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Over the past few years, we have seen the emergence 
of “big data”: disruptive technologies that have trans-
formed commerce, science, and many aspects of soci-
ety. Despite the tremendous enthusiasm for big data, 
there is no shortage of detractors. This article argues 
that many criticisms stem from a fundamental confu-
sion over goals: whether the desired outcome of big 
data use is “better science” or “better engineering.” 
Critics point to the rejection of traditional data collec-
tion and analysis methods, confusion between correla-
tion and causation, and an indifference to models with 
explanatory power. From the perspective of advancing 
social science, these are valid reservations. I contend, 
however, that if the end goal of big data use is to engi-
neer computational artifacts that are more effective 
according to well-defined metrics, then whatever 
improves those metrics should be exploited without 
prejudice. Sound scientific reasoning, while helpful, is 
not necessary to improve engineering. Understanding 
the distinction between science and engineering 
resolves many of the apparent controversies surround-
ing big data and helps to clarify the criteria by which 
contributions should be assessed.
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Over the past few years, we have seen the 
emergence of “big data”: disruptive tech-

nologies that have transformed commerce, sci-
ence, and many aspects of society. In the 
commercial sphere, Google led the way with 
the development of a large-scale computing 
infrastructure for storing and analyzing the web 
and the behavior of hundreds of millions of 
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users (Dean and Ghemawat 2004). Through investments in open-source software 
by Yahoo, these innovations rapidly spread to other Internet companies such as 
Facebook, Twitter, LinkedIn, Amazon, eBay, and countless startups. Big data 
have attracted the attention of mature technology companies such as IBM, 
Microsoft, Oracle, and Intel; and beyond the technology sector, organizations 
ranging from WalMart to J.P. Morgan Chase have all hopped on the big data 
bandwagon.

In a different realm, researchers in the physical sciences, particularly high-
energy physics, have also seen an explosion in the amount of data generated from 
scientific instruments as well as demand for computing power to analyze those 
data (Becla and Wang 2005). Today, scientists speak of data-driven research as 
the “fourth paradigm” (Hey, Tansley, and Tolle 2009), complementing theory, 
experiments, and simulations. The hunt for the Higgs Boson, for example, was a 
data-driven endeavor guided by theoretical models.

Big data have similarly been a boon for social scientists, leading to the rise of 
computational social science (Lazer et al. 2009). Many branches of the social sci-
ences study human individual and group behavior, and thus records of human 
activity, ranging from social interactions to political preferences, are invaluable 
for hypothesis generation and empirical validation of constructs and theories. For 
much of the twentieth century, data collection has been slow and tedious. In the 
1970s, Zachary painstakingly documented the network of friendships between 
thirty-four members of a karate club at a U.S. university, leading to seminal work 
on information flow and group conflict (Zachary 1977). A couple of years ago, 
researchers at Facebook and their collaborators published papers (Ugander et al. 
2011; Backstrom et al. 2012) describing analyses of the company’s massive world-
wide social network, totaling 721 million users at the time. Today, it is possible to 
examine human activities at scales undreamt of a generation ago, and these digi-
tal footprints have the potential to help social scientists better understand the 
complexities of human behavior—for example, how individuals form and main-
tain social ties and the dynamics of influence and power. In this context, there has 
been substantial discussion about the merits of massively data-driven approaches 
in the social sciences. Is more always better? What about data quality and data 
access? How does big data reshape the nature of knowledge and the activities of 
science? Some have taken a generally negative view of this development, such as 
the “provocations” of boyd and Crawford (2011). Lazer et  al. (2014) caution 
against “big data hubris,” which is the tendency to assume that big data are a 
substitute for traditional data collection and analysis, and that we can ignore 
foundational issues such as construct validity. Other “symptoms” include confus-
ing correlation with causation and an indifference to models with explanatory 
power.
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This article comes to the defense of big data and presents personal reflections 
on its implications. My central thesis is that much of the controversy stems from 
a fundamental confusion about the purpose of big data. Is the goal “better sci-
ence”—to reveal insights about the human condition? Or is it about “better 
engineering”—to build better mousetraps? I contend that if the objective is the 
latter—to produce computational artifacts that are more effective according to 
well-defined metrics—then whatever improves those metrics should be exploited 
without prejudice. Sound scientific reasoning, while helpful, is not necessary to 
improve engineering. Once we understand the distinction between the funda-
mentally different goals of what I call “better science” or “better engineering,” it 
becomes clear that many criticisms of big data simply miss the point. This article 
focuses on problems involving the prediction of human behavior, and in this con-
text, I claim that understanding is not necessary for prediction.

As a simple analogy, consider online matchmaking services—their data have 
the potential to help sociologists understand human attraction on a large scale. 
However, those services exist to make a profit, and so they are primarily con-
cerned with issues such as revenue and subscriber growth. Whether any of their 
matchmaking algorithms are based on our current (academic) understanding of 
attraction is largely irrelevant (although we hope that the literature provides 
helpful insights). Similarly, it seems unreasonable to criticize an online match-
making service for its unwillingness to share member profile data to help social 
scientists advance their research agenda.

