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Abstract We explore a syntactic approach to sentence compression in the biomedical

domain, grounded in the context of result presentation for related article search in the

PubMed search engine. By automatically trimming inessential fragments of article titles, a

system can effectively display more results in the same amount of space. Our implemented

prototype operates by applying a sequence of syntactic trimming rules over the parse trees

of article titles. Two separate studies were conducted using a corpus of manually com-

pressed examples from MEDLINE: an automatic evaluation using BLEU and a summative

evaluation involving human assessors. Experiments show that a syntactic approach to

sentence compression is effective in the biomedical domain and that the presentation of

compressed article titles supports accurate ‘‘interest judgments’’, decisions by users as to

whether an article is worth examining in more detail.

Keywords Sentence compression � Extrinsic evaluation � PubMed �
MEDLINE � Genomics IR

1 Introduction

Sentence compression has previously been identified as a key component in document

summarization. Indeed, the ability to convey the substance of a piece of text, but in a

smaller amount of space, is one hallmark of a good summarization system. Although

both syntactic and statistical approaches have been employed to tackle this problem,

previous attempts largely focus on newswire text. This work differs from previous

studies of sentence compression in two important ways: First, we explore an application
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of syntactic trimming techniques in the biomedical domain. Other than brief mentions by

Ruch et al. (2003) and Lu et al. (2006) in the context of GeneRIF extraction, this work

represents the first systematic attempt, to our knowledge, at tackling sentence com-

pression in this highly-specialized domain. Second, we couch sentence compression

within the context of result presentation in an information retrieval task. This framing of

the problem provides an extrinsic, task-based evaluation grounded in real-world user

scenarios.

We present a sentence compression algorithm for article titles from MEDLINE based on

syntactic trimming rules that operate over parse trees. This approach was adopted due to its

proven effectiveness in previous summarization tasks and the paucity of training data in the

biomedical domain. Intrinsic evaluations show that trimmed titles generated by our system

are competitive with manually-compressed gold standards, both in terms of automatic

metrics (BLEU) and human judgments of content and fluency. In addition, we evaluated the

ability of our compressed titles to facilitate ‘‘interest judgments’’—the decision by a user

regarding whether or not an article is worth examining in response to an information need.

We found little difference between original and automatically compressed titles, indicating

that from a task viewpoint, our system can effectively support users’ decisions while

reducing the amount of text they must read.

This article is organized as follows: We begin by describing the task model that

underlies our explorations in Sect. ‘‘Motivation’’. Previous work is reviewed in Sect. ‘‘

Related work’’. Efforts to develop appropriate data resources are outlined in Sect. ‘‘

Resource development’’. The syntactic trimming algorithm is detailed in Sect. ‘‘A syn-

tactic approach to compression’’. Evaluation is broken up into two sections:

Sect. ‘‘Automatic evaluation’’ covers automatic evaluations, while Sect. ‘‘Manual evalu-

ation’’ covers manual evaluations. We discuss the significance of our work in

Sect. ‘‘Discussion’’ and future plans in Sect. ‘‘Future work’’ before concluding.

2 Motivation

Our work is situated in the context of the PubMed search engine,1 a freely-accessible

gateway to the MEDLINE bibliographic database maintained by the US National Library

of Medicine (NLM). This database is viewed by medical professionals, biomedical

researchers, and many other users as the authoritative source of information related to the

health sciences. MEDLINE contains over 15 million references to articles from approxi-

mately 5,000 journals in 37 languages, dating back to the 1960s. In 2006, over 623,000

new citations were added to the database, and it currently grows at a rate of 2–4,000

citations daily. The subject scope of MEDLINE is biomedicine and health, broadly defined

to encompass those areas of the life sciences, behavioral sciences, chemical sciences, and

bioengineering needed by health professionals and others engaged in basic research and

clinical care, public health, health policy development, or related educational activities.

MEDLINE also covers life sciences vital to biomedical practitioners, researchers, and

educators, including aspects of biology, environmental science, marine biology, plant and

animal science as well as biophysics and chemistry.2

1 http://www.ncbi.nlm.nih.gov/entrez/
2 http://www.nlm.nih.gov/pubs/factsheets/medline.html
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Each MEDLINE citation includes basic metadata information such as the title of the

article, name of the authors, name of the publication, publication type, date of publication,

language, etc. Of the entries added over the last decade or so, approximately 79% have

English abstracts written by the authors of the articles.

PubMed is a freely-accessible Web search engine that provides access to the MEDLINE

database, developed by the National Center for Biotechnology Information (NCBI) at

NLM. The system provides an array of query operators that allow users to query in specific

data fields (title, author, etc.) and leverage Medical Subject Headings (MeSH), drawn from

NLM’s controlled vocabulary thesaurus. MeSH terms are assigned manually by trained

human indexers with the assistance of automated systems (Aronson et al. 2004).

A recently-revised functionality in PubMed is the ‘‘Related Links’’ feature. When the

user examines a MEDLINE abstract, the right panel of the browser is automatically

populated with titles of articles that may also be of interest, as determined by a probabi-

listic content similarity algorithm (Wilbur 2005)—in short, PubMed implicitly issues a

query for related articles whenever a user pulls up a MEDLINE abstract to examine in

detail. The goal of this feature is to unobtrusively suggest other interesting citations to

facilitate knowledge discovery. The screenshot in Fig. 1 shows the arrangement of the

PubMed search interface.

Article titles serve as document surrogates for presentation in the ‘‘Related Links’’

panel. Other space in the current PubMed interface is reserved for additional features that

have yet to be deployed. Since the screen area available to this feature is fixed, we are

faced with a tradeoff between quality and quantity: either show more related articles in less

detail or show fewer related articles in more detail. In the simple case, this tradeoff can be

implemented by controlling the amount of associated metadata that is displayed and

Fig. 1 Typical screenshot of the PubMed search engine as the user examines an abstract. The ‘‘Related
Links’’ panel on the right is populated with titles of articles that may also be of interest. Other currently
empty space is reserved for future functionality
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truncating the title based on a fixed length quota. This work explores a more sophisticated

solution based on linguistic analysis—we hypothesize that sentence compression tech-

niques can potentially deliver the best of both worlds: by shortening article titles in a

linguistically meaningful way, the interface could deliver much of the same substance in a

smaller amount of space.

