
Abstract

Hadoop is currently the large-scale data analysis ‘‘hammer’’ of choice, but there exist classes of algorithms that
aren’t ‘‘nails’’ in the sense that they are not particularly amenable to the MapReduce programming model. To
address this, researchers have proposed MapReduce extensions or alternative programming models in which these
algorithms can be elegantly expressed. This article espouses a very different position: that MapReduce is ‘‘good
enough,’’ and that instead of trying to invent screwdrivers, we should simply get rid of everything that’s not a nail.
To be more specific, much discussion in the literature surrounds the fact that iterative algorithms are a poor fit for
MapReduce. The simple solution is to find alternative, noniterative algorithms that solve the same problem. This
article captures my personal experiences as an academic researcher as well as a software engineer in a ‘‘real-world’’
production analytics environment. From this combined perspective, I reflect on the current state and future of ‘‘big
data’’ research.

Introduction

mapreduce
17

has become a ubiquitous framework for

large-scale data processing. The Hadoop open-source im-

plementation enjoys widespread adoption in organizations

ranging from two-person startups to Fortune 500 companies. It

lies at the core of an emerging stack

for data analytics, with support from

industry heavyweights such as IBM,

Microsoft, and Oracle. Among the

advantages of MapReduce are: the

ability to horizontally scale to peta-

bytes of data on thousands of com-

modity servers, easy-to-understand

programming semantics, and a high

degree of fault tolerance.

MapReduce, of course, is not a silver bullet, and there

has been much work probing its limitations, both from a

theoretical2,30 and empirical perspective, by exploring classes

of algorithms that cannot be efficiently implemented with

it.5,12,23,56 Many of these empirical studies take the following

form: They present a class of algorithms for which the naive

Hadoop solution performs poorly, expose it as a fundamental

limitation of the MapReduce programming model,a and

propose an extension or alternative

that addresses the limitation. The

algorithms are expressed in this new

framework, and, of course, experi-

ments show substantial (an order of

magnitude!) performance improve-

ments over Hadoop.

This article espouses a very different

position; that MapReduce is ‘‘good

enough’’ (even if the current Hadoop implementation could

be vastly improved). While it is true that a large class of

algorithms are not amenable to MapReduce implementations,

‘‘MAPREDUCE, OF COURSE,
IS NOT A SILVER BULLET, AND
THERE HAS BEEN MUCH WORK

PROBING ITS LIMITATIONS.’’

aNote that this article attempts to be precise when referring to MapReduce, the programming model, and Hadoop, the popular open-source implementations.
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there exist alternative solutions to the same underlying

problems that can be easily implemented in MapReduce.

Staying in its confines allows more tightly integrated, robust,

end-to-end solutions to heterogeneous large-data challenges.

To apply a metaphor, Hadoop is currently the large-scale data

processing hammer of choice. We’ve discovered that, in addition

to nails, there are actually screws—

and it doesn’t seem like hammering

screws is a good idea. So instead of

trying to invent a screwdriver, let’s just

get rid of the screws. If there are only

nails, then our MapReduce hammer

will work just fine. To be specific,

much discussion in the literature

surrounds the fact that iterative

algorithms are not amenable to Map-

Reduce. The (simple) solution, I sug-

gest, is to avoid iterative algorithms!

I will attempt to support this somewhat radical thesis by ex-

ploring three large classes of problems that serve as the poster

children for MapReduce bashing: iterative graph algorithms

(e.g., PageRank), gradient descent (e.g., for training logistic re-

gression classifiers), and expectation maximization (e.g., for

training hidden Markov models, k-means). I begin with vague

and imprecise notions of what ‘‘amenable’’ and ‘‘good enough’’

mean, but propose a concrete objective with which to evaluate

competing solutions later.

This article captures my personal experiences as an academic

researcher, as well as a software engineer, in a production

analytics environment. As an academic, I’ve been fortunate

enough to collaborate with many wonderful colleagues and

students on ‘‘big data’’ since 2007, primarily using Hadoop to

scale a variety of text- and graph-processing algorithms (e.g.,

information retrieval, statistical machine translation, DNA

sequence assembly). Recently, I’ve just returned from

spending an extended two-year sabbatical at Twitter, ‘‘in the

trenches’’ as a software engineer wrestling with various ‘‘big

data’’ problems and trying to build scalable production

solutions.

In earnest, I quip ‘‘throw away everything not a nail,’’ tongue-

in-cheek to make a point. More constructively, I suggest a two-

pronged approach to the development of ‘‘big data’’ systems

and frameworks. Taking the metaphor a bit further (and at the

expense of overextending it), on the one hand, we should per-

fect the hammer we already have by improving its weight bal-

ance, making a better grip, etc. On the other hand, we should be

developing jackhammers—entirely new ‘‘game changers’’ that

can do things MapReduce and Hadoop fundamentally cannot

do. In my opinion, it makes less sense to work on solving classes

of problems for which Hadoop is already ‘‘good enough.’’

