Scalable Language Processing Algorithms for the Masses: A Case Study in
Computing Word Co-occurrence Matrices with MapReduce

Jimmy Lin
The iSchool, University of Maryland
National Center for Biotechnology Information, National Library of Medicine
Jjimmylin@umd.edu

Tech Report, HCIL-2008-28
Human-Computer Interaction Laboratory, University of Maryland
June 30, 2008

Abstract

This paper explores the challenge of scaling
up language processing algorithms to increas-
ingly large datasets. While cluster computing
has been available in industrial environments
for several years, academic researchers have
fallen behind in their ability to work on large
datasets. We discuss two challenges contribut-
ing to this problem: lack of a suitable pro-
gramming model for managing concurrency
and difficulty in obtaining access to hard-
ware. Hadoop, an open-source implementa-
tion of Google’s MapReduce framework, pro-
vides a compelling solution to both issues.
Its simple programming model hides system-
level details from the developer, and its abil-
ity to run on commodity hardware puts clus-
ter computing within reach of many academic
research groups. This paper illustrates these
points with a case study on building word co-
occurrence matrices from large corpora. We
conclude with an analysis of an alternative
computing model based on renting instead of
buying computer clusters.

1 Introduction

Over the past couple of decades, the field of compu-
tational linguistics (and more broadly, human lan-
guage technologies) has seen the emergence and
later dominance of empirical techniques and data-
driven research. Concomitant with this trend is a
coherent research thread that focuses on exploiting
increasingly-large datasets. Banko and Brill (2001)
were among the first to demonstrate the importance
of dataset size as a significant factor governing pre-
diction accuracy in a supervised machine learning

task. In fact, they argued that size of training set was
perhaps more important than the choice of machine
learning algorithm itself. Similarly, experiments
in question answering have shown the effective-
ness of simple pattern-matching techniques when
applied to large quantities of data (Brill et al., 2001).
More recently, this line of argumentation has been
echoed in experiments with large-scale language
models. Brants et al. (2007) showed that for statis-
tical machine translation, a simple smoothing tech-
nique (dubbed Stupid Backoff) approaches the qual-
ity of the Kneser-Ney algorithm as the amount of
training data increases, and with the simple method
one can process significantly more data.

Challenges in scaling algorithms to increasingly-
large datasets have become a serious issue for re-
searchers. It is clear that datasets readily available
today and the types of analyses that researchers wish
to conduct have outgrown the capabilities of individ-
ual computers. The only practical recourse is to dis-
tribute the computation across multiple cores, pro-
cessors, or machines. The consequences of failing
to scale include misleading generalizations on arti-
ficially small datasets and ad-hoc approximations,
both of which are undesirable.

This paper focuses on two barriers to develop-
ing scalable language processing algorithms: chal-
lenges associated with parallel programming and ac-
cess to hardware. We argue that Google’s MapRe-
duce framework provides an attractive programming
model for developing scalable algorithms, and with
the release Hadoop, an open-source implementation
of MapReduce, cost-effective cluster computing is
within the reach of most academic research groups.

It is emphasized that this work focuses on large-data
algorithms from the perspective of academia—our
colleagues in industrial environments have long en-
joyed the advantages of cluster computing. How-
ever, it is only recently that such capabilities have
become practical for academic research groups.
These points are illustrated by a case study in build-
ing large word co-occurrence matrices, a simple task
that underlies many NLP algorithms.

We proceed as follows: the next section overviews
the MapReduce framework and why it provides a
compelling solution to the issues sketched above.
Section 3 introduces task of building word co-
occurrence matrices, which provides an illustrative
case study: two separate algorithms are presented in
Section 4. Our experimental setup is described in
Section 5, followed by presentation of results in Sec-
tion 6. We discuss implications and generalizations
following that. Before concluding, we explore an
alternative model of computing based on renting in-
stead of buying hardware, which makes cluster com-
puting practical for everyone.

