Scaling Down Distributed Infrastructure on Wimpy
Machines for Personal Web Archiving

Jimmy Lin

The iSchool — College of Information Studies
University of Maryland, College Park

jimmylin@umd.edu

ABSTRACT

Warcbase is an open-source platform for storing, manag-
ing, and analyzing web archives using modern “big data” in-
frastructure on commodity clusters—specifically, HBase for
storage and Hadoop for data analytics. This paper describes
an effort to scale “down” Warcbase onto a Raspberry Pi,
an inexpensive single-board computer about the size of a
deck of playing cards. Apart from an interesting technology
demonstration, such a design presents new opportunities for
personal web archiving, in enabling a low-cost, low-power,
portable device that is able to continuously capture a user’s
web browsing history—not only the URLs of the pages that
a user has visited, but the contents of those pages—and al-
lowing the user to revisit any previously-encountered page,
as it appeared at that time. Experiments show that data
ingestion throughput and temporal browsing latency are ad-
equate with existing hardware, which means that such ca-
pabilities are already feasible today.

Categories and Subject Descriptors: H.3.4 [Information
Storage and Retrieval]: Systems and Software—Distributed
systems

Keywords: HBase; Hadoop; Raspberry Pi

1. INTRODUCTION

Most web archiving efforts to date have focused on issues
related to scalability, for example, the infrastructure to sup-
port storage, access, and processing of large collections [16,
9, 5, 8, 15, 13]. In the case of the Internet Archive, the scale
is on the order of hundreds of billions of pages and tens
of petabytes. These technical efforts invariably involve dis-
tributing the computational and storage load across clusters
of servers. This paper explores a different angle: instead of
scaling “up” on more powerful individual servers or scaling
“out” onto clusters of commodity servers, I describe an ef-
fort to scale a web archiving platform “down” onto “wimpy”
machines [3]. Such devices are characterized by low single-
core performance with limited memory and storage, but they

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.

WWW 2015 Companion, May 18-22, 2015, Florence, Italy.

ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2741695.

1351

consume very little power and are inexpensive. Wimpy ma-
chines stand in contrast to traditional “brawny” servers that
reside in datacenters and pack ever more cores, memory, and
storage into power-hungry enclosures. The Raspberry Pi, an
inexpensive single-board computer about the size of a deck
of playing cards, exemplifies a wimpy machine.

In this paper, I take Warcbase, an existing open-source
web archiving platform designed to scale out on commodity
clusters, and scale down the infrastructure onto a Raspberry
Pi. The performance of this design is evaluated in terms of
data ingestion throughput and temporal browsing latency.
An immediate and obvious question is, of course, why? I
provide two answers:

First, scaling down distributed infrastructure is an inter-
esting technology demonstration [14]. The ARM-based pro-
cessor inside a Raspberry Pi is similar to processors inside
mobile phones, tablets, embedded devices, etc. and overall,
such devices are far more prevalent than traditional servers
and PCs. For example, the technology research firm Gartner
forecasts that worldwide shipments of PCs in 2015 will to-
tal around 320 million units, compared to 2.3 billion mobile
phones and tablets.! In the emerging “internet of things”,
wimpy devices (everything from smart thermostats and cof-
fee makers to dashboard devices in the car) are becoming
increasingly ubiquitous. Thus, it is worthwhile to explore
how infrastructure designed for brawny servers might run in
such hardware environments.

Second, a web archiving platform running on a Raspberry
Pi enables potential applications in personal web archiving,
which is related to the trend of lifelogging [10]. One can
imagine building a cheap, lightweight device with a long
battery life that continuously captures an individual’s web
browsing history—mnot only the URLs of the pages that an
individual has visited, but the contents of those pages; this
can be viewed as a logical extension of browser bookmarks.
Furthermore, such a device would allow the user to view
a facsimile of any page that he or she had previously en-
countered. Experimental results in this paper show that
such a device is already feasible with current hardware and
software—it is merely an issue of “packaging” and developing
the most natural user experience.

The contribution of this paper is a demonstration that
Warcbase, a web archiving platform designed to run on a
cluster of commodity servers, can be successfully scaled down
to run on a wimpy machine—specifically, a Raspberry Pi.
Evaluations show that data ingestion throughput is suffi-
cient to support content capture at human browsing speeds

Mttp://www.gartner. com/newsroom/id/2791017

and that temporal browsing latency is no worse than brows-
ing the web in general. I discuss the implications of these
results for personal web archiving and how such capabilities
might be deployed.