Before proceeding further, it is important to carefully circumscribe the scope 
of my claims. In this article, I limit my commentary primarily to social media and 
the activities of online users. For the most part, these involve “low-stakes” inter-
actions with negligible health risks and financial impact. There are, however, 
many more applications of big data, for example, in electronic medical records, 
networks of sensors (e.g., “smart cities”), online education, and so on. Although 
some of the discussions here are applicable to scenarios such as public health 
interventions or learning analytics, there are domain-specific subtleties that defy 
broad generalizations. Furthermore, some of these applications involve higher-
stakes interactions that require much more care before interventions are 
deployed. In-depth discussion of these application areas is beyond the scope of 
this article, however.

Background and Context

What is different about big data?

In the business context, big data are the (somewhat obvious) idea that an 
organization should retain data that result from carrying out its mission and 
exploit those data to generate insights for better decision-making. Also known as 
business intelligence, among other monikers, its origins date back several dec-
ades. In this sense, the big data hype is simply a rebranding of what many organi-
zations have been doing for a long time. Today, these activities are known as data 
science and those who practice it are known as data scientists.
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Examined more closely, however, there are three major trends that distinguish 
insight-generation activities today from, say, the 1990s. First, we have seen a 
tremendous explosion in the sheer amount of data—orders of magnitude 
increase. In the past, enterprises have typically focused on gathering data that are 
obviously valuable, such as business objects representing customers, items in 
catalogs, purchases, contracts, and so on. Today, in addition to such data, organi-
zations also gather behavioral data from users. In the online setting, these include 
web pages that users visit and links that they click on, among others. The advent 
of social media and user-generated content, and the resulting interest in encour-
aging such interactions, further adds to the amount of data that is generated and 
collected. These are precisely the types of data that are valuable for computa-
tional social science.

Second, we see increasing sophistication in the types of analyses that organiza-
tions perform on their vast data stores. Traditionally, most information needs fell 
under what is known as online analytical processing (OLAP). Common tasks 
include creating joined views, followed by filtering, aggregation, or cube materiali-
zation—an example might be “show me the number of widgets sold in the north-
east over the past six months to female customers.” We can characterize these 
activities as descriptive analytics, generating reports that an executive might con-
sume. Today, data scientists are also interested in predictive analytics, which often 
involves building machine-learned models that can predict user behavior; for 
example, “what types of targeted ads can attract female customers to purchase this 
widget?” These models are then operationalized into data products that apply 
some sort of intervention (e.g., a recommender system) to hopefully affect user 
behavior.

Finally, open-source software is playing an increasingly important role in 
today’s ecosystem. A decade ago, there was no credible open-source, distributed 
data analytics platform capable of handling large data volumes. Today, the open-
source Hadoop platform, which began as an implementation of MapReduce 
(Dean and Ghemawat 2004), lies at the center of an ecosystem for large-scale 
data analytics, and is surrounded by complementary systems such as HBase, Pig, 
Hive, Spark, Giraph, and many others. Hadoop’s importance has been validated 
by its adoption in countless startups and mature enterprises. This broad base of 
support provides credibility, but the biggest impact of open-source infrastructure 
is the democratization of big data capabilities, especially when coupled with 
cloud computing. On-demand cloud services have obviated the need for many 
organizations to maintain dedicated hardware infrastructure, and today, analyses 
on terabytes of data can be conducted at modest costs without the need for major 
capital investments in servers. These tools are now within the reach of many 
social scientists, transforming the types of analyses they are able to conduct.

Data science and machine learning

The modus operandi of many consumer Internet companies is to begin with a 
successful product and attempt to induce the following virtuous cycle: by observ-
ing user behavior, data scientists gain insight into how the product can be refined 
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and improved; this hopefully leads to a more engaged and expanded user base, 
which in turn yields more behavioral data to analyze, thus completing the cycle.

The ultimate goal of data science teams within such organizations is to promote 
certain types of user behaviors that are aligned with business objectives. For 
example, online retailers want to maximize the number of shoppers and revenue. 
Once users arrive at the site, this can be accomplished by making products easier 
to find, reducing shopping cart abandonment (e.g., users who add items to their 
shopping carts but never “check out”), offering product recommendations, and so 
on. Social networks wish to increase engagement and grow the user base. This can 
be accomplished by recommending content items (e.g., posts, stories, tweets, 
friends, etc.) that the user may find interesting, for example.

The success of these activities can often be objectively quantified by metrics. 
For example, clickthrough rate is one such measure that captures the ratio 
between clicks (user actions) and impressions (opportunities for the user to take 
that action). We can measure the clickthrough rate of links on a landing page, the 
fraction of recommendations users click on, the frequency at which a product 
feature is invoked, and so on. For social networks, the number of active users is 
an important metric, as are session duration and total time spent on the site. For 
online retailers, total revenue, revenue per user, and other related metrics are 
obviously important.