2 MapReduce

The only practical solution to large-data challenges
today is to distribute the computation across mul-
tiple cores, processors, or machines. The de-
velopment of parallel algorithms involves a num-
ber of tradeoffs. First is that of cost: a decision
must be made between ‘“exotic” hardware (e.g.,
large shared memory machines, InfiniBand inter-
connect) and commodity hardware. There is signif-
icant evidence (Barroso et al., 2003) that solutions
based on the latter are more cost effective—and for
resource-constrained academic NLP groups, com-
modity hardware is the only practical route.

Given appropriate hardware, researchers must
still contend with the challenge of developing soft-
ware. Quite simply, parallel programming is diffi-
cult. Due to communication and synchronization
issues, concurrent operations are notoriously chal-
lenging to reason about. Reliability and fault tol-
erance become important design considerations on
clusters containing large numbers of commodity ma-
chines. With traditional parallel programming mod-
els (e.g., MPI), the developer shoulders the burden
of explicitly managing concurrency. As a result, a

significant amount of the programmer’s attention is
devoted to system-level details, leaving less time for
thinking about the actual problem.

Recently, Google’s MapReduce framework (Dean
and Ghemawat, 2004) has emerged as an attractive
alternative to existing parallel programming models.
The MapReduce abstraction shields the programmer
from having to explicitly worry about system-level
issues such as synchronization, inter-process com-
munication, and fault tolerance. The runtime is able
to transparently distribute computations across large
clusters of commodity hardware with good scaling
characteristics. This frees the programmer to focus
on actually solving the problem at hand.

MapReduce builds on the observation that many
information processing tasks have the same basic
structure: a computation is applied over a large num-
ber of records (e.g., Web pages, bitext pairs, or nodes
in a graph) to generate partial results, which are
then aggregated in some fashion. Naturally, the per-
record computation and aggregation function vary
according to task, but the basic structure remains
fixed. Taking inspiration from higher-order func-
tions in functional programming, MapReduce pro-
vides an abstraction at the point of these two opera-
tions. Specifically, the programmer defines a “map-
per” and a “reducer” with the following signatures:

map: (k1,v1) — [(ka, v2)]
reduce: (ka, [v2]) — [(k3,v3)]

Key-value pairs form the basic data structure in
MapReduce. The mapper is applied to every input
key-value pair to generate an arbitrary number of in-
termediate key-value pairs (we adopt the convention
of [...] to denote a list). The reducer is applied to
all values associated with the same intermediate key
to generate output key-value pairs. This two-stage
processing structure is illustrated in Figure 1.

Under the framework, a programmer need only
provide implementations of the mapper and reducer.
On top of a distributed file system (Ghemawat et al.,
2003), the runtime transparently handles all other
aspects of execution, on clusters ranging from a
few to a few thousand nodes. The runtime is re-
sponsible for scheduling map and reduce workers
on commodity hardware assumed to be unreliable,
and thus is tolerant to various faults through a num-
ber of error recovery mechanisms. The runtime also

‘ input | input | input | input ‘

[—map{ [ma/pl [Eapl %

l l l l

’ Shuffling: group values by keys

} } l

[reduce } [reduce] [reduce]

~,

| output | output | output |

Figure 1: Illustration of the MapReduce framework: the
“mapper” is applied to all input records, which generates
results that are aggregated by the “reducer”. The runtime
groups together values by keys.

manages data distribution, including splitting the in-
put across multiple map workers and the potentially
very large sorting problem between the map and re-
duce phases whereby intermediate key-value pairs
must be grouped by key.

As an optimization, the MapReduce model allows
the use of “combiners”, which are similar to reduc-
ers except that they operate directly on the output of
mappers (in memory, before intermediate output is
written to disk). Combiners operate in isolation on
each node in the cluster and cannot use partial results
from another node. Since the output of mappers (i.e.,
the key-value pairs) must ultimately be shuffled to
the appropriate reducer over a network, combiners
allow a programmer to aggregate partial results, thus
reducing network traffic. In cases where an opera-
tion is both associative and commutative, reducers
can directly serve as combiners.