2. WARCBASE

Warcbase [13] aims to build an open-source platform for
storing, managing, and analyzing web archives using mod-
ern “big data” infrastructure—specifically, HBase for storage
and Hadoop for data analytics.?2 This section provides an
overview of the HBase storage architecture and the Warc-
base data model. Analytics capabilities are not discussed
here since it does not make sense at this time to perform
data analytics (e.g., text processing, graph mining, etc.) on
a Raspberry Pi.

2.1 Storage Management

HBase is an open-source platform for managing large semi-
structured datasets. It is best described as a sparse, per-
sistent, multiple-dimensional sorted map, originally derived
from Google’s Bigtable [7]. An HBase table maintains a
mapping from a 4-tuple to arbitrary values as follows:

(row key, column family, column qualifier,
timestamp) — value

Conceptually, values are identified by rows and columns. A
row is identified by its row key. Each column is decomposed
into “family” and “qualifier”, where the family provides a
mechanism for the developer to specify groupings of quali-
fiers that should be physically co-located. The timestamp
allows storage of multi-versioned values. Rows are lexico-
graphically sorted, and thus an important element in HBase
schema design is to leverage this property for the applica-
tion’s benefit. HBase provides a number of basic operations
on the client end, including gets, puts, and range scans,
along with co-processors that allow processing to be pushed
over to the server side. The consistency model guarantees
single row transactions, but nothing more.

A table in HBase is divided into regions, which are ranges
of rows. Each region is assigned to a RegionServer, which
is responsible for handling operations on rows in the as-
signed regions. RegionServers coordinate region assignment
via ZooKeeper [11], a highly-available replicated state ma-
chine and coordination service. HBase data are physically
stored in HFiles on the Hadoop Distributed File System
(HDFS). HDFS achieves durability and availability through
replication, and HBase benefits from this design transpar-
ently. The entire stack was designed to be fault-tolerant and
scalable, and in production has been demonstrated to scale
to petabytes [2] across thousands of machines.

Since one of Bigtable’s original use case was storing web
crawls, schema design for Warcbase is relatively straightfor-
ward. In Warcbase, each collection is kept in a separate
HBase table. Each resource (e.g., web page, image, PDF,
etc.) is uniquely identified by its URL and a timestamp (the
crawl date). The resource’s domain-reversed URL serves as
its row key, i.e., www.umd.edu becomes edu.umd.www. This
design allows different pages from the same domain to be
physically kept together, thus allowing client requests to
benefit from reference locality. The raw content of a resource
(HTML, PDF, image, etc.) is stored as the value in the

’http://warcbase.org

1352

[798})

column family “c” with the MIME type (e.g., “text/html”)
as the qualifier. Each version of the crawl has a different
timestamp. The use of the MIME type as the column qual-
ifier eliminates the need for a separate query when fetching
content to support temporal browsing (since the response
HTTP header requires a Content-Type field), compared to
an alternative design in which the MIME type is stored sep-
arately. The tradeoff, however, is that the qualifier is un-
known a priori when issuing a “get” to fetch a specific re-
source, thus requiring a (short) scan of the qualifiers. This,
however, does not have a material impact on performance
since in many cases the exact timestamp of a resource is also
not known in advance, so a scan through different versions
is needed to find the most appropriate one.

Web crawling is beyond the scope of the project, which
assumes that content has already been captured in existing
ARC or WARC containers. Warcbase includes an inges-
tion program that populates the appropriate HBase table
according to the above data model. Once a web crawl has
been ingested, HBase handles the complexities of storage
management in a scalable, fault-tolerant, and distributed
manner. This includes maintaining the mapping from rows
to RegionServers responsible for serving the rows, splitting
regions as more data are ingested, rebalancing region-to-
RegionServer assignments, etc. When a RegionServer fails,
HBase transparently handles failover to ensure availability.
Underneath HBase, HDFS handles replication and other as-
pects of managing the raw data blocks. Because of this
design, user-facing services can be implemented as (often,
stateless) clients that encapsulate the application logic.

2.2 Temporal Browsing

The separation of storage management from other func-
tionalities is a key aspect of Warcbase’s design. One illus-
tration of this architecture is the implementation of capa-
bilities that allow users to access historical versions of cap-
tured web pages and to navigate links to contemporaneous
pages—commonly known as temporal browsing. Warcbase
includes adaptors that let OpenWayback,® a popular open-
source software package that provides temporal browsing, to
use Warcbase as the storage backend. This is possible via
two abstractions that the OpenWayback provides [16]:

e Resource Store, responsible for retrieving archived con-
tent, while abstracting the storage medium and format.

e Resource Index, responsible for fielding queries against
content in the resource store.