Ideally, the output of a compression algorithm should be both indicative and informative—

properties often discussed in the context of document summarization (Afantenos et al. 2005).

Indicative summaries suggest the content of an underlying information object without nec-

essarily giving away details—often the aim is to entice users, or at least alert them to the

presence of a particular information object. Movie trailers and book jackets are good examples.

In contrast, an informative summary is meant to represent (and sometimes replace) the original

object. Take the case of summarizing news articles: indicative summaries might mention the

entities involved in a particular event, but not actually say what happened. An informative

summary might focus on what happened, but neglect to mention the roster of participants. See

(Kan et al. 2001) for an example of an attempt to introduce this distinction into summarization

systems. In our application, document surrogates for related articles (displayed in the ‘‘Related

Links’’ panel) should ideally satisfy both properties—be indicative as to capture users’ interest

and be informative in order to convey sufficient substance.

Ultimately, the related links feature in PubMed is designed to guide users to other

articles of interest—to support information seeking or knowledge discovery. This under-

lying task model guides our work and provides a framework for extrinsic evaluation. The

goal of the document surrogates (i.e., compressed article titles) is to facilitate interest

judgments, or user decisions on whether or not to examine a particular citation. We can

realistically measure the effectiveness of a compression algorithm by its ability to support

such decisions.

In this context, the notion of ‘‘interest judgment’’ differs from the more traditional

judgment of relevance that forms the basis of most retrieval applications. Ultimately,

retrieval systems aim to deliver information that addresses users’ information needs.

However, relevance is a multi-faceted consideration that takes into account a multitude of

factors—see (Mizzaro 1998) as a starting point into the rich body of literature on rele-

vance. We do not believe it is possible to assess an article’s relevance from only the title

(or any short surrogate), and hence it would not be meaningful to examine relevance

directly in our task context. However, an important intermediate step is the decision to

examine an abstract in more detail—which we call an interest judgment. Such a decision

will then cause a user to bring up more details about the article (abstract text, authors, and

other metadata) in order to make a more informed decision about relevance. The related

links feature in PubMed is exactly designed to elicit such interest.

Furthermore, our definition of ‘‘interest’’ opens the door to different types of relations

beyond relevance—a citation may be interesting, not because it is potentially relevant to

the present information need, but because it raises questions that the user may not have

previously considered. These types of serendipitous connections underlie many significant

breakthroughs in the life sciences, and PubMed aspires to assist in this process of

knowledge discovery by drawing links where none previously existed.

3 Related work

Our approach to sentence compression is most similar to the work of Zajic et al. (2004) in

that both use a series of linguistically-motivated trimming rules to remove inessential
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fragments from the parse tree of a sentence—additional details can be found in (Dorr et al.

2003; Zajic et al. 2007, in press). This approach has proven to be highly effective at

generating very short summaries of single newswire documents (i.e., the headline gener-

ation task), as evidenced by its performance at the DUC 2004 summarization evaluation.

Topiary, the University of Maryland’s system which integrates ‘‘parse-and-trim’’ tech-

niques with topic term extraction, was among the highest scoring systems for all tasks on

all measures—in some cases, even beating the performance of humans in terms of auto-

matic metrics. Other systems that make use of similar techniques include (Mani et al.

1999; Jing 2000), and more recently, (Blair-Goldensohn et al. 2004; Conroy et al. 2005).

In our approach, sentence compression is achieved by removing elements—no attempt is

made to reorder material within a sentence. Since our task does not involve multiple

sentences, there is no opportunity to generate output that combines fragments from dif-

ferent sources, for example, including one sentence as a relative clause inside another

(Mani et al. 1999). Thus, we conceive of sentence compression solely as the task of

selecting sentential elements (words, phrases, clauses, etc.) to remove.

Sentence compression has also been tackled with supervised machine learning tech-

niques using a noisy-channel model. Verbose text can be viewed as the output of passing

the original compressed text through a ‘‘noisy channel’’ that inserts additional inessential

content. Given the verbose text, the system’s task is to reconstruct the original message.

The problem can be modeled in terms of simple word-level features, as in (Banko et al.

2000), or in terms of parse tree structures, as in (Knight and Marcu 2000; Turner and

Charniak 2005). One downside of these statistical approaches is the need for annotated

training data to learn model parameters. On the other hand, since trimming rules are able to

exploit human linguistic insight, far less data is required for system development.

Nevertheless, both methods can be viewed as complementary.

Another approach to generating very short summaries is to extract a list of topic

descriptors indicative of content; examples include (Bergler et al. 2003; Zhou and Hovy

2003; Wang et al. 2005). The output of such techniques consists of, for the most part, noun

phrases—as such, they are useful for telling a user what the important entities are, but less

useful for conveying what actually happened. In other words, system output is indicative,

but often not informative.

Although document summarization techniques have principally been applied to news-

wire text, there is a body of research that deals specifically with the summarization of

medical documents—see (Afantenos et al. 2005) for a survey. A noteworthy example is

PERSIVAL (McKeown et al. 2003; Elhadad et al. 2005), which leverages patient records

to generate personalized summaries. In the genomics domain, automatic summarization

techniques have also been applied to extracting GeneRIFs, concise phrases describing the

function of genes (Ruch et al. 2003; Ling et al. 2006; Lu et al. 2006). In particular, Ruch

et al. (2003) and Lu et al. (2006) both briefly mention methods for removing inessential

elements from GeneRIFs, which are similar in spirit to our sentence compression tech-

niques. In comparison to these cited articles, both on summarization of newswire and

biomedical text, what sets our work apart is a focus on sentence compression as a tool to

facilitate knowledge discovery in the context of an information retrieval system.