Iterative Graph Algorithms

Everyone’s favorite example to illustrate the limitations of

MapReduce is PageRank (or more generally, iterative graph

algorithms). Let’s assume a standard definition of a directed

graph G = (V, E) consisting of vertices V and directed edges E,

with S(vi) = {vj j (vi, vj) ˛ E} and P (vi) = {vj j (vj, vi) ˛ E}

consisting of the set of all successors

and predecessors of vertex vi (out-

going and incoming edges, respec-

tively). PageRank48 is defined as the

stationary distribution over vertices

by a random walk over the graph.

That is, for each vertex vi in the

graph, PageRank computes the val-

ue Pr(vi), representing the likeli-

hood that a random walk will arrive

at vertex vi. This value is primarily

induced from the graph topology,

but the computation also includes a

damping factor d, which allows for random jumps to any

other vertex in the graph. For nontrivial graphs, PageRank is

generally computed iteratively over multiple timesteps t using

the power method:

Pr(vi; t)¼
1=jV j if t ¼ 0

1� d
jV j þ d

P
vj2P(vi)

Pr(vj ;t � 1)

jS(vj )j if t > 0

8<
: (1)

The algorithm iterates until either a user-defined maximum

number of iterations has completed, or the values sufficiently

converge. One common convergence criterion is:

X
jPr(vi; t)� Pr(vi; t � 1)j < � (2)

The standard MapReduce implementation of PageRank is

well known and is described in many places (see, for example,

Ref. 37). The graph is serialized as adjacency lists for each

vertex, along with the current PageRank value. Mappers

process all the vertices in parallel: For each vertex on the

adjacency list, the mapper emits an intermediate key-value

pair with the destination vertex as the key and the partial

PageRank contribution as the value (i.e., each vertex dis-

tributes its present PageRank value evenly to its successors).

The shuffle stage performs a large ‘‘group by,’’ gathering all

key-value pairs with the same destination vertex, and each

reducer sums up the partial PageRank contributions.

Each iteration of PageRank corresponds to a MapReduce

job.b Typically, running PageRank to convergence requires

dozens of iterations. This is usually handled by a control

program that sets up the MapReduce job, waits for it to

complete, and then checks for convergence by reading in the

‘‘WE’VE DISCOVERED THAT,
IN ADDITION TO NAILS, THERE
ARE ACTUALLY SCREWS—AND

IT DOESN’T SEEM LIKE
HAMMERING SCREWS IS

A GOOD IDEA.’’

bThis glosses over the treatment of the random jump factor, which is not important for the purposes here, but see Ref. 37.
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updated PageRank vector and comparing it with the previ-

ous. This cycle repeats until convergence. Note that the basic

structure of this algorithm can be applied to a large class of

‘‘message-passing’’ graph algorithms39,42 (e.g., breadth-first

search follows exactly the same form).

There is one critical detail necessary for the above approach

to work: The mapper must also emit the adjacency list with

the vertex id as the key. This passes the graph structure to the

reduce phase, where it is reunited (i.e., joined) with the up-

dated PageRank values. Without this step, there would be no

way to perform multiple iterations.

There are many shortcomings with this algorithm:

� MapReduce jobs have high startup costs (in Hadoop,

they can be tens of seconds on a large cluster under

load). This places a lower bound on iteration time.
� Scale-free graphs, whose edge distributions follow

power laws, often create stragglers in the reduce phase.

The highly uneven distribution of incoming edges to

vertices produces significantly more work for some

reduce tasks (take, for example, the reducer assigned

to sum up the incoming PageRank contributions to

google.com in the webgraph). Note that since these

stragglers are caused by data skew, speculative execu-

tion17 cannot solve the problem. Combiners and other

local aggregation techniques alleviate but do not fully

solve this problem.
� At each iteration, the algorithm must shuffle the graph

structure (i.e., adjacency lists) from the mappers to the

reducers. Since, in most cases, the graph structure is

static, this represents wasted effort (sorting, network

traffic, etc.).
� The PageRank vector is serialized to HDFS, along with

the graph structure, at each iteration. This provides

excellent fault tolerance, but at the cost of performance.