In a standard OpenWayback installation, the resource store
provides access to ARC/WARC data stored on the file sys-
tem (either local disk or network-attached storage). Alter-
natively, a resource store can access data via a remote ser-
vice. Similarly, OpenWayback provides alternative imple-
mentations of the resource index: a local BerkeleyDB index,
a local CDX index, or a remote resource index. Small-scale
installations typically use the BerkeleyDB index.
Warcbase/OpenWayback integration is accomplished by
providing custom implementations of the resource store and
the resource index. These implementations connect to a
REST API provided by Warcbase, which allows an Open-
Wayback instance to query for resources (e.g., lookup a par-
ticular version of a URL) and to fetch relevant content.

Shttps://github.com/iipc/openwayback

Figure 1: Raspberry Pi B4+ Model (85.60mm x
56.5mm); peripherals connect via USB ports (right)
and HDMI (bottom). (Image credit: Wikipedia)

In this way, investments that have already been made in
the development of the OpenWayback system can be ex-
ploited for temporal browsing. Warcbase integration pro-
vides a seamless browsing experience that is identical to any
other OpenWayback installation. However, the advantage
is that, via Warcbase, storage management is offloaded to
HBase. Collections can grow arbitrarily large in size without
worrying about the scalability limitations of BerkeleyDB or
CDX-based indexing.

As an alternative to the OpenWayback system, Warcbase
can integrate with the Python WayBack system® in much
the same way using the same REST API. The ability to
switch different “frontends” highlights the flexibility of the
loosely-coupled Warcbase design.

3. WARCBASE ON A RASPBERRY PI

The Raspberry Pi is an inexpensive, single-board com-
puter about the size of a deck of playing cards. It was origi-
nally developed to promote computer science education, but
has gained immense popularity in the “maker” community
due to its ability to interact with the physical world through
numerous expansion ports. The low cost of the machine has
led to a variety of interesting applications in everything from
controlling robots to retro arcade games.

The machine is based on the Broadcom BCM2835 “sys-
tem on a chip” (SoC), which runs a 32-bit 700 MHz processor
from the ARM11 family. The B+ model used in these exper-
iments (Figure 1) has 512 MB RAM, and its performance is
on par with a Pentium IT processor from the late 1990s. The
Raspberry Pi connects to an external display via an HDMI
port and additional peripherals via four internal USB ports.
Storage is provided via a microSD card.

Experiments described below used the following configu-
ration: a Raspberry Pi B4+ model overclocked to “turbo” at
1 GHz, a 64 GB microSD card, and an external USB dongle
for wifi. The system runs the Raspbian flavor of Linux. The
cost of the setup is as follows (as of Dec. 2014, in USD): the
Raspberry Pi itself costs $35 and the 64 GB microSD card
costs $25. The AC power supply costs $9, or alternatively,
one can purchase battery packs of varying capacities and
prices. Note that these costs do not include the display and
other peripherals.

“https://github.com/ikreymer/pywb

1353

Oracle has released a version of the Java Virtual Ma-
chine (JVM) for the Raspberry Pi, so running HBase (imple-
mented in Java) is reasonably straightforward. Since HBase
is typically installed on a cluster, it relies on the Hadoop Dis-
tributed File System and a number of daemons (e.g., Region-
Servers) that run on the individual servers in the cluster—
this configuration is typically referred to as fully-distributed
mode. In pseudo-distributed mode, all the daemons run on
a single machine, but still as separate processes (in differ-
ent JVMs). In standalone mode, HBase bypasses HDFS to
use the local filesystem directly and runs all daemons in the
same JVM. Due to processor and memory limitations, the
Raspberry Pi is unable to support the overhead of pseudo-
distributed mode, but the standalone mode of HBase runs
without any issues “out of the box”.

3.1 Warchase Data Ingestion

The first experiment evaluated the performance of ingest-
ing web archive data into Warcbase. For this, I used sam-
ple data from Columbia University’s Human Rights Web
Archive® consisting of ARC data from web crawls performed
in 2008. The sample collection contains 425 gzipped files to-
taling 43.4 GB.