Google’s proprietary implementation of MapRe-
duce is in C++ and not available to the public. How-
ever, the existence of Hadoop, an open-source im-
plementation in Java, allows any programmer to take
advantage of MapReduce. The growing popularity
of this technology has stimulated a flurry of recent
work, on applications in machine learning (Chu et
al., 2006), machine translation (Dyer et al., 2008),
and document retrieval (Elsayed et al., 2008).

3 Word Co-occurrence Matrices

To illustrate the arguments presented above, we
present a case study using MapReduce to build word
co-occurrence matrices from large corpora, a com-
mon task in natural language processing. Formally,

the co-occurrence matrix of a corpus is a square
N x N matrix where N corresponds to the number
of unique words in the corpus. A cell m;; contains
the number of times word w; co-occurs with word
w; within a certain window of m words (usually an
application-dependent parameter). Note that the up-
per and lower triangles of the matrix are identical
since co-occurrence is a symmetric relation.

This task is quite common in corpus linguistics
and provides the starting point to many other algo-
rithms, e.g., for computing statistics such as point-
wise mutual information (Church and Hanks, 1990),
for unsupervised sense clustering (Schiitze, 1998),
and more generally, a large body of work in lexi-
cal semantics based on distributional profiles, dat-
ing back to Firth (1957) and Harris (1968). The
task also has applications in information retrieval,
e.g., (Schiitze and Pedersen, 1998; Xu and Croft,
1998), and other related fields as well. More gen-
erally, this problem relates to the task of estimating
distributions of discrete events from a large number
of observations (more on this in Section 7).

It is obvious that the space requirement for this
problem is O(N?), where N is the size of the vocab-
ulary, which for real-world English corpora can be
hundreds of thousands of words. The computation
of the word co-occurrence matrix is quite simple if
the entire matrix fits into memory—however, in the
case where the matrix is too big to fit in memory,
a naive implementation can be very slow as mem-
ory is paged to disk. For large corpora, one needs
to optimize disk access and avoid costly seeks. As
we illustrate in the next section, MapReduce han-
dles exactly these issues transparently, allowing the
programmer to express the algorithm in a straight-
forward manner.

Before moving on, we note that in many appli-
cations building the complete word co-occurrence
matrix may not actually be necessary. For exam-
ple, Schiitze (1998) discusses feature selection tech-
niques in defining context vectors; Mohammad and
Hirst (2006) present evidence that conceptual dis-
tance is better captured via distributional profiles
mediated by thesaurus categories. These objections,
however, miss the point—the focus of this paper
is on practical cluster computing for academic re-
searchers; this particular task serves merely as an
illustrative example.

1: procedure MAP;(n, d)

2 for all w € d do

3 for all u € NEIGHBORS(w) do
4 EMIT((w, u), 1)

1: procedure REDUCE;(p, [v1,v2,...])
2 for all v € [v1,v9,...] do

3: sum <— sum + v

4 EMIT(p, sum)

Figure 2: Algorithm 1 (“pairs”) for computing word co-
occurrence matrices.

4 MapReduce Implementation

We present two MapReduce algorithms for build-
ing word co-occurrence matrices for large corpora.
This section demonstrates how the problem can be
concisely captured in the MapReduce programming
model, and how the runtime hides many of the
system-level details associated with distributed com-
puting. Pseudo-code for the first, more straightfor-
ward, algorithm is shown in Figure 2. Unique doc-
ument ids and the corresponding texts make up the
input key-value pairs. The mapper takes each input
document and emits intermediate key-value pairs
with each co-occurring word pair as the key and the
integer one as the value. In the pseudo-code, EMIT
denotes the generation of a key-value pair that is
collected (and appropriately sorted) by the MapRe-
duce runtime. The reducer simply sums up all the
values associated with the same co-occurring word
pair, arriving at the absolute counts of the joint event
in the corpus (corresponding to each cell in the co-
occurrence matrix).