To cope with these shortcomings, a number of extensions to

MapReduce or alternative programming models have been

proposed. Pregel42 implements the Bulk Synchronous Parallel

model:52 Computations are ‘‘vertex-centric’’ and algorithms

proceed in supersteps with synchronization barriers between

each. In the implementation, all state, including the graph

structure, is retained in memory (with periodic checkpoint-

ing). HaLoop12 is an extension of Hadoop that provides

support for iterative algorithms by scheduling tasks across it-

erations in a manner that exploits data locality and by adding

various caching mechanisms. In Twister,23 another extension

of Hadoop designed for iteration, intermediate data are re-

tained in memory if possible, thus greatly reducing iteration

overhead. PrIter,56 in contrast, takes a slightly different ap-

proach to speeding up iterative computation: It prioritizes

those computations that are likely to lead to convergence.

All the frameworks discussed above share in supporting iter-

ative constructs and thus elegantly solve one or more of the

shortcomings of MapReduce discussed previously. However,

they all have one drawback: They’re not Hadoop! The reality

is that the Hadoop-based stack (e.g., Pig, Hive, etc.) has al-

ready gained critical mass as the data processing framework of

choice, and there are nontrivial costs for adopting a separate

framework just for graph processing or iterative algorithms.

More on this point in section titled ‘‘What’s Good Enough.’’

For now, consider three additional factors. First, without

completely abandoning MapReduce, there are a few simple

‘‘tweaks’’ that one can adopt to speed up iterative graph al-

gorithms. For example, the Schimmy pattern39 avoids the

need to shuffle the graph structure by consistent partitioning

and performing a parallel merge join between the graph

structure and incoming graph messages in the reduce phase.

The authors also show that great gains can be obtained by

simple partitioning schemes that increase opportunities for

partial aggregation.

Second, some of the shortcomings of PageRank in Map-

Reduce are not as severe as the literature suggests. In a real-

world context, PageRank (or any iterative graph algorithm) is

almost never computed from scratch (i.e., initialized with a

uniform distribution over all vertices and run until conver-

gence). Typically, the previously computed PageRank vector

is supplied as a starting point on an updated graph. For ex-

ample, in the webgraph context, the hyperlink structure is

updated periodically from freshly crawled pages, and the task

is to compute updated PageRank values. It makes little sense

to reinitialize the PageRank vector and ‘‘start over.’’ In-

itializing the algorithm with the previously computed values

significantly reduces the number of iterations required to

converge. Thus, the iteration penalties associated with Map-

Reduce become much more tolerable.

Third, the existence of graph-streaming algorithms for com-

puting PageRank49 suggests that there may be noniterative

solutions (or at least approximations thereof ) to a large

number of iterative graph algorithms. This, combined with a

good starting distribution (previous point), suggests that we

can compute solutions efficiently, even within the confines of

MapReduce.

Given these observations, perhaps we might consider Map-

Reduce to be ‘‘good enough’’ for iterative graph algorithms?

But what exactly does ‘‘good enough’’ mean? Let’s return to

this point in section titled ‘‘What’s Good Enough.’’

Gradient Descent

Gradient descent (and related quasi-Newton) methods for

machine learning represent a second large class of problems

that are poorly suited for MapReduce. To explain, let’s

consider a specific type of machine-learning problem, su-

pervised classification. We define X to be an input space and

Y to be an output space. Given a set of training samples

MAPREDUCE IS GOOD ENOUGH
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D¼f(xi , yi)gn
i¼ 1 from the space X · Y, the task is to induce a

function f : X / Y that best explains the training data. The

notion of ‘‘best’’ is usually captured in terms of minimizing

‘‘loss,’’ via a function that quantifies the discrepancy between

the functional prediction f (xi) and the actual output yi, for

example, minimizing the quantity:

1

n

Xn

i¼ 0

‘(f (xi), yi) (3)

which is known as the empirical risk. Usually, we consider a

family of functions F (i.e., the hypothesis space) that is pa-

rameterized by the vector h, from which we select:

arg min
h

1

n

Xn

i¼ 0

‘(f (xi; h), yi) (4)

That is, we learn the parameters of a particular model. In

other words, machine learning is cast as a functional opti-

mization problem, often solved with gradient descent.

Rewriting Equation (4) as argminw L(h) simplifies our no-

tation. The gradient of L, denote VL, is defined as follows:

=L(h)¼ qL(h)

qw0

,
qL(h)

qw1

, � � � qL(h)

qwd

� �
(5)

The gradient defines a vector field pointing to the direction in

which L is increasing the fastest and whose magnitude indi-

cates the rate of increase. Thus, if we ‘‘take a step’’ in the

direction opposite of the gradient from an arbitrary point a,

b, = a - cVL(a), then L(a) ‡ L(b), provided that c (known as

the step size) is a small value greater than zero.