An important part of summarization research focuses on methodologies for evaluating

system output, which can be broadly classified into two categories. In an intrinsic evalu-

ation, system output is directly evaluated in terms of some set of norms—for example,

fluency (Minel et al. 1997), coverage of key ideas (Paice 1990; Brandow et al. 1995), or

similarity to an ‘‘ideal’’ summary (Kupiec et al. 1995). In particular, the last criterion has

been operationalized in ROUGE (Lin and Hovy 2003), an automated metric that compares
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system output to a number of human-generated ‘‘reference’’ summaries. The primary

difficulty, however, lies in establishing an ideal reference (or a set of such texts)—sum-

maries are generated for different purposes, and the human-centric nature of the task means

that there is more than one ‘‘correct answer’’. Operationally, this results in low interan-

notator agreement on tasks such as sentence extraction (Salton et al. 1997).

In contrast to intrinsic evaluations, extrinsic evaluations attempt to measure how

summarization impacts some other task. Developing realistic usage scenarios is chal-

lenging, but often the ‘‘goodness’’ of a summary can only be meaningfully operationalized

in its ‘‘usefulness’’ for a particular task. One might, for example, measure how summaries

impact question answering (Morris et al. 1992; Mani et al. 2002) or relevance judgments

(Dorr et al. 2005). One possible hypothesis is that summaries allow users to make quicker

decisions (since they have to read less), without compromising the quality of those deci-

sions. Along these lines, our work is grounded in an information retrieval task, which

allows us to assess the potential real-world impact of our sentence compression techniques.

4 Resource development

Since we are not aware of any existing resources for the sentence compression task in the

biomedical domain, we devoted significant effort to creating a corpus of annotated

examples. Our collection consists of article titles that have been manually shortened by

domain experts. Instead of randomly sampling citations from the MEDLINE database, we

leveraged the test collection developed from the TREC 2005 genomics track (Hersh et al.

2005), which fits well with our task model (finding articles of interest in the context of an

ongoing search for information).

One salient feature of the TREC 2005 genomics track evaluation is its use of generic

topic templates (GTTs) to capture users’ information needs, instead of the typical free-text

title, description, and narrative combinations used in other ad hoc retrieval tasks. The

GTTs consist of semantic types, such as genes and diseases, that are embedded in common

genomics-related information needs, as determined from interviews with real biologists. In

total, five templates were developed, with 10 fully-instantiated topics for each—examples

are shown in Fig. 2. Note that in some cases, the actual topics deviated slightly from the

template structure (in order to accommodate real requests).

The genomics track employed a 10-year subset of the MEDLINE database (1994–

2003), which totals 4.6 million citations, or approximately a third of the size of the entire

MEDLINE database at the time it was collected in 2004. Each citation is identified by a

unique pmid. In total, 32 groups submitted 59 runs to the task (both manual and automatic),

which insured a rich, diverse pool of results. Relevance judgments were provided by an

undergraduate student and a Ph.D. researcher in biology.

First, we randomly sampled 200 titles from the known list of relevant citations, and

another 200 titles from the known list of irrelevant citations. These were then merged and

randomized, producing a total of 400 titles, half of which were relevant according to the

original assessors in the TREC task. We adopted this sampling process in order to obtain a

good balance—a truly random sampling of the citation pool would yield a much larger

fraction of irrelevant documents.

Next, these titles were presented to two human annotators—both were subject domain

experts otherwise uninvolved with the project. Throughout this paper, we will refer to these

annotators as ‘‘Lo’’ (Ph.D. in bioinformatics, B.S. in molecular biology) and ‘‘Ly’’ (Ph.D.

in human genetics). They were provided both the original title and the information need
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that the citation was retrieved to address (i.e., the template with concept instantiations).

Both annotators were asked to generate a compressed version of the title by removing

unimportant elements from the full title. After this was done, the 400 annotated pairs were

divided into a development set and a held-out test set.

We attempted to align the resource development process with our task model as much

as possible. To start, the TREC genomics track employed a subset of the MEDLINE

database, which gave us a degree of confidence that findings could be directly applied to

PubMed. Human generation of the compressed titles occurred in the context of infor-

mation needs, much like the task setup in related article search (i.e., browsing the

‘‘Related Links’’ panel in PubMed). Furthermore, the needs are those typical of a par-

ticular user population, since they were generalized from interviews with real biomedical

researchers. We believe that this collection encapsulates the original end-to-end task with

great fidelity, thus enabling the results of laboratory experiments to be applicable in real-

world environments.

Characteristics of our annotated data are shown in Table 1. We show the average

compression ratio and the average length reduction (with standard deviation) both in terms

of characters and words. Compression ratio is computed as the length of the compressed

sentence divided by the length of the original sentence, averaged across the entire data set

of 200 sentences. Thus, the smaller the number, the shorter the output is. We note that there

appear to be more opportunities for compression in the development set (given the lower

compression ratios). Abstract titles in the development set averaged 102.3 characters, or

13.34 words; abstract titles in the test set averaged 104.0 characters, or 13.60 words.

5 A syntactic approach to compression

We adopt a syntactic approach to sentence compression through the use of linguistically-

motivated trimming rules that remove fragments of parse trees. Our work employs the

Fig. 2 Templates and sample instantiations from the TREC 2005 genomics track
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Stanford Parser (Klein and Manning 2003).3 Although it was not originally designed to

parse text in the biomedical domain, experimental results show that a syntactic approach is

nevertheless effective for compressing abstract titles in the biomedical domain (more on

this in Sect. ‘‘Discussion’’). The techniques described here are not tied to a particular

parser and will function with any system that utilizes the Penn Treebank conventions.

From the development set, we came up with seven linguistically-motivated rules—

many of these are similar to those discussed in (Zajic et al. 2004). These rules are

described below, arranged roughly in increasing order of complexity. An example of each

is shown in Table 2; those examples illustrate the application of each rule in isolation.

• Subtitles: Subtitles, denoted with a colon or consecutive dashes, are removed. This is

accomplished with simple regular expression patterns prior to parsing. Examination of

titles from the development set suggests that the recognition of colons and consecutive

dashes is sufficient to identify subtitles.