For convenience, we refer to this algorithm as the
“pairs” approach. Note that since co-occurrence is a
symmetric relation, we actually only need to com-
pute half of the matrix—however, for conceptual
clarity in presenting the algorithms and to generalize
to instances where the relation may not be symmet-
rical, our algorithms compute the entire matrix.

The Java implementation of this algorithm is
quite concise—less than fifty lines long. Notice the
MapReduce runtime guarantees that all values asso-
ciated with the same key will be gathered together
at the reduce stage. Thus, the programmer does not
need to explicitly manage the collection and distri-
bution of partial results across a potentially large

: procedure MAPo(n, d)
INITIALIZE(H)
for all w € d do
for all u € NEIGHBORS(w) do
H{u} — H{u} +1
EMIT(w, H)

: procedure REDUCEx(w, [Hy, Ha, Hs, . . .])

INITIALIZE(H y)

forall H € [Hl, Hy, Hs, ..
MERGE(Hy, H)

EMIT(w, Hy)

SANER AN R s

.| do

A e

Figure 3: Algorithm 2 (“stripes”) for computing word co-
occurrence matrices.

cluster. In addition, the programmer does not need
to explicitly partition the input data and schedule
workers. This example shows the extent to which
distributed processing can be dominated by system
issues, and how an appropriate abstraction can sig-
nificantly simplify a solution.

It is immediately obvious that Algorithm 1 gen-
erates an immense number of key-value pairs. Al-
though this can be mitigated with the use of a com-
biner (since addition is commutative and associa-
tive), the approach still results in a large amount
of network traffic. An alternative approach is pre-
sented in Figure 3. The only difference is that we
first store in an associative array (H) the counts of
all the words that co-occur with a particular word.
The output of the mapper is a number of key-value
pairs with words as keys and the corresponding as-
sociative arrays (properly serialized) as the values.
In the reducer, counts corresponding to the words
are summed across all the associative arrays (de-
noted by the function MERGE). Once again, a com-
biner can be used to cut down on the network traffic
by merging partial results. In the final output, each
key-value pair corresponds to a row in the word co-
occurrence matrix. For convenience, we refer to this
as the “stripes” approach; this is similar to the tech-
nique recently introduced by Dyer et al. (2008).

Compared to the “pairs” approach, the “stripes”
approach results in far fewer intermediate key-value
pairs, although each is significantly larger (and there
is overhead in serializing and deserializing associa-
tive arrays). A critical assumption of the “stripes”

approach is that at any point in time, each associa-
tive array is small enough to fit into memory. In
our case, this does turn out to be true, since the size
of the associative array is bounded by the vocabu-
lary size (on the order of hundreds of thousands of
words). In Section 6, we compare the efficiency of
both algorithms.

5 Experimental Setup

Our experiments used the English Gigaword cor-
pus (version 3),! which consists of newswire docu-
ments from six separate sources, totally 7.15 million
documents (6.8 GB compressed, 19.4 GB uncom-
pressed). For some experiments we used only the
documents from the Associated Press Worldstream
(APW), which contains 2.27 million documents (1.8
GB compressed, 5.7 GB uncompressed). By LDC’s
count, the entire collection contains approximately
2.97 billion words.

Prior to working with Hadoop, we preprocessed
the collection. All XML markup was removed, fol-
lowed by tokenization and stopword removal using
standard tools from the Lucene search engine. All
tokens were replaced with unique integers for a more
efficient encoding. The data was then packed into a
Hadoop-specific binary file format. The entire Gi-
gaword corpus took up 4.69 GB in this format; the
APW sub-corpus, 1.32 GB.

