
 

DEPARTMENT: Big Data Bites 

Scale Up or Scale Out for 
Graph Processing? 

This column explores a simple question: scale up or 

scale out for graph processing? Should we simply 

throw “beefier” individual multi-core, large-memory 

machines at graph processing tasks and focus on developing more efficient multi-

threaded algorithms, or are investments in distributed graph processing frameworks and 

accompanying algorithms worthwhile? For rhetorical convenience, I adopt customary 

definitions, referring to the former as scale up and the latter as scale out. Under what 

circumstances should we prefer one approach over the other? 

Whether we should scale up or out for graph processing is a consequential question from two 
perspectives: For big data practitioners, it would be desirable to develop a set of best practices 
that provide guidance to organizations building and deploying graph-processing capabilities. For 
big data researchers, these best practices translate into priorities for future work and provide a 
roadmap prioritizing real-world pain points. 

tl;dr – I advocate scale-up solutions for graph processing as the first thing to try, since they are 
much simpler to design, implement, deploy, and maintain. If you really need distributed scale-
out solutions, it means that your organization has become immensely successful. Not just “suc-
cessful” but on a growth trajectory that is outpacing Moore’s Law (it’ll become clear what this 
means below). This is unlikely to be the case for most organizations, and even if you were fortu-
nate enough to experience such explosive growth, success would likely bring commensurate re-
sources to throw at the problem. So as long as you leave yourself enough headroom, it should be 
possible to build a scale-out graph processing solution just in time. The alternative is sunk costs 
in distributed graph processing infrastructure, which comes with huge parallelization overheads, 
anticipating a problem that never arrives. 

It makes sense to begin by more carefully describing the scope of the problem: the type of graph 
processing I am referring to involves analytical queries to extract insights or to power data prod-
ucts. An example of the former might be clustering a large social network to infer latent commu-
nities of interest. An example of the latter might be building a graph-based recommendation 
system. Typically, these queries require traversing large portions of the graph where throughput, 
not latency, is the more important performance consideration. 

Gartner defines “operational” databases as “relational and non-relational DBMS products suita-
ble for a broad range of enterprise-level transactional applications, and DBMS products support-
ing interactions and observations as alternative types of transactions.” I am specifically not 
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referring to these – for example, user-facing systems that store and serve a large graph, such as 
Facebook’s TAO.1 

WTF AT TWITTER 
Previous readers of this column know that my opinions are strongly colored by my “in the 
trenches” experience working full-time at Twitter from 2010 to 2012 (and subsequent part-time 
involvement until around 2015) on building infrastructure to support data science and platforms 
to power data products. For graph processing, Twitter has always been an advocate of scale-up 
approaches, starting with its first graph-based user recommendation project called WTF (Who-
To-Follow). Gupta et al. present a more technical version of the story,2  but here I provide a sum-
mary of relevant design rationale. 

The WTF project began in the spring of 2010 as an effort to plug a gap in Twitter’s product of-
ferings. At the time, Facebook and LinkedIn already had mature user recommendation services, 
but Twitter had no comparable feature to suggest accounts users might be interested in follow-
ing. Thus, short time to market was an important goal. From this perspective, WTF was a great 
success—it launched later that summer.3 

The single biggest contributing factor to this rapid deployment, I believe, was the architectural 
decision to hold the entire graph in memory on a single server, implemented in an open-source 
graph processing engine called Cassovary (https://github.com/twitter/cassovary). This design 
very much went against the grain of conventional wisdom, which held horizontally-scalable dis-
tributed systems as the gold standard. 

Why did we reach this contrarian decision? The design choice broke down into two separate con-
siderations: 

First, did the graph fit into memory? In this case, the graph of interest was the network of follow 
relationships on Twitter. Although many other graphs existed from which recommendations 
could be computed, such as those induced from engagements (replies, likes, retweets, etc.), lev-
eraging the follow graph seemed like the obvious starting point. This was a simple and straight-
forward question to answer—even with the most inefficient encoding of uncompressed (source, 
destination) pairs, each graph edge consumes eight bytes, which translates, for example, into 64 
GB for a graph with eight billion edges. Based on statistics at the time, the answer to this ques-
tion was yes. 

