
Smoothing Techniques for Adaptive Online
Language Models: Topic Tracking in Tweet Streams	

@lintool @rion @wm	

August 24, 2011	

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Talk in one slide	

  “Fast data” = data at high velocity	

  Need for fast, constant-space, constant-time algorithms	

  Problem: topic detection in the tweet stream	

  Solution: adaptive streaming language models	

  Design considerations: recency and sparsity	

  Conclusion: simple techniques work well… K.I.S.S.	

No data like more data!	

log [amount of data]	

figure of merit	

(Banko and Brill, ACL 2001)
(Brants et al., EMNLP 2007)

“stupid backoff”	

Source: http://www.flickr.com/photos/doug88888/4627497417/

Volume	

Velocity	

Variety	

“big data”	

“fast data”	

“heterogeneous data”	

Twitter by the numbers…	

  140 characters	

  200m+ users	

  200m+ tweets per day	

  Delivering 350b tweets per day	

We need fast, constant-space, constant-time, algorithms!	

Problem… and Solution	

  Topic tracking: show me tweets of interest	

  Stable interests, denoted by hashtags (#nfl, #apple, #glee, etc.)	

  Definition of convenience: lots of (free) annotated data	

  Relatively small number, human curation not impossible	

  K.I.S.S.	

  Proposed solution:	

  Model topics using language models (streaming!)	

  Classify tweets based on perplexity	

Language Models	

  Probability distribution	

  Unigram LMs:	

  Bigram LMs:	

  Perplexity	

  Captures “surprise”:	

  Classify based on perplexity threshold	

  Different thresholds realize different precision/recall tradeoffs 	

€

P(w1)P(w1 |w2)P(w3 |w1,w2)...P(wn |w1...wn−1)

€

P(w1,w2,...,wn) =

€

P(wn |w1...wn−1) ≈ P(wn)

€

P(wn |w1...wn−1) ≈ P(wn |wn−1)

€

pow 2, - 1
N

log2 P(wi
i=1

n

∑)
⎡

⎣
⎢

⎤

⎦
⎥

[by chain rule]	

Important Issues	

  Recency: need to keep track of recent events	

  Sparsity: need to smooth	

  General strategy = integrate two components	

  “Foreground model” to keep (recent) up-to-date statistics	

  “Background model” to combat sparsity	

  Key questions:	

  How do we keep track of history?	

  How do we smooth?	

History	

  Context size:	

  1000 terms, 10000 terms	

  Think of it as a “buffer”	

  Different methods for maintaining context:	

  “Forget”: forget everything periodically	

  “Queue”: moving window	

  “Epoch”: throw away infrequent events periodically (Goyal et al., NAACL 2009)	

Smoothing (1)	

  Notation	

  Count of term within context (i.e., history):	

  Background model (MLE over one month):	

  Absolute Discounting	

  Jelinek-Mercer smoothing	

€

P(w) =
max(c(w;h) −δ,0)

c(w;h)
w

∑
+

δ⋅ wn

c(w;h)
w

∑
Pβ (w)€

Pβ (w)

€

c(w;h)

€

P(w) = λ
c(w;h)
c(w;h)

w
∑

+ 1− λ()⋅ Pβ (w)

foreground	

 background	

foreground	

 background	

Smoothing	

  Bayesian smoothing using Dirichlet priors	

  “Normalized” Stupid Backoff (Brants et al., EMNLP 2007)	

€

P(w) =

1
1+α

⋅
c(w;h)
c(w;h)

w
∑

if c(w;h) > 0

α
1+α

⋅ Pβ (w) otherwise

⎧

⎨
⎪ ⎪

⎩
⎪
⎪

€

P(w) =
c(w;h) + µ⋅ Pβ (w)

c(w;h) + µ
w

∑

= foreground	

= background	

Experimental Setup	

  Data	

  Week 10/1/2010 to 10/7/2010	

  ~94m tweets per day, ~11m contain hashtags	

  Background model: 2.7b tweets from entire month of 9/2010	

  Ten topics:	

  #nfl	

  #apple	

  #glee	

  #jerseryshore	

  #teaparty	

  #fashion	

  …	

Intrinsic Evaluation: Methodology	

  Separate experimental run for each topic	

  Replay tweets:	

  Discard tweets without appropriate hashtag	

  Remove hashtag	

  Compute perplexity wrt model	

  Update model	

  Compared perplexity of	

  Baseline “background” only	

  Different “background” + “foreground” combinations: smoothing and

history retention techniques	

Intrinsic Evaluation: Results	

  Generally, Jelinek-Mercer achieves lowest perplexity	

  Normalized stupid backoff not very good…	

  Context:	

  Longer is better, but shorter isn’t that bad	

  “Queue” works well, but “Forget” isn’t that bad	

  Observations:	

  Per topic perplexity varies a lot: ���

#apple (low), #fashion (high)	

  Adding “foreground” helps to varying degrees: ���
#apple (not much), #nfl (a lot)	

Extrinsic Evaluation: Methodology	

  Separate experimental run for each topic	

  Replay tweets:	

  Remove hashtag	

  Classify (given perplexity threshold)	

  Update model	

  Plot precision/recall graphs by varying perplexity thresholds	

Extrinsic Evaluation: Results	

 0.98

 0.985

 0.99

 0.995

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pr
ec

is
io

n

Recall

Topic 01: #nfl

Background only
Absolute Discounting (!=0.9)

Jelinek-Mercer ("=0.4)
Dirichlet (µ=10000)

Normalized Stupid (#=0.3)

Topic 1: #nfl	

Normalized stupid backoff is at least as good as other smoothing techniques	

Unigram LM	

Extrinsic Evaluation: Results	

 0.98

 0.985

 0.99

 0.995

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pr
ec

is
io

n

Recall

Topic 03: #apple

Background only
Absolute Discounting (!=0.9)

Jelinek-Mercer ("=0.4)
Dirichlet (µ=10000)

Normalized Stupid (#=0.3)

Topic 3: #apple	

Unigram LM	

Extrinsic Evaluation: Unigram vs. Bigram	

 0.98

 0.985

 0.99

 0.995

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pr
ec

is
io

n

Recall

Topic 01: #nfl

Background only [bigram]
Normalized Stupid (!=1.0) [bigram]

Background only [unigram]
Normalized Stupid (!=0.3) [unigram]

Topic 1: #nfl	

Bigram LMs start to model fluency… but this is essentially a keyword spotting task!	

Results: Summary	

  Intrinsic evaluation: Jelinek-Mercer > Normalized Stupid Backoff	

  Extrinsic evaluation: Normalized Stupid Backoff at least as good
as other techniques… sometimes better	

  K.I.S.S.	

Back to the beginning	

  “Fast data” = data at high velocity	

  Need for fast, constant-space, constant-time algorithms	

  Problem: topic detection in the tweet stream	

  Solution: adaptive streaming language models	

  Design considerations: recency and sparsity	

  Conclusion: simple techniques work well… K.I.S.S.	

We need more work on fast data!	

What’s the MapReduce of high-volume streaming data?	

Questions?	

…btw, we’re hiring	

Twittering Machine. Paul Klee (1922) watercolor and ink