For our experiments, we used Hadoop ver-
sion 0.16.0, running on a 20-machine cluster (1 mas-
ter, 19 slaves). Each machine has two single-core
processors (running at either 2.4 GHz or 2.8 GHz),
4 GB memory (map and reduce tasks were limited
to 768 MB). The cluster has an aggregate storage
capacity of 1.7 TB. We report experimental results
using this cluster, but discuss an alternative model of
computing based on “renting cycles” in Section 8.

6 Results

First, we compared the running time of the “pairs”
and “stripes” approaches discussed in Section 4.
Running times on our cluster are shown in Figure 4
for the APW section of the Gigaword corpus: on
the x-axis we plot different percentages of the sub-
corpus, and on the y-axis running time in seconds
is shown. For these experiments, the co-occurrence

'LDC catalog number LDC2007T07

Efficiency comparison of approaches to computing word co-occurrence matrices
4000

T
"stripes" approach m

"pairs" approach
3500 |-

3000
2500 |-

2000

running time (seconds)

1500

1000

R?=0992
500 M/v/ﬂ/"/‘/%
| | | |

0 20 40 60 80 100
percentage of the APW sub-corpora of the English Gigaword

Figure 4: Running time of the two algorithms (“stripes”
vs. “pairs”) on the APW section of the Gigaword corpus.

window was set to two, i.e., w; is said to co-occur
wj if they are no more than two words apart.

Results demonstrate that the stripes approach is
far more efficient than the pairs approach: 666 sec-
onds (11m 6s) compared to 3758 seconds (62m 38s)
for the entire APW sub-corpus (improvement by a
factor of 5.66). On the entire sub-corpus, the map-
pers in the pairs approach generated 2.6 billion in-
termediate key-value pairs totally 31.2 GB. After the
combiners, this was reduced to 1.1 billion key-value
pairs, which roughly quantifies the amount of data
involved in the shuffling and sorting of the keys. On
the other hand, the mappers in the stripes approach
generated 653 million intermediate key-value pairs
totally 48.1 GB; after the combiners, only 28.8 mil-
lion key-value pairs were left. Although associa-
tive arrays can be less space efficient, the stripes ap-
proach provides more opportunities for combiners to
aggregate intermediate results, thus greatly reducing
network traffic in the sort and shuffle phase.

Figure 4 also shows that both algorithms exhibit
highly desirable scaling characteristics—linear in
the corpus size. This is confirmed by a linear regres-
sion applied to the running time data, which yields
R? values close to one. Given that we have empir-
ically shown the stripes algorithm to be more effi-
cient than the pairs algorithm, we use the stripes ap-
proach for the remainder of our experiments.

With a window size of two, computing the word
co-occurrence matrix for the complete Gigaword
corpus takes 37m 11s on our cluster. Figure 5 shows
the running time as a function of window size. With
a window of six words, running time on the com-

Running time for different widow sizes
6000 T T T

5000

4000

3000

running time (seconds)

2000 - —

1000 |- 7

0 I I I I
1 2 3 4 5 6 7

window size (number of words)

Figure 5: Running time on the entire Gigaword corpus,
with varying window sizes.

plete Gigaword corpus is 1h 23m 45s. Once again,
the algorithm exhibits the highly desirable charac-
teristic of linear scaling in terms of window size, as
confirmed by the linear regression with an R? value
very close to one.

7 Discussion

The simplicity of the programming model and good
scaling characteristics of resulting implementations
make MapReduce a compelling tool for a variety of
text processing tasks. In fact, MapReduce excels at a
large class of problems in computational linguistics
that involves estimating probability distributions of
discrete events from a large number of observations
according to the maximum likelihood criterion:

Purs(BlA) = 4B _ 4B
c(4) Xp (4 B)

In practice, it matters little whether these events
are words, syntactic categories, word alignment
links, or any construct of interest to researchers. Ab-
solute counts in the “stripes” algorithm presented
in Section 4 can be easily converted into condi-
tional probabilities by final normalization step. Re-
cently, Dyer et al. (2008) used similar techniques for
phrase extraction and word alignment in statistical
machine translation. Of course, many applications
require smoothing of the estimated distributions—
but this problem also has a nice solution in MapRe-
duce (Brants et al., 2007).