If we start with an initial guess of h(0) and repeat the above

process, we arrive at gradient descent. More formally, let us

consider the sequence h(0), h(1), h(2) . . . , defined with the

following update rule:

h(t þ 1))h(t)� c(t)=L(h(t)) (6)

We have:

L(h(0)) � L(h(1)) � L(h(2) . . . (7)

where the sequence converges to the desired local minimum.

If the loss function is convex and c is selected carefully (which

can vary per iteration), we are guaranteed to converge to a

global minimum.

Based on the observation that our loss function decomposes

linearly, and therefore the gradient as well, the MapReduce

implementation of gradient descent is fairly straightforward.

We process each training example in parallel and compute its

partial contribution to the gradient, which is emitted as an

intermediate key-value pair and shuffled to a single reducer.

The reducer sums up all partial gradient contributions and

updates the model parameters. Thus, each iteration of gra-

dient descent corresponds to a MapReduce job. Two more

items are needed to make this work:

� Complete classifier training requires many MapReduce

jobs to be chained in a sequence (hundreds, even

thousands, depending on the complexity of the prob-

lem). Just as in the PageRank case, this is usually han-

dled by a driver program that sets up a MapReduce job,

waits for it to complete, and then checks for conver-

gence, repeating as long as necessary.
� Since mappers compute partial gradients with respect

to the training data, they require access to the current

model parameters. Typically, the parameters are loaded

in as ‘‘side data’’ in each mapper (in Hadoop, either

directly from HDFS or from the distributed cache).

However, at the end of each iteration the parameters

are updated, so it is important that the updated model

is passed to the mappers at the next iteration.

Any number of fairly standard optimizations can be applied

to increase the efficiency of this implementation, for example,

combiners to perform partial aggregation or the in-mapper

combining pattern.37 As an alternative to performing gradi-

ent descent in the reducer, we can substitute a quasi-Newton

method such as L-BFGS41 (which is more expensive, but

converges in few iterations). However, there are still a

number of drawbacks:

� As with PageRank, Hadoop jobs have high startup costs.
� Since the reducer must wait for all mappers to finish

(i.e., all contributions to the gradient to arrive), the

speed of each iteration is bound by the slowest mapper,

and hence sensitive to stragglers. This is similar to the

PageRank case, except in the map phase.
� The combination of stragglers and using only a single

reducer potentially causes poor cluster utilization. Of

course, the cluster could be running other jobs, so from

a throughput perspective, this is only a minor concern.

The shortcomings of gradient descent implementations in

MapReduce have prompted researchers to explore alternative

architectures and execution models that address these issues.

All the systems discussed previously in the context of Page-

Rank are certainly relevant, but we point out two more al-

ternatives. Spark54 introduces the resilient distributed

datasets (RDD) abstraction, which provides a restricted form

of shared memory based on coarse-grained transformations

rather than fine-grained updates to shared state. RDDs can

either be cached in memory or materialized from durable

storage when needed (based on lineage, which is the sequence

of transformations applied to the data). Classifier training is

one of the demo applications in Spark. Another approach

with similar goals is taken by Bu et al.,11 who translate iter-

ative MapReduce and Pregel-style programs into recursive
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queries in Datalog. By taking this approach, database query

optimization techniques can be used to identify efficient ex-

ecution plans. These plans are then executed on the Hyracks

data-parallel processing engine.7

In contrast to these proposed solutions, consider an alter-

native approach. Since the bottleneck in gradient descent is

the iteration, let’s simply get rid of it! Instead of running

batch gradient descent to train classifiers, let us adopt sto-

chastic gradient descent, which is an online technique. The

simple idea is that instead of updating the model parameters

after only considering every training example, let us update

the model after each training exam-

ple (i.e., compute the gradient with

respect to each example).

Online learning techniques have re-

ceived renewed interest in the con-

text of big data since they operate in

a streaming fashion and are very

fast.9,10,35,50 In practice, classifiers

trained using online gradient de-

scent achieve accuracy comparable

to classifiers trained using tradi-

tional batch learning techniques but are an order of magni-

tude (or more) faster to train.9

In stochastic gradient descent, the learner streams through all

the training examples, examines them one at a time, and

updates its internal state (i.e., the model parameters) after

processing each example. Often, it suffices to make a single

pass over the data, but even if multiple passes are taken, the

‘‘iteration’’ is trivial—merely reading the data multiple times,

requiring no external synchronization or exchange of state. In

efficient implementations of stochastic gradient descent, the

bottleneck is usually disk throughput in being able to deliver

the training examples fast enough to the learner.