• Determiners (DT): Determiners are removed. All terminals in the parse tree assigned

the part-of-speech tag DT are considered determiners.

• Participial and Gerund phrases (VBG): Participial and gerund phrases are removed.

These phrases are recognized by traversing the parse tree and identifying VPs headed

by tokens tagged as VBG, i.e., the structure ½VP½VBG X� � � ��. Resulting empty nodes

(e.g., dangling prepositions) are also removed.

• Serial PPs: In a sequence of prepositional phrases (sharing a common ancestor), all but

the first are removed. Prepositional phrases are recognized by traversing the parse tree

and identifying constituents with the structure ½PP½IN X� � � ��. See Sect. ‘‘Discussion’’ for

a detailed discussion regarding prepositional phrase attachment issues with the Stanford

Parser.

• Nested PPs: Any prepositional phrase that is embedded three or more levels deep is

removed. As with the previous rule, PPs are identified by traversing the parse tree and

identifying structures of the following form: ½PP½IN X� � � � � See also Sect. ‘‘Discussion’’

for issues related to prepositional phrase attachment.

• Conjoined NPs: For conjoined noun phrases, the second conjunct is removed. This rule

is motivated by Zajic et al. (2007, in press), who observed that the first conjunct in a

Table 1 Characteristics of the human-generated compressed abstract titles

Annotator Characters Words

Ratio Reduction Ratio Reduction

Development set

Lo 0.564 46.4 ± 28.4 0.543 6.34 ± 3.81

Ly 0.575 48.0 ± 34.9 0.567 6.40 ± 4.61

Test set

Lo 0.601 43.6 ± 26.5 0.587 5.99 ± 3.77

Ly 0.652 39.0 ± 30.6 0.644 5.25 ± 4.12

The table shows compression ratio and average length reduction (with standard deviation) at the character
and word levels: development set on top and test set on bottom. Length of complete abstract titles: 102.3
characters, 13.34 words (for development set) and 104.0 characters, 13.60 words (for test set)

3 Version 1.5.1, downloaded from http://www-nlp.stanford.edu/software/; default settings were used in all
experiments.
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½NP½NP � � � � andCC½NP � � � �� structure is often more important. Noun phrases containing

conjoined adjectives are left untouched.

• Simple NPs: Adjectives in NPs are removed, unless their heads are ‘‘lightweight’’. For

example, contrast ‘‘a specificJJ promoterNP nucleosomeNP’’ and ‘‘the epsilon-globinJJ

geneNP’’: whereas the adjective can be removed without significantly affecting content in

the first case, the token tagged as adjective (‘‘epsilon-globin’’) actually conveys most of the

content in the second NP. We term the head (rightmost) noun lightweight in the second

case and approximate its ‘‘weight’’ using inverse document frequency (idf), a commonly-

employed measure in information retrieval. Thus, a threshold associated with this rule

specifies the weight of a head noun above which modifying adjectives are removed.

The above trimming rules were formulated after examining sentence pairs in the

development set and recognizing opportunities to remove inessential fragments of titles

based on syntactic structure. This was not accomplished in a systematic way, and no doubt

there are other opportunities that can be exploited. Nevertheless, as our evaluations show,

these rules provide the basis for an effective sentence compression algorithm. The order in

which the trimming rules are sequentially applied in our final implementation was guided

by the evaluation of individual rules, described in the next section.

6 Automatic evaluation

Although end-to-end task-based evaluations provide the best method for assessing information

systems, the large amount of manual effort typically required for such evaluations precludes

Table 2 Example of all trimming rules. All rules are applied in isolation
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using them for system development. In human language technologies, researchers often

employ a paradigm based on automatic metrics for system development, capped with a

summative evaluation. Our work follows in this model. This section describes a series of

experiments that characterize the effectiveness of our syntactic trimming techniques using

automated methods. A manual evaluation is detailed in Sect. ‘‘Manual Evaluation’’.

6.1 Evaluation methodology

Automatic evaluation methods are attractive because they enable quick experimental

turnaround, thereby facilitating rapid exploration of the solution space. An easily quanti-

fiable performance metric provides researchers with an objective function over which they

can optimize. Once an automatic metric has been validated—that is, demonstrated to

correlate with human preferences—the measure can be exploited for system development.

In the language processing community, researchers have developed a family of auto-

matic metrics based on the idea of comparing system output to one or more human-

generated references. Similarity to these ‘‘gold standards’’, according to different content

overlap metrics, can quantify the quality of system output—this represents a well-estab-

lished evaluation methodology in the language processing community. Two such

commonly-used metrics are BLEU (Papineni et al. 2002) for machine translation and ROUGE

(Lin and Hovy 2003) for document summarization. Both rely on computing n-gram

overlap between system output and human references (manually-translated sentences and

human-generated summaries, respectively), but the details differ. In general, BLEU is a

precision-oriented metric that places heavy emphasis on fluency, i.e., checking to make

sure that the system output is ‘‘good English’’. This is important in evaluating machine

translations since automated systems have a tendency to produced garbled sentences.

ROUGE, a metric developed for document summarization tasks, on the other hand, focuses

on recall of content, i.e., the presence or absence of certain topic terms. Because most

modern document summarization systems are extractive, generation of disfluent output is

not as severe a problem.4 Thus, summarization metrics emphasize the inclusion of key

facts or concepts in the system output, as measured in terms of n-gram overlap.

Given these considerations, we decided that BLEU is the more appropriate metric for our

sentence compression task—primarily because we are concerned with the fluency of system

output. Conceptually, sentence compression can be viewed as ‘‘translating’’ from verbose

English into succinct English. According to previous work (Lin 2004), ROUGE-1 recall cor-

relates best with human judgments on the headline generation task—constructing a very short

summary (less than 75 characters) from a single newspaper article. This is the closest sum-

marization analog to our task, but we believe that ROUGE-1 is not an appropriate metric. The

measure focuses on unigram overlap, i.e., the presence of content words in system output, and

is not sensitive to fluency considerations; a grammatical sentence and a random sequence of

the same words would receive identical scores. This characteristic does not fit with our desire

to assess the grammatical correctness of system output, which is an important concern since

removing certain portions of the parse tree may yield ungrammatical output. BLEU, on the

other hand, is better able to model fluent English text since it takes into account n-grams of

different lengths. Although the metric considers only the surface properties of machine output

and lacks even a rudimentary model of syntax and semantics, it has proven highly effective in

4 On a sentence-by-sentence basis, that is. Discourse-level properties such as coherence of text are
important issues, but much harder to evaluate and quantify.
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guiding research in machine translation. Despite its deficiencies, BLEU has enabled rapid

progress in translation technology over the past few years.