Synchronization is perhaps the single largest bot-
tleneck in distributed computing. In MapReduce,

this is handled in the shuffling and sorting of key-
value pairs between the map and reduce phases. De-
velopment of efficient MapReduce algorithms criti-
cally depends on careful control of intermediate out-
put. Since the network link between different nodes
in a cluster is by far the component with the largest
latency, any reduction in the size of intermediate
output or a reduction in the number of key-value
pairs will have significant impact on efficiency.

8 Computing on Demand

The central theme of this paper is practical cluster
computing for NLP researchers in the academic en-
vironment. We have identified two key aspects of
what it means to be “practical”: the first is an appro-
priate programming model for simplifying concur-
rency management; the second is access to hardware
resources. The Hadoop implementation of MapRe-
duce addresses the first point and to a large extent the
second point as well. We note that the cluster used in
the Section 6 experiments is modest by today’s stan-
dards and within the capabilities of many academic
research groups. It is not even a requirement for ma-
chines to be rack-mounted units in a machine room
(although that is clearly preferable); there are plenty
of descriptions on the Web about Hadoop clusters
built from a handful of desktop machines connected
by gigabit Ethernet.

Even without access to hardware, cluster comput-
ing remains within the reach of resource-constrained
academics. “Utility computing” is an emerging con-
cept whereby researchers could provision clusters on
demand from a third-party provider. Instead of up-
front capital investment to acquire a cluster and re-
occurring maintenance and administration costs, re-
searchers could “rent” computing cycles as they are
needed. One such service is provided by Amazon,
called Elastic Compute Cloud (EC2)?; with EC2, re-
searchers could dynamically create a Hadoop clus-
ter on-the-fly and tear down the cluster once experi-
ments are complete. To demonstrate the use of this
technology, we replicated our experiments on EC2
to provide a case study on this emerging model of
computing.

Virtualized computation units in EC2 are called
instances; the basic instance offers, according to

*http://www.amazon.com/ec2

Amazon, 1.7 GB of memory, 1 EC2 Compute Unit
(1 virtual core with 1 EC2 Compute Unit), and 160
GB of instance storage. As of this writing, the cur-
rent pricing is $0.10 (all prices given in USD) per
instance-hour. Computational resources are simply
charged by the instance-hour, so that a ten-instance
cluster for ten hours costs the same as a hundred-
instance cluster for one hour (both $10)—the Ama-
zon infrastructure allows one to dynamically provi-
sion and release resources as necessary. This is at-
tractive for researchers, who could on a limited basis
allocate clusters much larger than they could other-
wise afford if forced to purchase the hardware out-
right. Through virtualization technology, Amazon
is able to parcel out allotments of processor cycles
while maintaining high overall utilization across a
data center and exploiting economies of scale.

Using EC2, we built word co-occurrence matri-
ces from the entire English Gigaword corpus (win-
dow of two) on clusters of various sizes, rang-
ing from 20 slave instances all the way up to 80
slave instances. The entire cluster consists of the
slave instances plus a master controller instance that
serves as the job submission queue; our clusters ran
Hadoop version 0.17.0 (as of this writing, the lat-
est release). The running times for our experiments
are shown in Figure 6 (solid squares), with varying
cluster sizes on the x-axis. Each data point is anno-
tated with the cost of running the complete exper-
iment.> We see that computing the complete word
co-occurrence matrix costs, quite literally, a couple
of dollars—certainly affordable by any academic re-
searcher without access to hardware.

The alternate set of axes in Figure 6 shows the
scaling characteristics of various cluster sizes. The
circles plot the relative size and speedup of the EC2
experiments, with respect to the 20-slave cluster. We
see highly desirable linear scaling characteristics, at
least for the sizes of clusters we explored.