The experimental procedure was as follows: I copied the
ARC data onto the Raspberry Pi (via scp) in batches from
a laptop. In this case, the Raspberry Pi was connected to
the network via the external USB wifi dongle. Since the
Raspberry Pi did not have sufficient space to hold all the
ARC data and the HBase table concurrently, data ingestion
proceeded in four separate batches: I copied a batch of ARC
files over to the Raspberry Pi, ran the Warcbase ingestion
program, and then removed the ARC files—repeating this
procedure for all four batches. During ingestion, all records
larger than 1 MB were discarded.

In total across the four batches, Warcbase ingested 1.68
million records in approximately 97000 seconds (about 27
hours), which translates into a sustained throughput of 17.3
records per second. During this experiment, the Raspberry
Pi was connected to a wall outlet and power usage was mea-
sured using the consumer-grade “Kill A Watt” electricity us-
age monitor. The Raspberry Pi consumed around 2.6 Watts
in steady state, with occasional peaks to around a maximum
of 3.1 Watts. As a reference point, the device draws 2.0
Watts while idle.

3.2 Temporal Browsing Latency

The next experiment evaluated the temporal browsing
performance of archived content stored on the Raspberry
Pi. For this I used the Python WayBack system as the
frontend to Warcbase, as it has the advantage of being less
heavyweight than OpenWayback, which requires a Tomcat
server. The Python WayBack provides a standalone web
server that supports temporal browsing by connecting to the
Warcbase REST API to fetch data stored in HBase. In this
experiment, the Raspberry Pi was connected to the network
via the USB wifi dongle and archived pages were accessed
from a laptop using the Firefox browser.

To evaluate the end-to-end page load latencies associated
with temporal browsing, I used the browser automation tool
Selenium® to programmatically drive the Firefox browser.
A total of 100 random HTML pages were sampled from

Shttp://hrwa.cul.columbia.edu/
Shttp://www.seleniumhq.org/

the archive and accessed in rapid succession, one after the
other, using a simple driver program running on a laptop
that connected to the Python WayBack instance running on
the Raspberry Pi (over wifi). Once a page loaded, the driver
program immediately proceeded to the next URL in the list.
A page load was considered complete when the DOM prop-
erty Document.readyState changed to “complete”. Each
page load completed in an average of 2.1 seconds (across
three trials). The Raspberry Pi consumed around 2.4 Watts
during this experiment.

Since Columbia University’s Human Rights Web Archive
was crawled using Internet Archive’s Archive-It service, the
content is also available in the Internet Archive’s general
web collection. As a reference, loading the same pages from
the Internet Archive’s Wayback machine averaged 2.9 sec-
onds per page using the same Selenium-based driver pro-
gram from the laptop (averaged over three trials). Using
the same methodology, loading the Google homepage took
1.5 seconds on average and loading the Yahoo! homepage
took 2.1 seconds on average, both across three trials.

These experimental results suggest that the experience of
browsing archived pages on the Raspberry Pi using a combi-
nation of the Python WayBack system and Warcbase is no
worse than the browsing experience of the web in general.
Hands-on experience confirms these evaluation results.

4. IMPLICATIONS

Previous experiments show that Warcbase (with Python
WayBack) can be scaled down onto a Raspberry Pi. This
demonstration shows that it is possible to run the same web
archiving software infrastructure on vastly different hard-
ware configurations: from distributed clusters (the original
target environment of Warcbase) to wimpy machines that
are increasingly ubiquitous today. This is a nice result from
a software engineering perspective because it means that in-
vestments in Warcbase can yield potential payoffs in a broad
range of different applications and hardware environments.
As Warcbase gains more features and wimpy machines grow
more powerful, additional capabilities will become available
in portable, low-power form factors “for free”.

Beyond a technology demonstration, the ability to scale
down Warcbase onto a Raspberry Pi opens up new opportu-
nities for applications in personal web archiving. I explore
some of these implications in detail below:

First, what is the scope of the personal web archiving
problem? How much storage would be required to capture
the contents of all the web pages that a user has visited
or will visit? It is possible to develop some rough estimates
based on existing large-scale web crawls: the December 2014
crawl by the Common Crawl Foundation” is 160 TB (com-
pressed) and contains approximately 2 billion web pages,
which is around 80 KB per page.® The largest microSD
card for a Raspberry Pi available today is 128 GB; for sim-
plicity, assume 100 GB can be devoted to storing data (and
the remaining to the OS, swap, and other software). This
would translate into 1.25 million web pages: at a rate of one
page per second, such a setup would last 2.4 years of con-
tinuous web browsing, which is likely longer than the life

"http://commoncrawl.org/

8 An analysis of a similar crawl from 2012 shows that 92% of
the records are HTML pages, so this figure does not include
images and other media for the most part.