To get a sense of how much the assessors agreed with each other, we computed BLEU

scores, using one as the ‘‘system output’’ and the other as the reference. These results are

shown in Table 3. Note that these values are lower than many of the BLEU scores reported

for our compression algorithm because only one set of references is used; in all other

experiments, system output is evaluated against both sets of human references.

6.2 Application of individual rules

We first examined each rule in isolation. Table 4 shows results for all rules expect for the

simple NP rule, which requires an additional parameter and is therefore discussed sepa-

rately. For each rule, we note the number of titles that triggered the rule (out of 200 in each

Table 3 BLEU scores of one annotator’s output using the other as a reference, on both the development set
and the test set

Output Reference Dev Test

Lo Ly 0.510 0.550

Ly Lo 0.513 0.544

These values characterize the agreement between the two human annotators

Table 4 Compression effectiveness of each rule in isolation with the exception of the simple NP rule

Rule # Characters Words BLEU

Ratio Reduction Ratio Reduction

Development set

Untrimmed – 1.000 0.00 1.000 0.00 0.538

Subtitle 39 0.525 49.92 ± 27.36 0.518 6.54 ± 3.61 0.579

DT 103 0.955 4.64 ± 2.57 0.899 1.40 ± 0.66 0.555

VBG 20 0.584 47.20 ± 23.56 0.573 6.40 ± 3.10 0.541

Serial PP 40 0.587 39.85 ± 21.78 0.564 5.70 ± 3.12 0.527

Nested PP 41 0.748 32.85 ± 23.07 0.723 4.76 ± 2.99 0.540

Conjoined NP 73 0.722 29.30 ± 17.89 0.703 4.10 ± 2.53 0.514

Test set

Untrimmed – 1.000 0.00 1.000 0.00 0.593

Subtitle 38 0.510 53.45 ± 29.83 0.529 6.82 ± 4.20 0.619

DT 109 0.956 4.61 ± 2.68 0.907 1.34 ± 0.74 0.600

VBG 26 0.656 36.35 ± 29.24 0.683 4.31 ± 3.98 0.586

Serial PP 42 0.688 34.86 ± 28.18 0.670 4.93 ± 3.93 0.596

Nested PP 36 0.778 28.50 ± 20.16 0.759 4.22 ± 3.05 0.591

Conjoined NP 54 0.763 25.93 ± 16.22 0.753 3.57 ± 2.44 0.575

The second column shows number of abstract titles (out of 200) that triggered the rule. The last column
shows the BLEU score of compressed output. Middle columns show average compression ratio and average
length reduction (with standard deviation), in terms of characters and words. Data from development set
shown on top, and data from test set shown on bottom. Length of complete abstract titles: 102.3 characters,
13.34 words (for development set) and 104.0 characters, 13.60 words (for test set)
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set) in the second column of the table. This value quantifies the prevalence of each

phenomena. The next four columns show average compression ratio and average length

reduction (with standard deviation), both at the character and word levels. These values are

computed over affected titles only (the set of abstract titles that triggered the rule). The

BLEU scores were computed across the entire data sets (all 200 sentences), using both ‘‘Lo’’

and ‘‘Ly’’ as the references.

How is one supposed to interpret these results? The effectiveness of each rule is

quantified in two ways: the amount of compression achieved and how ‘‘good’’ the resulting

output is (compared to human-generated references using the BLEU metric). Thus, each rule

represents a tradeoff along these two dimensions. Leaving the abstract titles untrimmed

(the first row in Table 4) represents a baseline. Not surprisingly, application of the trim-

ming rules in most cases raises the BLEU score, indicating that the results are closer to the

references than the original full title in terms of n-gram content. In most cases, gains

observed in the development set carried over to the held-out test set, although the mag-

nitude of the improvements were smaller (but recall that the human-annotated gold

standards suggest fewer opportunities for trimming in the test data). In general, the scope

of the rules (i.e., number of affected titles) and the degree of compression were

comparable.

The performance of the simple NP trimming rule in isolation is shown in Fig. 3. Corpus

statistics required for the idf calculation were extracted from the 10-year MEDLINE

collection used in the TREC 2005 genomics track. We varied the idf threshold from 2.0 to

10.0 in increments of 0.5, and obtained a plot that relates the BLEU score to the average

compression ratio at the character level. For this graph, average compression ratio is

computed on all the titles, even those that were unaffected by the rule (since the threshold

controls how many titles trigger the rule). The corresponding graph for average com-

pression ratio at the word level looks nearly identical, and is not shown here. It is

interesting to note that no threshold actually increases the BLEU score above the baseline
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(no compression), indicating that users engage in more complex behavior than simply

removing modifiers of noun phrases based on idf values. Trends observed in the devel-

opment set carry over to the held-out data, although the rule yields less compression.

Given that each rule represents a tradeoff between output quality and compression

ratio, how can one assemble a complete compression algorithm for MEDLINE abstract

titles? In response, we examine sequential application of the trimming rules, which yields

curves that characterize the tradeoffs mentioned. In Sect. ‘‘Manual evaluation’’, we

report results on manual evaluation of system output at two specific points on this

tradeoff curve.