Stochastic gradient descent addresses the iteration problem,

but does not solve the single reducer problem. For that, en-

semble methods come to the rescue.19,33 Instead of training a

single classifier, let us train an ensemble of classifiers and

combine predictions from each (e.g., simple majority voting,

weighted interpolation, etc.). The simplest way of building

ensembles—training each classifier on a partition of the

training examples—is both embarrassingly parallel and sur-

prisingly effective in practice.43,44

Combining online learning with ensembles addresses the

shortcomings of gradient descent in MapReduce. As a case

study, this is how Twitter integrates machine learning into

Pig in a scalable fashion:38 folding the online learning inside

storage functions and building ensembles by controlling data

partitioning. To reiterate the argument, if MapReduce is not

amenable to a particular class of algorithms, let’s simply find

a different class of algorithms that will solve the same prob-

lem and is amenable to MapReduce.

Expectation Maximization

A third class of algorithms not amenable to MapReduce is

expectation maximization (EM)18 and EM-like algorithms.

Since EM is related to gradient descent (both are first-order

optimization techniques) and many of my arguments are quite

similar, the discussion in this section will be more superficial.

EM is an iterative algorithm that

finds a successive series of parame-

ter estimates h(0), h(1), . . . that im-

prove the marginal likelihood of the

training data, used in cases where

there are incomplete (or unobserv-

able) data. The algorithm starts

with some initial set of parameters

h(0) and then updates them using

two steps: expectation (E-step),

which computes the posterior dis-

tribution over the latent variables

given the observable data and a set of parameters h(i), and

maximization (M-step), which computes new parameters

h(i + 1) maximizing the expected log likelihood of the joint

distribution with respect to the distribution computed in the

E-step. The process then repeats with these new parameters.

The algorithm terminates when the likelihood remains un-

changed.

Similar to iterative graph algorithms and gradient descent,

each EM iteration is typically implemented as a Hadoop job,

with a driver to set up the iterations and check for conver-

gence. In broad strokes, the E-step is performed in the

mappers and the M-step is performed in the reducers. This

setup has all the shortcomings discussed before, and EM and

EM-like algorithms can be much more elegantly implemented

in alternative frameworks that better support iteration (e.g.,

those presented previously).

Let’s more carefully consider terms that I’ve been using quite

vaguely. What does it mean for an algorithm to be amenable

to MapReduce? What does it mean for MapReduce to be

‘‘good enough’’? And the point of comparison? Here are two

case studies that build up to my point.

Dyer et al.22 applied MapReduce to training translation

models for a statistical machine translation system—specifi-

cally, the word-alignment component that uses hidden

Markov models (HMMs) to discover word correspondences

across bilingual corpora.51 The point of comparison was

GIZA + + ,c a widely adopted in-memory, single-threaded

‘‘WHETHER AN ALGORITHM IS
‘AMENABLE’ TO MAPREDUCE

IS A RELATIVE JUDGMENT THAT
IS ONLY MEANINGFUL IN

THE CONTEXT OF AN
ALTERNATIVE.’’

ccode.google.com/p/giza-pp/
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implementation (the de facto standard used by researchers at

the time the work was performed, and still commonly used

today). The authors built a Hadoop-based implementation of

the HMM word-alignment algorithm, which demonstrated

linear scalability compared to GIZA + + , reducing per-itera-

tion training time from hours to minutes. The implementa-

tion exhibited all the limitations associated with EM

algorithms (high job startup costs, awkward passing of model

parameters from one iteration to the next, etc.), yet compared

to the previous single-threaded approach, MapReduce re-

presented a step forward.d Here is the key point: whether an

algorithm is ‘‘amenable’’ to MapReduce is a relative judgment

that is only meaningful in the context of an alternative.

Compared to GIZA + + , the Hadoop implementation re-

presented an advance. However, this is not inconsistent with

the claim that EM algorithms could be more elegantly im-

plemented in an alternate model that better supports itera-

tion (e.g., any of the work discussed previously).

The second example is the venerable Lloyd’s method for

k-means clustering, which can be understood in terms of EM

(not exactly EM, but can be characterized as EM-like). A

MapReduce implementation of k-means shares many of the

limitations discussed thus far. It is true that the algorithm can

be expressed in a simpler way using a programming model

with iterative constructs and executed more efficiently with

better iteration support (and indeed, many of the papers dis-

cussed above use k-means as a demo application). However,

even within the confines of Map-Reduce, there has been a lot

of work on optimizing clustering algorithms (e.g., Ref. 16, 24).

It is not entirely clear how these improvements would stack

up against using an entirely different framework. Here, is

MapReduce ‘‘good enough’’?

These two case studies provide the segue for my attempt to

more clearly define what it means for MapReduce to be

‘‘good enough,’’ and a clear objective for deciding between

competing solutions.

What’s ‘‘Good Enough’’?

