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Talk in one slide

O “Fast data” = data at high velocity

e Need for fast, constant-space, constant-time algorithms
O Problem: topic detection in the tweet stream
O Solution: adaptive streaming language models

e Design considerations: recency and sparsity

O Conclusion: simple techniques work well... K.I.S.S.



No data like more data!
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“fast data”
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Twitter by the numbers...
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We need fast, constant-space, constant-time, algorithms!



Problem... and Solution

O Topic tracking: show me tweets of interest

e Stable interests, denoted by hashtags (#nfl, #apple, #glee, etc.)
e Definition of convenience: lots of (free) annotated data

e Relatively small number, human curation not impossible

o K.LS.S.

O Proposed solution:

e Model topics using language models (streaming!)

e Classify tweets based on perplexity



Language Models

O Probability distribution
P(w,,w,,...w,) = Pw)P(w, lw,)P(w; lw, ,w,)..P(w, lw,.w, ) [by chain rule]
e Unigram LMs: P(w Iw,.w )=P(Ww,)
e Bigram LMs: P(w Iw,.w )=Pw, Iw )

O Perplexity

e Captures “surprise”:
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e Classify based on perplexity threshold

e Different thresholds realize different precision/recall tradeoffs



Important Issues

O Recency: need to keep track of recent events
O Sparsity: need to smooth

O General strategy = integrate two components

e “Foreground model” to keep (recent) up-to-date statistics

e “Background model” to combat sparsity

O Key questions:

e How do we keep track of history?

e How do we smooth!?



History

o Context size:

e 1000 terms, 10000 terms
e Think of it as a “buffer”

o Different methods for maintaining context:
e “Forget”: forget everything periodically
e “Queue”: moving window

e “Epoch”: throw away infrequent events periodically (Goyal et al., NAACL 2009)



Smoothing (1)

O Notation

e Count of term within context (i.e., history): c(w;h)

e Background model (MLE over one month): P, (w)

O Absolute Discounting
max(c(w;h) - 9,0) s 0w,

Y c(wsh) Y c(wsh)
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P(W) = P/j(w)

foreground background

O Jelinek-Mercer smoothing
c(w;h)
Ewc(w;h)

\/\/_/

foreground background

P(w)=A +(1= 1) Py(w)



Smoothing

O Bayesian smoothing using Dirichlet priors

c(wih) + w Py (w)

P(w) =

Ewc(w;h) + U

O “Normalized” Stupid Backoff (rants et al, EMNLP 2007)

P(w) =1

(1

c(w;h)

l+a Ewc(w;h)

o
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) Pﬁ(w)

if c(w;h) >0

otherwise

= foreground

= background



Experimental Setup

O Data
e Week 10/1/2010 to 10/7/2010
e ~94m tweets per day, ~| Im contain hashtags

e Background model: 2.7b tweets from entire month of 9/2010
O Ten topics:

#nfl

Happle

Hglee
#Hjerseryshore

Hteaparty
#fashion



Intrinsic Evaluation: Methodology

O Separate experimental run for each topic

O Replay tweets:

e Discard tweets without appropriate hashtag
e Remove hashtag

e Compute perplexity wrt model

e Update model

O Compared perplexity of

e Baseline “background” only

e Different “background” + “foreground” combinations: smoothing and
history retention techniques



Intrinsic Evaluation: Results

O Generally, Jelinek-Mercer achieves lowest perplexity

e Normalized stupid backoff not very good...

o Context:

e Longer is better, but shorter isn’t that bad
e “Queue” works well, but “Forget” isn’t that bad

O Observations:
e Per topic perplexity varies a lot:
t#apple (low), #fashion (high)
e Adding “foreground” helps to varying degrees:
#apple (not much), #nfl (a lot)



Extrinsic Evaluation: Methodology

O Separate experimental run for each topic

O Replay tweets:

e Remove hashtag
e Classify (given perplexity threshold)
e Update model

O Plot precision/recall graphs by varying perplexity thresholds



Extrinsic Evaluation: Results
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Normalized stupid backoff is at least as good as other smoothing techniques



Extrinsic Evaluation: Results

Unigram LM
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Extrinsic Evaluation: Unigram vs. Bigram
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Bigram LMs start to model fluency... but this is essentially a keyword spotting task!



Results: Summary

O Intrinsic evaluation: Jelinek-Mercer > Normalized Stupid Backoff

O Extrinsic evaluation: Normalized Stupid Backoff at least as good
as other techniques... sometimes better

o K.ISS.




Back to the beginning

O “Fast data” = data at high velocity

e Need for fast, constant-space, constant-time algorithms

O Problem: topic detection in the tweet stream

O Solution: adaptive streaming language models

e Design considerations: recency and sparsity

O Conclusion: simple techniques work well... K.I.S.S.

We need more work on fast data!

What'’s the MapReduce of high-volume streaming data!?