6.3 Sequential application of multiple rules

After examining each rule in isolation, we experimented with applying the rules sequen-

tially. The rules were ordered based on BLEU scores on the development set (Table 4):

subtitle, DT, VBG, nested PP, serial PP, conjoined NP, and finally simple NP. Results are

displayed in Fig. 4; the top plot shows compression ratios computed at the character level,

and the bottom plot shows compression ratios computed at the word level. The horizontal

dotted lines denote the BLEU scores of the original (untrimmed) article titles. The left tails

of the curves represent the application of the simple NP rule with different idf thresholds

(we varied the parameter from 2.0 to 10.0 in increments of 0.5). The labels indicate the

points at which each rule is applied (except for the simple NP rule to reduce clutter). In

these plots, points closer to the upper left hand corner are ‘‘better’’, in the sense that we

desire large reductions in length while maintaining fidelity to the human generated

references.

We notice that successive application of individual rules is subjected to a ‘‘diminishing

returns’’ effect. The amount of compression achieved with the application of multiple rules

is strictly less than the sum of the compression achieved by individual rules. This occurs

because earlier rules can eliminate opportunities for later rules to apply. Take the example

of prepositional phrases or conjoined NPs inside a gerund phrase. Since the VBG rule

applies earlier, the entire phrase would have already been eliminated.

The same general characteristics are observed in both the development and test sets:

BLEU scores initially rise and then drop as the rules more and more aggressively trim away

parts of the structure. Untrimmed sentences (right edges of the graphs) serve as a base-

line—but note that it is possible for our compression algorithm to perform worse if too

much is removed from the abstract titles. The dip in the performance curve on the test set

can be attributed to the relative performance of the PP trimming rules: one was found to be

more effective in the development set, but the reverse turned out to be true in the test set.

How can one interpret these results, especially since BLEU scores do not correspond to

any quantity that humans have an intuition for? There are two responses to this question:

first, although it is difficult to map absolute scores to a particular level of performance,

relative differences in BLEU are meaningful—in that they tell us if one variant is ‘‘better’’

than another (in terms of matching human references).

However, the more appropriate response is to acknowledge the limitations of automatic

scoring metrics. Ultimately, our goal is to develop information systems that are useful for

humans, and one way of operationalizing ‘‘usefulness’’ is in terms of task performance.

Therefore, we believe that the question ‘‘How good is a BLEU score of 0.452?’’ is not

pertinent. Rather, we must ask if particular techniques can better assist humans in

accomplishing real-world tasks. System development, as guided by automatic metrics, only
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serves as a stepping stone to extrinsic task-based evaluations. In the next section, we report

results from exactly such a study.

7 Manual evaluation

In our initial experiments, BLEU primarily served as a formative tool to guide system

development. We then conducted a summative task-based evaluation to assess the
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usefulness of our sentence compression algorithm. At the same time, we also collected

human judgments about the intrinsic quality of the compressed output.

Recall from Sect. ‘‘Motivation’’ that we situate sentence compression in the context of

related article search in PubMed—in particular, as a method for efficient presentation of

items that may be of interest to the user. In this context, the end goal of our sentence

compression algorithm is to support interest judgments, that is, a user’s decision to

examine a citation in detail. The default condition is to show the full title, which serves as a

baseline. If the output of our sentence compression algorithm is able to provide the same

level of decision support (in terms of accuracy of interest judgments), but with a smaller

amount of text, then we can claim to have improved on the baseline. The ability to convey

much of the same content in fewer words can be leveraged in two different ways: PubMed

can use a smaller screen area for ‘‘Related Links’’, thereby freeing up space or other

content elements, or PubMed can display more related articles in the same amount of on-

screen space.

Three subject domain experts uninvolved with system development were recruited as

assessors. Two of them (‘‘Lo’’ and ‘‘Ly’’) were the same individuals involved in creating

our training and test sets. The third individual (‘‘Wa’’) was not involved in any other aspect

of the project.

Our experiments involved 100 article titles randomly sampled from the development

set.5 For each title, we randomly assigned one of four conditions to the trimmed output (25

examples each), described below. The average compression ratio (at the character level) of

each condition is shown in the second column of Table 5.

• Lo: Manually compressed titles by the annotator ‘‘Lo’’.

• Ly: Manually compressed titles by the annotator ‘‘Ly’’.

• Variant A: Application of the following rules to the original titles: subtitle, DT, VBG,

nested PP, serial PP, and conjoined NP. Note that these titles were longer than the

human gold standards on average.

• Variant B: Variant A plus the application of the simple NP rule, with an idf threshold of

2.0 (aggressive compression, same as the left tail on the plots in Fig. 4). On average,

these titles were approximately the same length as the human references.

Table 5 Fluency and content judgments by three assessors, on a scale of 1–5 (1 = worst, 5 = best); means
and standard deviations are reported

Output Ratio Fluency Content

Lo Ly Wa Lo Ly Wa

Lo 0.564 3.9 ± 0.95 4.0 ± 1.06 4.0 ± 0.98 3.5 ± 0.96 4.2 ± 0.76 3.6 ± 0.95

Ly 0.575 4.6 ± 0.76 3.0 ± 1.57 4.5 ± 0.87 3.2 ± 1.36 4.3 ± 0.69 3.7 ± 1.06

Variant A 0.687 4.5 ± 0.82 3.4 ± 1.66 4.0 ± 0.93 3.4 ± 1.61 4.0 ± 0.98 3.8 ± 1.18

Variant B 0.563 3.4 ± 1.50 2.8 ± 1.45 3.1 ± 1.36 2.4 ± 1.66 3.5 ± 1.26 3.2 ± 1.19

The second column indicates the mean character compression ratio for each condition

5 We avoided using the held-out test data so that we can continue developing the trimming algorithm in the
future. This does not impact our findings, since the development-test division is meaningless from our
assessors’ point of view.
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The assessment proceeded in two rounds. In the first round, assessors were provided

with the information need and the trimmed title of the abstract. Naturally, they did not

know the source of the trimmed titles (i.e., which condition). Assessors were asked to

rate the fluency of the title on a scale of 1–5 (1 = worst, 5 = best). They were also asked

if they would read the citation in response to the information need (i.e., a judgment of

interest).