I propose a pragmatic, operational, engineering-driven cri-

terion for deciding between alternative solutions to large-data

problems. First, though, are my assumptions:

� The Hadoop stack, for better or for worse, has already

become the de facto general-purpose, large-scale data

processing platform of choice. As part of the stack, I

include higher-level layers such as Pig and Hive.
� Complete, end-to-end, large-data solutions involve

heterogeneous data sources and must integrate dif-

ferent types of processing—relational processing,

graph analysis, text mining, machine learning, etc.
� No single programming model or framework can excel

at every problem; there are always tradeoffs between

simplicity, expressivity, fault tolerance, performance,

etc.

Given these assumptions, the decision criterion I propose is

this: In the context of an end-to-end solution, would it make

sense to adopt framework X (HaLoop, Twister, PrIter, Spark,

etc.) over the Hadoop stack for solving the problem at hand?e

Put another way: are the gains gotten from using X worth the

integration costs incurred in building the end-to-end solu-

tion? If no, then operationally, we can consider the Hadoop

stack (including Pig, Hive, etc., and by extension, Map-

Reduce) to be ‘‘good enough.’’

Note that this way of thinking takes a broader view of end-to-

end system design and evaluates alternatives in a global

context. Considered in isolation, it naturally makes sense to

choose the best tool for the job, but this neglects the fact that

there are substantial costs in knitting together a patchwork of

different frameworks, programming models, etc. The alter-

native is to use a common computing platform that’s already

widely adopted (in this case, Hadoop), even if it isn’t a perfect

fit for some of the problems.

I propose this decision criterion because it tries to bridge the

big gap between ‘‘solving’’ a problem (in a research paper)

and deploying the solution in production (which has been

brought into stark relief for me personally based on my ex-

periences at Twitter). For something to ‘‘work’’ in produc-

tion, the solution must be continuously running, processes

need to be monitored, someone needs to be alerted when the

system breaks, etc. Introducing a new programming model,

framework, etc., significantly complicates this process—even

mundane things like getting the data imported into the right

format and results exported to the right location become

nontrivial if it’s part of a long chain of dependencies.

A natural counter-argument would be: Why should aca-

demics be concerned with these (mere) ‘‘production issues’’?

This ultimately comes down to one’s criteria for success. For

me personally, the greatest reward comes from seeing my

algorithms and code ‘‘in the wild,’’ whether it’s an end-to-end

userfacing service that millions are using on a daily basis, or

an internal improvement in the stack that makes engineers’

and data scientists’ lives better. I consider myself incredibly

lucky to have accomplished both during my time at Twitter. I

firmly believe that in order for any work to have a meaningful

impact (in the way that I define it, recognizing, of course, that

others are guided by different utility functions), how a

dHMM training is relatively expensive computationally, so job startup costs are less of a concern. Furthermore, these algorithms typically run for less than a dozen iterations.
eHadoop is already a proven production system, whereas all the alternatives are at best research prototypes; let’s even say for the sake of argument that X has already been made

production-ready.
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particular solution fits into the broader ecosystem is an im-

portant consideration.f

Different programming models provide different ways of

thinking about the problem. MapReduce provides ‘‘map’’ and

‘‘reduce,’’ which can be composed into more complex data-

flows (e.g., via Pig). Other programming models are well

suited to certain types of problems precisely because they

provide a different way of thinking about the problem. For

example, Pregel provides a vertex-

centered approach in which ‘‘time’’

is dictated by the steady advance of

the superstep synchronization bar-

riers. We encounter an impedance

mismatch when trying to connect

different frameworks that represent

different ways of thinking. The ad-

vantages of being able to elegantly

formulate a solution in a particular

framework must be weighed against

the costs of integrating that frame-

work into an end-to-end solution.

To illustrate, I’ll present a hypothetical but concrete example.

Let’s say we wish to run PageRank on the interaction graph of

a social network (i.e., the graph defined by interactions be-

tween users). Such a graph is implicit and needs to be con-

structed from behavior logs, which is natural to accomplish

in a dataflow language such as Pig (in fact, Pig was exactly

designed for log mining). Let’s do exactly that.

With the interaction graph now materialized, we wish to run

PageRank. Consider two alternatives: use Giraph,g the open-

source implementation of Pregel, or implement PageRank

directly in Pig.h The advantage of the first is that the BSP

model implemented by Giraph/Pregel is perfect for PageRank

and other iterative graph algorithms (in fact, that’s exactly

what Pregel was designed to do). The downside is lots of extra

‘‘plumbing’’: munging Pig output into a format suitable for

Giraph, triggering the Giraph job, waiting for it to finish, and

figuring out what to do with the output (if another Pig job

depends on the results, then we must munge the data back

into a form that Pig can use).i In the second alternative, we

simply write PageRank in Pig, with all the shortcomings of

iterative MapReduce algorithms discussed in this article. Each

iteration might be slow due to stragglers, needless shuffling of

graph structure, etc., but since we likely have the PageRank

vector from yesterday to start from, the Pig solution would

converge mercifully quickly. And with Pig, all of the addi-

tional ‘‘plumbing’’ issues go away. Given these alternatives, I

believe the choice of the second is at least justifiable (and

arguably, preferred), and hence, in this particular context, I

would argue that MapReduce is good enough.