The above figures include only the cost of running
the instances. One must additionally pay for band-
width when transferring data in and out of of EC2.
As of this writing Amazon charges $0.10 per GB for
data transferred in and $0.17 per GB for data trans-
ferred out. To complement EC2, Amazon offers per-

*Note that Amazon in actuality bills in whole instance-hour
increments; these figures assume fractional accounting.

Computing word co-occurrence matrices on Amazon EC2

relative size of EC2 cluster

1x 2x 3x 4x
5000 T T T T

4000

3000

2000 —

running time (seconds)
relative speedup

1000 |-

size of EC2 cluster (number of slave instances)

Figure 6: Running time analysis on Amazon EC2 with
various cluster sizes; solid squares are annotated with
the cost of each experiment. Alternate axes (circles) plot
scaling characteristics in terms increasing cluster size.

sistent storage via the Simple Storage Service (S3),4
at a cost of $0.15 per GB per month. Amazon does
not charge for transfers between EC2 and S3 to en-
courage use of the storage. The availability of this
service means that one can choose between paying
for data transfer or paying for persistent storage on
a cyclic basis—the tradeoff naturally depends on the
amount of data and its permanence.

The cost analysis presented above assumes
optimally-efficient use of Amazon’s services; end-
to-end cost might better quantify real-world usage
conditions. In total, the experiments reported in this
section resulted in a bill of approximately thirty dol-
lars. The figure includes all costs associated with
instance usage and transfer costs. It also includes
time taken to learn the Amazon tools (we previously
had no experience with either EC2 or S3) and to
run preliminary experiments on smaller datasets (be-
fore running on the complete English Gigaword cor-
pus). The lack of fractional accounting on instance-
hours contributed to the larger-than-expected costs,
but such wastage would naturally be reduced with
more experiments and higher sustained use. Overall,
these cost appear to be very reasonable, considering
that the largest cluster in our experiments (1 mas-
ter + 80 slave instances) might be too expensive for
most academic research groups to own and maintain.

Consider another example that illustrates the pos-
sibilities of a service like EC2. Brants et al. (2007)
describe experiments on building language models

*http://www.amazon.com/s3

with increasingly-large corpora using MapReduce.
Their paper reported experiments on a corpus con-
taining 31 billion tokens (about an order of magni-
tude larger than the English Gigaword): on 400 ma-
chines, the model estimation took 8 hours.” With
EC2, such an experiment would cost a few hundred
dollars—sufficiently affordable that availability of
data becomes the limiting factor, not computational
resources themselves.

The availability of “computing-on-demand” ser-
vices such as EC2 and S3, coupled with Hadoop,
make cluster computing practical for academic re-
searchers. Although Amazon is currently the most
prominent provider of such services, they are not
the sole player in an emerging market—in the fu-
ture we foresee a vibrant field with many com-
peting providers. Considering the tradeoffs be-
tween “buying” and “renting”, we would recom-
mend the following model for an academic research
group: to purchase a modest cluster for development
and for running smaller experiments, and to use a
computing-on-demand service for scaling out and
for running larger experiments (since it would be
more difficult to economically justify a large clus-
ter if it does not receive high sustained utilization).

Finally, we note that if the concept of utility com-
puting takes hold, it would have a significant impact
on computer science research in general: algorithms
would not only be analyzed in traditional terms such
as asymptotic complexity, but also in terms of the
approximate cost for running experiments on differ-
ent datasets and clusters of different sizes. The case
can be made that cost is a more direct and practical
measure of algorithmic efficiency.