In the second round, assessors were provided with the information need, the original

title, the trimmed title, and their interest judgment from the first round (i.e., response to

‘‘Would read abstract?’’). They were asked to rate the content of the trimmed title, in

terms of capturing essential elements from the full title, on a scale of 1–5 (1 = worst,

5 = best). In addition, they were asked if they would now read the citation given the

full title.

This two-phase setup was designed to evaluate both the intrinsic quality of the com-

pressed titles and their effectiveness in a task context. Fluency and content judgments

characterize the inherent quality of the compressed titles, while the interest judgments

ground our evaluation in a real-world scenario. We were especially concerned about

differences in interest judgments from round one and round two. If both responses were the

same, we can conclude that the article title was shortened successfully, i.e., the process did

not interfere with task performance. A ‘‘yes to no’’ flip provides evidence that the com-

pression process created a false impression of interest. A ‘‘no to yes’’ flip, on the other

hand, provides evidence that essential elements from the title were mistakenly removed.6

Fluency and content judgments from our human assessors are provided in Table 5,

which shows ratings given by all three assessors on all four conditions (mean and standard

deviation). Results suggest that variant A is not any more disfluent than the human-

compressed gold standards: two of the three assessors actually placed the machine-gen-

erated output ahead of one of the gold standards. Note, however, that variant A titles were

on average longer than human references. Machine-generated output of comparable

compression (variant B) was found to be consistently less fluent than the other conditions.

Similar trends are observed for content ratings: variant A appears to be as good as human

output, whereas variant B is less so. Overall, there appears to be much variability in these

judgments, suggesting that differences exist in the assessors’ interpretation of the task. In

particular, we note that Lo preferred Ly’s output to Lo’s own, in terms of both fluency and

content. Similarly, Ly preferred Lo’s output to Ly’s own (again, both fluency and content).

We currently have no reasonable explanation for this observation.

How does the quality of trimmed titles affect users’ task performance? The answer can

be found in the tally of flips in interest judgments, as shown in Table 6. These results

appear to suggest that compressed titles have relatively minimal impact on users’ ability to

decide whether they want to examine a citation. There does not appear to be much dif-

ference between variant A and either one of the human-generated compressions, although

variant B titles caused more flips.

Another way of organizing the results is to compare users’ interest judgments on the full

title (from the second round) with their judgments on compressed titles (from the first

round). This is similar to the consistency test employed in the TIPSTER SUMMAC

evaluations (Mani et al. 2002). Results can be analyzed in terms of the contingency table

shown in Table 7, from which we can compute standard aggregate statistics:

6 Note that since the evaluated set was constructed with a balanced number of relevant and irrelevant
articles (as deterimined by the original genomics track assessors), the consistency measures are not distorted
by class imbalance issues.
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Precision ¼ TP=ðTPþ FPÞ
Recall ¼ TP=ðTPþ FNÞ
F-score ¼ 2� Precision� Recall=ðPrecisionþ RecallÞ

Results of this analysis are presented in Table 8. According to the three assessors,

variant A titles perform on par with the human-compressed versions, although humans are

able to achieve more compression. Variant B titles, which are approximately the same

length as the human-generated references, appear to perform worse in terms of precision,

recall, and F-score. Note that the absolute performance achieved by human-compressed

titles and the output of variant A is very high—almost perfect in many cases. This confirms

our basic premise that inessential fragments from MEDLINE article titles can be removed

without affecting the substance of what is conveyed.

What are the implications of our findings? Our syntactic compression algorithm is able

to shorten abstract titles by approximately 30% without noticeably affecting task perfor-

mance (variant A). This translates into less material for the user to read, or alternatively,

over 40% more content per unit area. In the same space that it takes to display five full

Table 7 Contingency table for interest judgments on full titles and on compressed variants

Full Compressed

Interesting :Interesting

Interesting True positive (TP) False negative (FN)

:Interesting False positive (FP) True negative (TN)

Table 8 P(recision), R(ecall), and F(-score) in recognizing interesting citations with four different
compressed output, according to three different assessors

Output Lo Ly Wa

P R F P R F P R F

Lo 0.80 1.00 0.89 0.96 0.96 0.96 0.91 1.00 0.95

Ly 1.00 0.88 0.93 0.93 1.00 0.97 1.00 1.00 1.00

Variant A 1.00 0.73 0.84 0.94 1.00 0.97 0.94 0.94 0.94

Variant B 0.50 0.33 0.40 0.86 0.80 0.83 0.82 0.82 0.82

Table 6 Flips in interest judgments (out of a maximum of 25 for each condition) by three assessors based
on compressed (round 1) and full titles (round 2)

Output Lo Ly Wa

Y ? N N ? Y Y ? N N ? Y Y ? N N ? Y

Lo 2 0 1 1 2 0

Ly 0 1 1 0 0 0

Variant A 0 3 1 0 1 1

Variant B 1 2 2 3 2 2
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abstract titles, we can now display seven. We believe this is a significant result because it

provides users access to more potentially interesting articles without requiring them to read

more text.

8 Discussion

At a broader level, we believe that this work is significant in two ways. First, the appli-

cation of syntactic compression techniques in the biomedical domain raises interesting

questions about the domain portability of existing language processing tools. Second, we

view this work as a case study highlighting the importance of task-based evaluations in

grounding summarization technology. This section elaborates on both points.

8.1 Domain adaptation (Or lack thereof)

Issues surrounding the portability of text processing algorithms have recently gained

interest in the research community. Due to the availability of corpora and other resources,

most modern statistical tools are trained on newswire text, and hence specialized for

processing text from that genre, even though many other types of text are worth exploring.

Thus, an important consideration in the development of language technologies is its ability

to generalize across different domains and genres of text. In this work, we demonstrate that

sentence compression techniques originally developed for news articles can be effectively

applied to compress MEDLINE article titles. In some ways, this result is somewhat sur-

prising, as we explain below.

First, the biomedical domain offers significant challenges to off-the-shelf parsers. The

lexical overlap between MEDLINE abstracts and typical news corpora is surprisingly small

(Smith et al. 2005), which creates challenges for parsers—see, for example, (Clegg and

Shepherd 2005; Grover et al. 2005; Lease and Charniak 2005). As a specific example,

prepositional phrase attachment is problematic for statistical parsers trained on newswire

text, since noun phrase heads are often unknown lexical items in the biomedical domain.