Second, how much “headroom” or “runway” did we have? That is, factoring in anticipated 
growth, how much time until we run out of memory? Based on historic data, it was possible to 
run projections of graph size over time under different assumptions, and from the projections it 
was straightforward to derive an answer. Crucially, these projections accounted for Moore’s 
Law. That is, even if we did nothing, in (roughly) 18 months, Moore’s Law would give us serv-
ers with double the amount of memory. We convinced ourselves that there was sufficient head-
room to proceed with the scale-up design. WTF launched on servers with 72 GB RAM and, as 
planned, later moved to servers with 144 GB RAM. 

In other words, the critical question was not “How fast is the graph growing?” but “How fast is 
the graph growing compared to Moore’s Law.” 

To be clear, I’m not referring to Moore’s Law literally, as it is commonly acknowledged that we 
are reaching the limits of Dennard scaling. Instead, I am using “Moore’s Law” as a shorthand for 
the exponential increase in computing capabilities over time, which I am optimistic will continue 
for the foreseeable future (even if driven by different underlying mechanisms). 

In my experience, this is a factor that most do not consider in weighing scale-up vs. scale-out 
solutions. Even if the graph fits into memory today, there’s a nagging sense that you’ll run out of 
memory eventually. But this need not be true—if the graph is growing more slowly than the in-
creasing amounts of memory provided by future technological improvements “for free.” then a 
scale-up architecture will remain viable indefinitely. Around two years ago (May 2016), Amazon 
introduced the X1 instance on EC2 with nearly 2TB of memory (and 128 cores to boot).4 I won-
der how many organizations have graphs larger than that? 
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Thus, holding everything else constant, scale-up graph processing is indefinitely viable unless 
your graph is growing faster than Moore’s Law. If your graph is really growing that quickly, I 
say—wow, congratulations! If you started with a scale-up solution, this would indeed force you 
to completely replace it with a distributed scale-out solution. However, this type of explosive 
growth would surely attract resources sufficient for a complete architectural revamp—that’s a 
good problem to have, since you are likely succeeding beyond anyone’s wildest dreams. 

Consider the alternative, which is to invest a significant amount of engineering resources up 
front for a scale-out solution, anticipating faster-than-Moore’s Law growth that never material-
izes. As I’ll discuss later, distributed solutions come with significant overheads—you incur a sig-
nificant performance penalty at the get-go. For small organizations, especially those seeking to 
grow rapidly, it makes sense to prioritize effort on building products, not graph processing infra-
structure. Ironically, preparing for future growth (investment in scale-out infrastructure) actually 
detracts from growth itself (which only comes from building useful products and services). Thus, 
I advocate scale-up solutions as the first thing to try. 

I’ll conclude this section with a bit more nuance—note that I was careful to qualify my recom-
mendation with “holding everything else constant.” There are cases, however, in which this as-
sumption may not hold. In the case of the WTF project, the initial focus was the follow graph, 
represented simply as (source, destination) pairs. What if we wanted to add vertex metadata, 
such as properties of the user? What if we wanted to work with other types of graphs, e.g., the 
implicit graph defined by engagements such as likes, retweets, replies, etc.? This could be mod-
eled by adding metadata (e.g., engagement type and timestamp) to the edges. For such a graph, a 
back-of-the-envelope calculation would show that trying to fit everything in memory on a single 
machine is unrealistic. 