In my opinion, the arguments are even stronger for the case of

stochastic gradient descent. Why adopt a separate machine-

learning framework simply for running batch gradient descent

when it could be seamlessly integrated into Pig by using sto-

chastic gradient descent and ensem-

ble methods?38 This approach costs

nothing in accuracy but gains tre-

mendously in terms of performance.

In the Twitter case study, machine

learning is accomplished by just an-

other Pig script, which plugs seam-

lessly into existing Pig workflows.

To recap, of course it makes sense to

use the right tool for the job, but we

must also recognize the cost asso-

ciated with switching tools—in

software engineering terms, the

costs of integrating heterogeneous frameworks into an end-

to-end workflow are nontrivial and should not be ignored.

Fortunately, recent developments in the Hadoop project

promise to substantially reduce the costs of integrating het-

erogeneous frameworks. Hadoop NextGen (aka YARN) in-

troduces a generic resource scheduling abstraction that allows

multiple application frameworks to coexist on the same

physical cluster. In this context, MapReduce is just one of

many possible application frameworks, others include Sparkj

and MPI.k This ‘‘meta-framework’’ could potentially reduce

the costs of supporting heterogeneous programming mod-

els—an exciting future development that might let us ‘‘have

our cake and eat it too.’’ However, until YARN proves

itself in production environments, it remains an unrealized

potential.

Constructive Suggestions

Building on the arguments above and reflecting on my ex-

periences over the past several years working on ‘‘big data’’ in

both academia and industry, I’d like to make the following

constructive suggestions.

Continue plucking low-hanging fruit, or, refine the hammer

we already have. I do not think we have yet sufficiently

‘‘OF COURSE IT MAKES SENSE
TO USE THE RIGHT TOOL

FOR THE JOB, BUT WE MUST
ALSO RECOGNIZE THE COST

ASSOCIATED WITH SWITCHING
TOOLS—IN SOFTWARE
ENGINEERING TERMS.’’

fAs a side note, unfortunately, the faculty promotion and tenure process at most institutions do not reward these activities, and in fact, some would argue actively have a disincentive

effect on these activities since they take time away from writing papers and grants.
gincubator.apache.org/giraph/.
htechblug.wordpress.com/2011/07/29/ pagerank-implementation-in-pig/
iNot to mention all the error-reporting, alerting, error-handling mechanisms that now need to work across Pig and Giraph.
jgithub.com/mesos/spark-yarn.
kissues.apache.org/jira/browse/MAPREDUCE-2911.
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pushed the limits of MapReduce in general and the Hadoop

implementation in particular. In my opinion, it may be

premature to declare it obsolete and call for a fresh ground-

up redesign.4,8 MapReduce is less than 10 years old, and

Hadoop is even younger. There has already been plenty of

interesting work within the confines of Hadoop, just from the

database perspective: integration with a traditional RDBMS,1,3

smarter task scheduling,53,55 columnar layouts,25,27,28,29,40

embedded indexes,20,21 cube materialization,45 and a whole

cottage industry on efficient join algorithms;31,36,47 we’ve even

seen traditional HPC ideas, such as work stealing adapted to

Hadoop.34 Much more potential remains untapped.

The data management and distributed systems communities

have developed and refined a large ‘‘bag of tricks’’ over the

past several decades. Researchers have tried applying many of

these in the Hadoop context (see above), but there are plenty

remaining in the bag waiting to be explored. Many, if not

most, of the complaints about Hadoop lacking basic features

or optimization found in other data processing systems can

be attributed to immaturity of the platform, not any funda-

mental limitations. More than a ‘‘matter of implementation,’’

this work represents worthy research. Hadoop occupies a very

different point in the design space when compared to parallel

databases, so the ‘‘standard tricks’’ often need to be recon-

sidered in this new context.

So, in summary, let’s fix all the things we have a good idea

how to fix in Hadoop (low-risk research), and then revisit the

issue of whether MapReduce is good enough. I believe this

approach of incrementally refining Hadoop has a greater

chance of making impact (at least by my definition of impact

in terms of adoption) than a strategy that abandons Hadoop.

To invoke another cliché, let’s pluck all the low-hanging fruit

first before climbing to the higher branches.

