Smoothing Techniques for Adaptive Online
Language Models: Topic Tracking in Tweet Streams

@lintool @rion @wm

August 24, 201 |

‘@ @@@| This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States

See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Talk in one slide

O “Fast data” = data at high velocity

e Need for fast, constant-space, constant-time algorithms
O Problem: topic detection in the tweet stream
O Solution: adaptive streaming language models

e Design considerations: recency and sparsity

O Conclusion: simple techniques work well... K.I.S.S.

No data like more data!

figd “stupid backoff”
0.95 | 0.44 | U
+0.51BPKZ, | o o
e +0.15BP/x2
0.42 i * +0.39BPK2 1
N = +0.56|3Pfx_:_gif:/ﬁ '
0 e
: 2 04 o 1
é — % {.ﬂ-O.?OBP!x2
. o 0.38 [+0.62BP/x2 :
o) Ve target KN ——
0.80 - = / +ldcnews KN ——sx—
0.36 // g +webnews KN - -
/E, target SB =
o +0.66BP/x2 +ldcnews SB -—=—
0.75 0.34 | +webnews SB --o--- |
ey, tweD SB e
10 100 1000 10000 100000 1e+06
% 700 R 1 1lo LM training data size in million tokens

Millions of Words

| &%

>
log [amount of data]

(Banko and Brill, ACL 2001)
(Brants et al., EMNLP 2007)

f kr.com/photos/doug88888/4627497417/

“fast data”

Velocity

Volume 5:1..:,__.\:.1\,@-.-.‘} 57 “} 3 Va I"IEt)’
“big data” =7) @ESSSS “heterogeneous data”

Twitter by the numbers...

|40 characters

O

O 200m+ users

O 200m+ tweets per day

O Del

>N
()
o
|
()
Q.
(7))
)
(),
3
)
0O
o
LN
(ap)
0.0
=

Iiver

We need fast, constant-space, constant-time, algorithms!

Problem... and Solution

O Topic tracking: show me tweets of interest

e Stable interests, denoted by hashtags (#nfl, #apple, #glee, etc.)
e Definition of convenience: lots of (free) annotated data

e Relatively small number, human curation not impossible

o K.LS.S.

O Proposed solution:

e Model topics using language models (streaming!)

e Classify tweets based on perplexity

Language Models

O Probability distribution
P(w,,w,,...w,) = Pw)P(w, lw,)P(w; lw, ,w,)..P(w, lw,.w,) [by chain rule]
e Unigram LMs: P(w Iw,.w)=P(Ww,)
e Bigram LMs: P(w Iw,.w)=Pw, Iw)

O Perplexity

e Captures “surprise”:

1 n
ow|2, -— » log, P(w.
pw[N Loz POv)

e Classify based on perplexity threshold

e Different thresholds realize different precision/recall tradeoffs

Important Issues

O Recency: need to keep track of recent events
O Sparsity: need to smooth

O General strategy = integrate two components

e “Foreground model” to keep (recent) up-to-date statistics

e “Background model” to combat sparsity

O Key questions:

e How do we keep track of history?

e How do we smooth!?

History

o Context size:

e 1000 terms, 10000 terms
e Think of it as a “buffer”

o Different methods for maintaining context:
e “Forget”: forget everything periodically
e “Queue”: moving window

e “Epoch”: throw away infrequent events periodically (Goyal et al., NAACL 2009)

Smoothing (1)

O Notation

e Count of term within context (i.e., history): c(w;h)

e Background model (MLE over one month): P, (w)

O Absolute Discounting
max(c(w;h) - 9,0) s 0w,

Y c(wsh) Y c(wsh)
. o\ U
~ ~

P(W) = P/j(w)

foreground background

O Jelinek-Mercer smoothing
c(w;h)
Ewc(w;h)

\/\/_/

foreground background

P(w)=A +(1= 1) Py(w)

Smoothing

O Bayesian smoothing using Dirichlet priors

c(wih) + w Py (w)

P(w) =

Ewc(w;h) + U

O “Normalized” Stupid Backoff (rants et al, EMNLP 2007)

P(w) =1

(1

c(w;h)

l+a Ewc(w;h)

o

1+«

) Pﬁ(w)

if c(w;h) >0

otherwise

= foreground

= background

Experimental Setup

O Data
e Week 10/1/2010 to 10/7/2010
e ~94m tweets per day, ~| Im contain hashtags

e Background model: 2.7b tweets from entire month of 9/2010
O Ten topics:

#nfl

Happle

Hglee
#Hjerseryshore

Hteaparty
#fashion

Intrinsic Evaluation: Methodology

O Separate experimental run for each topic

O Replay tweets:

e Discard tweets without appropriate hashtag
e Remove hashtag

e Compute perplexity wrt model

e Update model

O Compared perplexity of

e Baseline “background” only

e Different “background” + “foreground” combinations: smoothing and
history retention techniques

Intrinsic Evaluation: Results

O Generally, Jelinek-Mercer achieves lowest perplexity

e Normalized stupid backoff not very good...

o Context:

e Longer is better, but shorter isn’t that bad
e “Queue” works well, but “Forget” isn’t that bad

O Observations:
e Per topic perplexity varies a lot:
t#apple (low), #fashion (high)
e Adding “foreground” helps to varying degrees:
#apple (not much), #nfl (a lot)

Extrinsic Evaluation: Methodology

O Separate experimental run for each topic

O Replay tweets:

e Remove hashtag
e Classify (given perplexity threshold)
e Update model

O Plot precision/recall graphs by varying perplexity thresholds

Extrinsic Evaluation: Results
Unigram LM Topic |:#nfl

1]]]]

0.995 | ‘\\\:\ i
N

)

c
.g e
'O 0.99 -
D
o
N
0.985 |- -
Background only
Absolute Discounting (6=0.9) —e—
Jelinek-Mercer (A=0.4) —+—
Dirichlet (u=10000) —=— O
Normalized Stupid (¢=0.3) —m— [\
0.98 | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Recall

Normalized stupid backoff is at least as good as other smoothing techniques

Extrinsic Evaluation: Results

Unigram LM

Precision

.1

0.995

0.99

0.985

0.98

Topic 3:#apple

O
[V | + o=

=

Background only

Absolute Discounting (8=0.9) —e—
Jelinek-Mercer (A=0.4) —+—
Dirichlet (u=10000) —=—

)

Normalized Stupid (¢=0.3) —=—
| | | |

0.1 0.2 0.3 0.4
Recall

Extrinsic Evaluation: Unigram vs. Bigram

Topic |:#nfl
1 I I I I I I I
< N
0.995 |- -
N N
C &
9
(2} V%
O 0.99 |- -
D
o
0.985 |- -
Background only [bigram] —o—
Normalized Stupid (a=1.0) [bigram] —&—
Background only [unigram] —e—
Normalized Stupid (.=0.3) [unigram] —=—
0.98 | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Recall

Bigram LMs start to model fluency... but this is essentially a keyword spotting task!

Results: Summary

O Intrinsic evaluation: Jelinek-Mercer > Normalized Stupid Backoff

O Extrinsic evaluation: Normalized Stupid Backoff at least as good
as other techniques... sometimes better

o K.ISS.

Back to the beginning

O “Fast data” = data at high velocity

e Need for fast, constant-space, constant-time algorithms

O Problem: topic detection in the tweet stream

O Solution: adaptive streaming language models

e Design considerations: recency and sparsity

O Conclusion: simple techniques work well... K.I.S.S.

We need more work on fast data!

What'’s the MapReduce of high-volume streaming data!?