In truth, the broader trajectory of graph recommendation services at Twitter includes both scale-
out and scale-up architectures. The original Cassovary system that powered WTF was eventually 
decommissioned in favor of a Hadoop-based scale-out solution.5 Then there was a shift to a dis-
tributed scale-out real-time graph-based recommendation engine called MagicRecs,6 followed by 
another scale-up fit-everyone-in-memory-on-a-single-machine real-time graph processing engine 
called GraphJet.7 

The existence of these distributed scale-out systems, however, does not contradict my recom-
mendation of scale-up as the first thing to try. At Twitter, Cassovary was always intended to be 
an interim solution—the goal was to get a product launched as quickly as possible, and then to 
leverage the experiences gained to design subsequent systems. In each of the above systems, the 
choice between scale-up and scale-out architectures was carefully considered and not the result 
of blind adherence to conventional wisdom. 

Finally, holding the entire graph in memory on a single machine allowed Twitter data scientists 
to rapidly prototype and explore a variety of algorithms with minimal effort. In many cases, it 
was possible to leverage decades of research on graph algorithms to build straightforward imple-
mentations in a shared-memory setting. For many of the same algorithms, we would have needed 
to figure out how to build an efficient distributed implementation from scratch. Thus, starting 
with scale up allowed us figure out “what works” first; this then helped us to prioritize efforts in 
scaling out the right solution if needed. 

IMITATION AS FLATTERY 
It is clear that the scale-up design philosophy has had a large impact at Twitter. Even when 
scale-out architectures were eventually preferred, simply throwing more memory at the problem 
was never summarily dismissed without a careful consideration of the engineering and product 
merits. What about beyond Twitter? 

In March 2017, seven years after the original WTF project, Pinterest published the following 
blog post about Pixie, their graph-based recommendation system: 

This [the Pinterest] graph captures a huge amount of rich data from our users, and is quite 
large, with more than 100 billion edges and several billion nodes. Thankfully, RAM today is 
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incredibly cheap, and big data like this is small enough to fit on readily available AWS ma-
chines. Before terabyte-scale RAM machines were available, complex distributed systems 
like Hadoop or Spark were needed to compute algorithms for data of this scale. Fortu-
nately, in a way big data is actually getting smaller! Now we can load the entire graph into 
a single machine and traverse all of it without making any network calls. This makes real-
time algorithms on densely connected graphs much easier to develop and deploy at scale, 
and allows us to make recommendations in real-time the moment a Pinner opens our app 
(instead of computing them in batch jobs the night before). 8 

The blog post goes on to explain how Pixie powers recommendations across Pinterest and ac-
counts for about half of all Pins saved. 

It’s difficult to write a more enthusiastic endorsement of the Twitter hold-the-entire-graph-on-a-
single-machine design philosophy than the passage above! The observation that “big data is actu-
ally getting smaller” is exactly the Moore’s Law argument I made above. Back in 2015, for the 
inaugural edition of this column, I posed the provocative question “Is Big Data a Transient Prob-
lem?”9 There, I made the argument that if big data in general (not just graphs) are growing more 
slowly than Moore’s Law, then big data processing will become easier over time as scale-up so-
lutions become more practical. Perhaps the future is indeed unfolding this way. 

So, if imitation is the sincerest form of flattery, the WTF and Cassovary engineers are definitely 
flattered. Once again, scale-up graph processing should be the first thing to try, and I’m heart-
ened that other organizations are heeding this recommendation. 

SURVEY SAYS 
So far, this discussion has mostly focused on graph-based recommendation algorithms, from my 
personal experience. Looking more broadly—what do users want from graph processing soft-
ware? 

My colleague Semih Salihoglu recently led his students (with help by Tamer Özsu and me) on a 
quest to find out. They conducted a survey of graph processing systems that focused on four ma-
jor questions: 

• What types of graph data do users have? 
• What computations do users run on their graphs? 
• What software do users use to perform their computations? 
• What are the major challenges users face when processing their graph data? 

The survey targeted researchers (both in industry and academia) as well as users of a wide range 
of graph processing systems, broadly defined: graph databases (e.g., Neo4j, OrientDB), RDF en-
gines (e.g., Virtuoso), distributed graph processing frameworks (Giraph, GraphX), query lan-
guages (Gremlin), graph libraries and visualization toolkits, and more. In total, 89 users 
responded to the survey. 