Work on game changers, or, develop the jackhammer. To

displace (or augment) MapReduce, we should focus on cap-

abilities that the framework fundamentally cannot support. To

me, faster iterative algorithms illustrated with PageRank or

gradient descent aren’t ‘‘it’’—given my prior arguments on

how, for those, MapReduce is ‘‘good enough.’’ I propose two

potential game changers that reflect pain points I’ve encoun-

tered during my time in industry.

First, real-time computation on continuous, large-volume

streams of data is not something that MapReduce is capable

of doing. MapReduce is fundamentally a batch processing

framework—and despite efforts in implementing ‘‘online’’

MapReduce,15 I believe solving the general problem requires

something that looks very different from the current archi-

tecture. For example, let’s say I want to keep track of the top

thousand most-clicked URLs posted on Twitter in the last n

minutes. The current solution is to run batch MapReduce

jobs with increasing frequency (e.g., every five minutes), but

there is a fundamental limit to this approach (job startup

time), and (near) real-time results are not obtainable (for ex-

ample, if I wanted up-to-date results over the last 30 seconds).

One sensical approach is to integrate a stream-processing

engine—a stream oriented RDBMS (e.g., Refs. 13, 26, 32),

S4,46 or Storml—with Hadoop, so that the stream-processing

engine handles real-time computations, while Hadoop per-

forms aggregate ‘‘roll ups.’’ More work is needed along these

lines, and indeed researchers are already beginning to explore

this general direction.14 I believe the biggest challenge here is

to seamlessly and efficiently handle queries across vastly dif-

ferent time granularities, from ‘‘over the past 30 seconds’’ (in

real time) to ‘‘over the last month’’ (where batch computa-

tions with some lag would be acceptable).

Second, and related to the first, real-time interactions with

large datasets are a capability that is sorely needed, but is

something that MapReduce fundamentally cannot support.

The rise of ‘‘big data’’ means that the work of data scientists is

increasingly important—after all, the value of data lies in the

insights that they generate for an organization. Tools avail-

able to data scientists today are primitive. Write a Pig script

and submit a job. Wait five minutes for the job to finish.

Discover that the output is empty because of the wrong join

key. Fix simple bug. Resubmit. Wait another five minutes.

Rinse, repeat. It’s fairly obvious that long debug cycles

hamper rapid iteration. To the extent that we can provide

tools to allow rich, interactive, incremental interactions with

large data sets, we can boost the productivity of data scien-

tists, thereby increasing their ability to generate insights for

the organization.

Open source everything. Open source releasing of software

should be the default for any work that is done in the ‘‘big

data’’ space. Even the harshest critic would concede that open

source is a key feature of Hadoop, which facilitates rapid

adoption and diffusion of innovation. The vibrant ecosystem

of software and companies that exist today around Hadoop

can be attributed to its open source license.

Beyond open sourcing, it would be ideal if the results of

research papers were submitted as patches to existing open

source software (i.e., associated with JIRA tickets). An ex-

ample is recent work on distributed cube materialization,45

which has been submitted as a patch in Pig.m Of course, the

costs associated with this can be substantial, but this repre-

sents a great potential for collaborations between academia

and industry; committers of open source projects (mostly

software engineers in industry) can help shepherd the patch.

In many cases, transitioning academic research projects to

lgithub.com/nathanmarz/storm
missues.apache.org/jira/browse/PIG-2167
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production-ready code makes well-defined summer intern-

ships at companies. These are win–win scenarios for all. The

company benefits immediately from new features, the com-

munity benefits from the open sourcing, and the students

gain valuable experience.

Conclusion

The cliché is ‘‘If all you have is a hammer, then everything

looks like a nail.’’ I argue for going one step further: ‘‘If all

you have is a hammer, throw away everything that’s not a

nail!’’ It’ll make your hammer look amazingly useful. At least

for some time. Sooner or later, however, the flaws of the

hammer will be exposed—but let’s try to get as much ham-

mering done as we can before then. While we’re hammering,

though, nothing should prevent us from developing jack-

hammers.

Author Disclosure Statement

No conflicts of interest exist.

Acknowledgments

I’d like to thank Jeffrey Ullman for comments on a previous

version of this article, as well as Daniel Abadi for the en-

couragement to stand by the controversial message.

References

1. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Sil-

berschatz, A., and Rasin, A. HadoopDB: An architectural

hybrid of MapReduce and DBMS technologies for ana-

lytical workloads. SIGMOD 2009.

2. Afrati, F., Sarma, A., Salihoglu, S., and Ullman, J. Vision

paper: Towards an understanding of the limits of Map-

Reduce computation. arXiv:1204.1754v1 2012.

3. Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., and

Paulson, E. Efficient processing of data warehousing

queries in a split execution environment. SIGMOD 2011.
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