Consider examples taken from Table 2:

(1) Electroporation-mediated interleukin-12 gene therapy [PP for hepatocellular carci-

noma ][PP in the mice model].

(2) Semiquantitative immunoblot analysis [PP of nm23-H1 and -H2 isoforms [PP in

adenocarcinomas of the lung]]: prognostic significance.

These abstract titles are typical of those in MEDLINE—characterized by sequences of

consecutive prepositional phrases. The examples above are annotated with actual structures

assigned by the Stanford Parser, which are correct in both cases. The attachment of PPs,

whether to the immediately preceding noun head—the case with example (2)—or another

head higher up in the structure—the case with example (1)—is a complex decision that

often requires semantic knowledge. Often, the Stanford Parser is incorrect in its choice of

PP attachment point, as illustrated by the following parse:

(3) Induction [PP of cell cycle arrest and morphological differentiation [PP by Nurr1 and

retinoids ]][PP in dopamine MN9D cells].

Rather, the correct structure should be:

(4) Induction [PP of cell cycle arrest and morphological differentiation ][PP by Nurr1 and

retinoids ][PP in dopamine MN9D cells].
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Nevertheless, our nested and serial PP rules appear to be insensitive to these errors

because they were engineered by examining Stanford Parser output. Since the parser

appears to make systematic errors, we are still able to capture generalizations—albeit these

rules may not represent linguistically valid generalizations in the biomedical domain. In

example (3), the serial PP rule removes the PP ‘‘in dopamine MN9D cells’’, which appears

to yield a reasonable compression.

Second, MEDLINE article titles are quite different from sentences that occur in

newswire text—most of the time, titles are not even complete sentences. Since titles are

often noun phrases or verb phrases, our approach must not only cope with out-of-domain

effects (most notably, unknown lexical items), but also stylistic differences. Experiments

suggest that the syntactic trimming approach is also capable of handling such diver-

gences, given a set of rules developed specifically for the biomedical domain. It is

noteworthy that respectable performance is achieved in our application without any

domain adaptation.

8.2 Grounding summarization in real-world tasks

This work serves as a case study illustrating the importance of grounding summarization

tasks in real-world user scenarios. To a human, a fluency score of four (out of five) is not

particularly meaningful, and neither is a 0.314 BLEU score. However, quantifying per-

formance in terms of decision-making accuracy on compressed titles (as compared to the

full titles) is informative because it illustrates how summarization techniques assist the

user’s end task, that of knowledge exploration and information gathering. In general, we

believe that information presentation issues provide a general framework for task-based

evaluation of summarization systems; see also, (Mani et al. 2002; Dorr et al. 2005) for

similar setups.

We would like to end this section with a discussion of our underlying task model. In

most retrieval tasks, the assumption is that the user issues a query to a search engine and

obtains a ranked list of documents that are potentially relevant. This output then serves as

the starting point to browsing, selection, examination, and query reformulation mecha-

nisms that may ultimately lead to the satisfaction of the information need. However, this

traditional query-centered model does not describe the only possible pattern of user-system

interactions. In particular, PubMed attempts to draw connections between articles in

MEDLINE by unobtrusively displaying titles that may be of interest. This mechanism

provides users with another device for exploring the information space. In fact, previous

simulation studies have shown that such a feature can improve performance, as measured

by traditional ranked retrieval metrics (Wilbur and Coffee 1994; Smucker and Allan 2006).

Although we focus primarily on the related links features in PubMed, our syntactic

compression techniques are equally applicable to other components in the retrieval envi-

ronment, e.g., summarizing ranked lists so that more results can be displayed on any given

Web page.

9 Future work

With respect to syntactic compression in the biomedical domain, there are two distinct

threads of future work worth exploring—improvements to the compression algorithm and

application of similar techniques to related problems. We briefly discuss each.
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The simple NP rule is currently the only rule that is parameterized—in this case, an idf
threshold. The same idea could be applied to other rules.7 For example, the system could

use a threshold to determine if the head of a prepositional phrase was ‘‘lightweight’’, and

then factor in this evidence to determine if the PP was removable. In the same way, the

conjoined NP rule could also be subjected to this modification.

However, the introduction of parameterized rules adds additional complexity to rule

ordering. Currently, trimming rules are applied sequentially in a fixed order (based on

individual performance in isolation). This neglects possible interaction effects between

rules, which would certainly increase with the introduction of parameters. Zajic (2007)

explored a solution to a similar problem by allowing multiple simultaneous rule applica-

tions, and then developing a mechanism to select among the multiple compressed

candidates. We believe that the same idea can be applied here.

Beyond applications in information retrieval, sentence compression techniques can

also be used for other tasks in the biomedical domain. The extraction of GeneRIFs is one

such possibility.8 GeneRIFs are concise phrases describing a function of a gene,

explicitly linked to the Entrez Gene database. The extraction and linking of these

descriptions is important for biologists and other researchers, since such information

would otherwise be scattered in many disparate articles and sources. GeneRIFs by design

are limited to 255 characters,9 so brevity is highly desired. As previously discussed,

summarization techniques have been successfully applied to extracting GeneRIFs (Ling

et al. 2006; Lu et al. 2006)—these systems could additionally benefit from the syntactic

compression techniques discussed in this article, to eliminate inessential material from

the extracted phrases.

10 Conclusion

Like much previous work, this paper examines the task of sentence compression. However,

our perspective is novel in two different ways: we explore the problem in the domain of

biomedicine and within the context of an information retrieval task. The contributions of

this study are two-fold: first, we demonstrate that the syntactic trimming approach, which

has proven effective in the newswire domain, is portable to the biomedical domain. Sec-

ond, our work highlights the importance of extrinsic evaluations and grounding

summarization in real-world tasks. It is our hope that we can eventually transition sum-

marization technology into the PubMed search engine.
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