The results were recently published in Proceedings of the VLDB Endowment (PVLDB).10 The 
two biggest findings could be characterized as follows: 

• Scalability is unequivocally the most pressing challenge faced by the survey partici-
pants. The ability to process very large graphs efficiently appears to be the biggest limi-
tation of existing software. 

• After scalability, participants indicated visualization as their second most pressing chal-
lenge. 

One of the questions in the survey asked participants about the size of their graphs. Of the 89 re-
sponses, 20 participants (8 researchers and 12 practitioners) indicated working with graphs con-
taining more than one billion edges. Another 21 participants (8 researchers and 13 practitioners) 
indicated working with graphs containing between 100 million and one billion edges. In terms of 
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the number of vertices, 27 participants (10 researchers and 17 practitioners) indicated that their 
graphs contained more than 100 million vertices. 

The graph size questions were formulated as discrete ranges that participants could select from, 
and the largest values provided were one billion edges and 100 million vertices, respectively. 
Therefore, the survey results are unable to tell us how much larger these graphs actually are. 
How many trillion-edge graphs are there? At the low end, though, these graphs still aren’t that 
big—one billion edges as (source, destination) pairs translate into 8GB. With a less brain-dead 
encoding, such a graph easily fits into memory on a laptop today. A graph with 100 billion 
edges, even with a moderate amount of metadata, could comfortably fit in memory on a com-
modity server today. 

BUT WHAT COST? 
So how can we reconcile the fact that the scalability of graph processing systems is a pressing 
issue (according to the PVLDB survey) with the observation that, for example, a graph with one 
billion edges isn’t that big, even with metadata? 

I believe that Frank McSherry and his colleagues offer an answer in their 2015 HotOS paper,11  
and it’s that many scale-out distributed graph processing frameworks are just terrible in terms of 
performance. The point they make is that “published work on big data systems has fetishized 
scalability as the most important feature of a distributed data processing platform.” They may 
scale well, but it could just be because they introduce a lot of overhead that they then must over-
come. McSherry et al. wondered: To what extent are these systems truly improving perfor-
mance? 

McSherry et al. attempted to answer this question by introducing a new metric called COST, or 
the Configuration that Outperforms a Single Thread. In other words, how much hardware do you 
have to throw at a scale-out distributed solution to achieve performance parity with a competent 
single-threaded implementation? 

To answer this question, the researchers examined two graphs that are commonly used in many 
evaluations of graph processing frameworks—one with 1.5 billion edges and the other with 3.7 
billion edges—and considered two sample tasks—PageRank and label propagation. McSherry et 
al. reported some surprising results. One key finding was that none of the evaluated distributed 
graph processing frameworks, running on 128 cores, consistently beats a single-threaded imple-
mentation running on a commodity laptop!  

Although the criticisms of McSherry et al. are directed primarily at academic publications, their 
point also applies to the cottage industry of companies peddling distributed graph processing so-
lutions. On the Web, you’ll come across countless blog posts and white papers touting the scala-
bility of a particular company’s solution. I’d like to know the COST. 

The fundamental, unavoidable truth is that once you’ve made the decision to abandon holding 
the graph on a single machine, you incur the orders-of-magnitude higher latencies that come with 
network communications. You’ve already dug yourself a hole—for the sake of horizontal scala-
bility—that the architecture needs to climb out of. Twitter’s more recent distributed graph engine 
MagicRecs6 alleviates this issue by cleverly partitioning the graph such that all operations are 
node-local, i.e., there is no cross-node exchange of graph adjacency lists. However, the design is 
highly application specific, and hidden in its architecture is a part of the graph that must be fully 
replicated across all nodes in order to make the algorithm work.  