9 Conclusion

This paper address two challenges faced by aca-
demic research groups in scaling up text processing
algorithms to large corpora: the lack of an appro-
priate programming model for expressing the prob-
lem and the difficulty in getting access to hard-
ware. With our case study in building word co-
occurrence matrices from large corpora, we demon-
strate that MapReduce, via the open source Hadoop
implementation, provides a compelling solution. A

3Brants et al. were affiliated with Google, so access to hard-
ware was not an issue.

large class of algorithms in computational linguistics
can be readily expressed in MapReduce, and the re-
sulting code can be transparently distributed across
commodity clusters. Finally, the “cycle-renting”
model of computing makes access to large clusters
affordable to researchers with limited resources. To-
gether, these developments dramatically lower the
entry barrier for academic researchers who wish to
tackle large-data issues.

Acknowledgments

This work was supported by the Intramural Research
Program of the NIH, National Library of Medicine.
I would like to thank IBM and Google for hardware
support via the Academic Cloud Computing Initia-
tive, as well as Amazon support for EC2 and S3. 1
am, as always, grateful to Esther and Kiri for their
kind support.

References

Michele Banko and Eric Brill. 2001. Scaling to very very
large corpora for natural language disambiguation. In
Proceedings of the 39th Annual Meeting of the As-
sociation for Computational Linguistics (ACL 2001),
pages 26-33, Toulouse, France.

Luiz André Barroso, Jeffrey Dean, and Urs Holzle. 2003.
Web search for a planet: The Google cluster architec-
ture. IEEE Micro, 23(2):22-28.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och,
and Jeffrey Dean. 2007. Large language models in
machine translation. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 858-867, Prague, Czech Re-
public.

Eric Brill, Jimmy Lin, Michele Banko, Susan Dumais,
and Andrew Ng. 2001. Data-intensive question an-
swering. In Proceedings of the Tenth Text REtrieval
Conference (TREC 2001), pages 393—400, Gaithers-
burg, Maryland.

Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan
Yu, Gary Bradski, Andrew Ng, and Kunle Olukotun.
2006. Map-Reduce for machine learning on multi-
core. In Advances in Neural Information Processing
Systems 19 (NIPS 2006), pages 281-288, Vancouver,
British Columbia, Canada.

Kenneth W. Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicog-
raphy. Computational Linguistics, 16(1):22-29.

Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce:
Simplified data processing on large clusters. In Pro-
ceedings of the 6th Symposium on Operating System
Design and Implementation (OSDI 2004), pages 137—
150, San Francisco, California.

Chris Dyer, Aaron Cordova, Alex Mont, and Jimmy Lin.
2008. Fast, easy, and cheap: Construction of statistical
machine translation models with MapReduce. In Pro-
ceedings of the Third Workshop on Statistical Machine
Translation at ACL 2008, pages 199-207, Columbus,
Ohio.

Tamer Elsayed, Jimmy Lin, and Douglas Oard. 2008.
Pairwise document similarity in large collections with
MapReduce. In Proceedings of the 46th Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL 2008), Companion Volume, pages 265-268,
Columbus, Ohio.

John R. Firth. 1957. A synopsis of linguistic theory
1930-55. 1In Studies in Linguistic Analysis, Special
Volume of the Philological Society, pages 1-32. Black-
well, Oxford.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. 2003. The Google File System. In Proceedings
of the 19th ACM Symposium on Operating Systems
Principles (SOSP-03), pages 29-43, Bolton Landing,
New York.

Zelig S. Harris. 1968. Mathematical Structures of Lan-
guage. Wiley, New York.

Saif Mohammad and Graeme Hirst. 2006. Distribu-
tional measures of concept-distance: A task-oriented
evaluation. In Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2006), pages 35-43, Sydney, Australia.

Hinrich Schiitze and Jan O. Pedersen. 1998. A
cooccurrence-based thesaurus and two applications to
information retrieval. Information Processing and
Management, 33(3):307-318.

Hinrich Schiitze. 1998. Automatic word sense discrimi-
nation. Computational Linguistics, 24(1):97-123.

Jinxi Xu and W. Bruce Croft. 1998. Corpus-based
stemming using cooccurrence of word variants. ACM
Transactions on Information Systems, 16(1):61-81.