1354

of the Raspberry Pi itself—at which point, the user would
probably just get a new device (with more storage). Al-
though the sizes of web pages are growing, Moore’s Law is
increasing the capacity of solid-state storage at an exponen-
tial rate, so the replacement device will likely have a mul-
tiple of the capacity of the old device. Thus, the user can
simply copy over all the old content and still have plenty
of room to capture future activity. This upgrade-and-copy
cycle could repeat indefinitely. Based on these assumptions,
a (periodically-replaced) small, cheap, low-power wimpy de-
vice is likely able to hold the contents of all web pages a user
will ever wvisit.?

Second, will a wimpy personal web archiving device be
fast enough, both in terms of content ingestion and support
for temporal browsing? The experiments in the previous sec-
tion suggest so—the ingestion rate should be able to keep up
with normal human browsing and the page load latency for
displaying archived content does not seem markedly differ-
ent from web browsing in general. Performance is already
adequate with present day hardware, and will continue to
improve over time.

A Raspberry Pi appears to have sufficient capability to
serve as a personal web archiving device. How might such a
device work in practice and what would the user experience
be like? At a high level, such capabilities represent a logical
extension of browser bookmarks [1, 12, 6]. Although the
Raspberry Pi itself would fit into a user’s pocket, current
external battery packs are relatively bulky. Nevertheless,
the entire package could easily fit into a backpack. The
low power draw of the Raspberry Pi means that the user
would be able to operate for relatively long periods without
recharging. The user would carry the device everywhere,
and it would continuously ingest web content that the user
encounters. This could technically be accomplished either
via proxying the user’s browser sessions or via a lightweight
browser plug-in that forwards data to the device: communi-
cation could occur over wifi or bluetooth. The user would
be able to configure the device to blacklist certain sites (for
example, don’t capture the content of bank accounts), but
otherwise, once configured, the personal web archiving de-
vice would just ingest data unobtrusively in the background.
By default, only pages that the user has encountered would
be captured, but more proactive approaches are possible—
for example, automatically crawling “out” a small distance
from the visited pages to gain broader coverage.

The temporal browsing experience would be similarly nat-
ural. Retrieving a previously-encountered page is as sim-
ple as pointing a browser from any device at the Rasp-
berry Pi (and properly authenticating). A setup like the
one described in the previous section would provide tem-
poral browsing capabilities. Once again, connectivity can
be provided either via wifi or bluetooth. The latter option
makes it possible to browse archived content in the absence
of internet connectivity.

This setup raises a number of potential objections and
alternatives. I discuss two immediately obvious ones:

Why not offer personal web archiving as a cloud-based ser-
vice? The simple answer is privacy. Users’ web browsing

90f course, this calculation does not include media associ-
ated with the pages (images, videos, etc.). But even factor-
ing in these data, the point remains that present technology
is already adequate for capturing the web browsing history
of typical users over moderately-long timeframes.

behavior potentially captures intimate aspects of their daily
lives that they may not be comfortable sharing with a third
party. Although one might argue that the logging of search
queries and web beacons already represent significant in-
trusions into a user’s privacy, the capture of actual content
seems to raise even more concerns. In contrast, content in-
gested into a personal web archiving device is always under
the control of the user and never communicated to third
parties without user authorization.

Why not offer personal web archiving on non-wimpy devices?
Certainly, the same capabilities described in this paper can
be deployed on a sever connected to the network, or even
directly on the user’s laptop or desktop. What’s compelling
about using a Raspberry Pi? I believe that the answer
is portability. Users today have multiple devices through
which they access web content (e.g., laptop, tablet, mobile
phone), often while away from the office or home. A per-
sonal web archiving device that the user carries everywhere
can ingest content from and provide data access to multi-
ple devices. This is similar to the “Personal Server” concept
proposed over a decade ago [18].

Thus far, the focus has been on temporal browsing capabil-
ities, which is limiting because users must already know the
URL of the content they would like to access. Although it
would be possible to build tools that allow users to navigate
their histories by time and other metadata, full-text search
capabilities would nevertheless be desirable. Previous stud-
ies have shown that a significant fraction of users’ search
behavior on the web consists of “refinding” [17], or searching
for pages they had encountered before, which seems like a
compelling use case for personal web archiving. Researchers
have already explored running full-text search engines on
mobile phones [4], so it should be possible to support full-
text archive search on a Raspberry Pi.