Distributed scale-out architectures are complex. Just a few of the issues:  

• Queries need to be routed to appropriate partition servers and results then need to be ag-
gregated;  

• There must be some service discovery mechanism for the query broker to discover the 
partition servers; 

• There must be some health-check and self-healing mechanism to ensure that a minimum 
number of replicas for each partition is available at all times; 
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• Deployment is more complex, and rolling restarts with proper safeguards and canary 
tests are much more difficult to get right; 

• And the list goes on.  

In contrast, by holding the entire graph in memory, we just need a fleet of identical machines 
provisioned for the requisite query throughput, with a load balancer in front. This is a far simpler 
architecture, so a lot less can go wrong. 

I believe one major reason that organizations are experiencing scalability pains processing 
“large” graphs is their default choice to adopt scale-out solutions, which McSherry et al. showed 
are terrible. Of course, this is not a blanket statement that all distributed graph-processing frame-
works are terrible, just that there are a lot of them out there. Most distributed frameworks never 
dig themselves out of the hole they started in. 

CONCLUSIONS 
If there’s a solid case for scale up as a viable alternative to scale out for graph processing, then 
why haven’t more organizations considered this alternative? I propose two explanations. 

First, I believe that at a fundamental level, humans have difficulty reasoning about exponential 
growth and a baseline characterized by exponential growth. For example, when we hear about an 
investment fund manager who has achieved impressive returns over the last n years, most peo-
ple’s initial reaction is not to ask about the return of a well-diversified index fund over the same 
time period. 

Second, as another example, a cloud provider such as Amazon Web Services can raise its profit 
margins over time by simply reducing its per-unit cost slower than the dropping price of the un-
derlying hardware. Per-unit resource costs are dropping due to technological progress, and of 
course Amazon should pass the savings on to customers, right? However, I suspect that most 
customers are happy with constant per-unit resource costs and are planning future use around 
that assumption. When Amazon lowers prices, it comes as a pleasant surprise, whereas the cor-
rect reaction should be to question if the prices have been lowered sufficiently. 

The same issues are at play with scale-up solutions, in that there is this visceral unease in your 
gut—the models and projections seem reasonable, but is it really going to work? It’s difficult to 
think in terms of exponential growth. Even as the purveyor of this scale-up advice, I distinctly 
remember expressing amazement two years ago with the introduction of the EC2 X1 instance 
with ~2TB RAM. If I had truly internalized my own advice, the reaction should have actually 
been, “It’s about time!” 

I believe another consideration is the fact that distributed scale-out solutions have been codified 
in our collective engineering psyches as the “one true way” and that it has become the safe de-
fault. This is the modern equivalent of “Nobody ever got fired for buying IBM.” In truth, many 
organizations adopting technological solutions never go through careful considerations of the 
engineering, product, and resource tradeoffs. In many cases, an executive with purchasing power 
is simply checking off buzzwords (“Horizontal scalability!” “No single point of failure!” “Cloud 
enabled!” “Integrates with the data lake!”). 

As a concrete example, a number of years ago I asked some Cloudera colleagues why so much 
effort was being expended in developing HDFS namenode failover mechanisms, some of which 
were really kludgy. In my view, the amount of engineering resources devoted to tackling the 
problem was disproportionally more than the reality of the problem—I thought there were far 
more pressing pain points in the Hadoop ecosystem. The response I got was essentially that 
pointy-hair bosses who write the checks need to make sure that the “highly-available, no SPOF 
(single point of failure)” square on their buzzword bingo cards was covered. 

Deploying an ill-conceived distributed scale-out graph processing system is dangerous. First, as 
McSherry et al. showed,11 organizations need to throw a lot of resources at digging themselves 
out of the hole that those very systems created in the first place. At the end of the day, significant 
resources have been sunk anticipating growth that may never actually materialize. There are of 
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course organizations (for example, Facebook and Google) that genuinely need scale-out graph 
processing, but that isn’t the common case by far. Better to start with scale-up solutions for 
graph processing. 
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