evaluation: Unigram vs. Bigram	
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Bigram LMs start to model fluency… but this is essentially a keyword spotting task!	





Results: Summary	



  Intrinsic evaluation: Jelinek-Mercer > Normalized Stupid Backoff	



  Extrinsic evaluation: Normalized Stupid Backoff at least as good 
as other techniques… sometimes better	



  K.I.S.S.	





Back to the beginning	



  “Fast data” = data at high velocity	


  Need for fast, constant-space, constant-time algorithms	



  Problem: topic detection in the tweet stream	



  Solution: adaptive streaming language models	


  Design considerations: recency and sparsity	



  Conclusion: simple techniques work well… K.I.S.S.	



We need more work on fast data!	



What’s the MapReduce of high-volume streaming data?	





Questions?	


…btw, we’re hiring	



Twittering Machine. Paul Klee (1922) watercolor and ink 