S. CONCLUSION

The web archiving community has mostly been thinking
“big”, in conceiving of web archiving as primarily the activity
of organizations—for example, national libraries and other
cultural heritage institutions preserving the ephemeral web.
This paper advocates thinking “small” as a complementary
approach, where web archiving occurs at the personal level,
as the byproduct of normal web usage. Ultimately, there is
nothing to prevent individuals from contributing their per-
sonal web archives to a central repository on a periodic basis.
The central repository would aggregate and anonymize the
contributions, thus addressing potential privacy concerns,
as well as perform de-duplication and other forms of data
cleaning. One can think of this as crowdsourcing “collection
development” to the masses, and this approach has the ad-
vantage in focusing preservation efforts on parts of the web
that are actually useful, at least to someone.

6. ACKNOWLEDGMENTS

This work has been supported by the Andrew W. Mellon
Foundation via Columbia University’s Web Archiving In-
centive Program and NSF award IIS-1218043. Any opin-
ions, findings, conclusions, or recommendations expressed
are mine and do not necessarily reflect those of the spon-
sors. I'd like to thank Columbia University Libraries for
sharing web archive data and helpful comments from Ian
Milligan and Ilya Kreymer.

1355

7. REFERENCES

[1] D. Abrams, R. Baecker, and M. Chignell. Information
archiving with bookmarks: Personal web space
construction and organization. CHI, 1998.

A. Aiyer, M. Bautin, G. Chen, P. Khemani,

K. Muthukkaruppan, K. Spiegelberg, L. Tang, and

M. Vaidya. Storage infrastructure behind Facebook
Messages: Using HBase at scale. IEEE Data
Engineering Bulletin, 35(2):4-13, 2012.

D. G. Andersen, J. Franklin, M. Kaminsky,

A. Phanishayee, L. Tan, and V. Vasudevan. FAWN: A
Fast Array of Wimpy Nodes. SOSP, 2009.

A. Balasubramanian, N. Balasubramanian, S. J.
Huston, D. Metzler, and D. J. Wetherall. FindAll: A
local search engine for mobile phones. CoNEXT, 2012.
S. Barton. Mignify: A big data refinery built on
HBase. HBaseCon, 2012.

R. Boardman and M. A. Sasse. “Stuff goes into the
computer and doesn’t come out”: A cross-tool study of
personal information management. CHI, 2004.

F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and

R. Gruber. Bigtable: A distributed storage system for
structured data. OSDI, 2006.

D. Gomes, M. Costa, D. Cruz, J. Miranda, and

S. Fontes. Creating a billion-scale searchable web
archive. WWW Companion, 2013.

D. Gomes, J. Miranda, and M. Costa. A survey on
web archiving initiatives. TPDL, 2011.

C. Gurrin, A. F. Smeaton, and A. R. Doherty.
Lifelogging: Personal big data. Foundation and Trends
in Information Retrieval, 8(1):1-125, 2014.

P. Hunt, M. Konar, F. Junqueira, and B. Reed.
ZooKeeper: Wait-free coordination for Internet-scale
systems. USENIX, 2010.

W.-S. Li, Q. Vu, D. Agrawal, Y. Hara, and H. Takano.
PowerBookmarks: A system for personalizable web
information organization, sharing, and management.
Computer Networks, 31(11-16):1375-1389, 1999.

J. Lin, M. Gholami, and J. Rao. Infrastructure for
supporting exploration and discovery in web archives.
WWW Companion, 2014.

T. Miihlbauer, W. Rodiger, R. Seilbeck, A. Reiser,

A. Kemper, and T. Neumann. One DBMS for all: The
brawny few and the wimpy crowd. SIGMOD, 2014.

C. Neudecker and S. Schlarb. The elephant in the
library: Integrating Hadoop. Hadoop Summit Europe,
2013.

B. Tofel. “‘Wayback’ for accessing web archives.
International Web Archiving Workshop, 2007.

S. K. Tyler and J. Teevan. Large scale query log
analysis of re-finding. WSDM, 2010.

R. Want, T. Pering, G. Danneels, M. Kumar,

M. Sundar, and J. Light. The Personal Server:
Changing the way we think about ubiquitous
computing. UbiComp, 2002.

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(1]

(12]

(13]

(14]

(15]

(16]
(17]

(18]