What is the point of gathering such metrics? As Sir William Thomson (better 
known as Lord Kelvin) declares, “To measure is to know.” The adage is usually 
followed up by its corollary, “If you cannot measure it, you cannot improve it.” 
Once a metric is defined, it is possible to objectively determine which one of 
many competing methods is superior. For example, we can compare a number of 
content recommendation algorithms using clickthrough rate. We can see which 
alternative interface leads to longer user sessions, which phrasing of a welcome 
message generates more user sign-ups, or which type of mobile alert more effec-
tively compels users to log in and check for updates. Of course, coming up with 
the right metric is often a challenge, and poorly defined metrics can lead to per-
verse incentives that negatively impact an organization’s success; a simple exam-
ple is a metric that cannibalizes long-term growth for short-term gains (Kohavi 
et al. 2012). Nevertheless, appropriate metrics provide clear definitions of suc-
cess and failure.

Metrics allow organizations to compare alternatives, and in the online context, 
these comparisons are usually conducted via a process called A/B testing (Kohavi, 
Henne, and Sommerfield 2007; Kohavi et  al. 2009). Although there are many 
nuances in properly executing such controlled experiments (Kohavi et al. 2012), 
the overall idea is fairly simple. Users are randomly assigned to one of two vari-
ants (sometimes called “buckets”): the control, which is typically the existing 
version of a particular feature, and the treatment, which is typically the new 
feature or intervention being evaluated. Metrics (per above) are then gathered 
and statistical tests are conducted on the collected data to determine if there is a 
statistically significant difference between the two conditions. If so, it can be 
asserted that the treatment is better than the control condition. In this manner, 
data scientists can compare the effectiveness of different recommendation 
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algorithms, page layouts, checkout flows, banner messages, and so on. Many 
organizations have A/B testing frameworks that allow data scientists to “plug in” 
and conduct such experiments in a streamlined fashion (Tang et al. 2010): this 
represents critical software infrastructure in today’s competitive environment, as 
the speed at which a company can improve its online offerings is often limited by 
its ability to iterate through successive A/B testing cycles.

As previously mentioned, predictive analytics is often used to describe the 
activities of operationalizing insights into data products. That is, first we try to 
understand how users behave; then we introduce interventions that attempt to 
influence their actions in a manner that is consonant with the metrics; A/B testing 
then closes the loop to tell us if we have been successful. Machine learning has 
become the tool of choice for building such interventions. Although the complexi-
ties of machine learning are myriad and beyond the scope of this article, different 
techniques share in the idea of capturing statistical regularities in some observable 
input (called features or “signals”) and some output (what social scientists would 
call the dependent variable), for the goal of making predictions on unseen data. 
Thus, machine learning is fundamentally about generalizing the past, via a process 
called “training,” to (hopefully) predict the future. As a simple example, a spam 
classifier is trained on a corpus of spam emails based on features of those mes-
sages, for example, their textual content, originating IP addresses, and so on. 
Particularly useful features are referred to as “strong signals,” which indicate (rela-
tively) high correlations with the outcome we are trying to predict. A spam classi-
fier induces statistical regularities from these examples, which are captured in a 
model and used to make predictions on emails it has never seen before.

Machine learning techniques are ubiquitous today in online environments. 
They are responsible for keeping our inboxes free from spam, personalizing the 
content of websites that we visit to better cater to our interests, verifying that a 
credit card purchase is legitimate, suggesting that we reconnect with an old 
friend, and recommending that we consider a competing product when we shop 
online. Machine learning to a large extent owes its success to big data—every 
time a user clicks a link, an ad, or a recommendation, the interaction is recorded 
and added to the vast stores that are exploited to train future models. Researchers 
have discovered that, all things being equal, the effectiveness of a model increases 
with the amount of training data (Banko and Brill 2001; Brants et  al. 2007; 
Halevy, Norvig, and Pereira 2009). Machine learning, therefore, contributes to 
the virtuous cycle of big data: better models lead to higher quality products and 
attract more users, which generate more training data that can be further lever-
aged to improve the models. Of course, these improvements do not continue 
forever and we eventually reach a point of diminishing returns. Nevertheless, 
data volume remains an important driver of model quality.

Better Science versus Better Engineering

The central thesis of this article is that much of the controversy about big data 
stems from a fundamental confusion between what is science—understanding 
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human behavior and offering explanations of social phenomena—and what is 
engineering—building more effective computational artifacts as measured by 
some well-defined metric. I believe that many criticisms of big data arise from 
confusion over this distinction. For this discussion, we might say that understand-
ing, while potentially helpful, is not necessary for prediction. That is, big data 
engineering provides us with the tools to predict behaviors without necessarily 
understanding the underlying sociological phenomena.

To dive into more detail, let us recap some of the criticisms that have been 
leveled against big data:

•• Correlation does not imply causation. Data analysis at scale can detect cor-
relations between a multitude of signals, but it cannot tell us if the correla-
tions are meaningful. Furthermore, if we look multiple times for correlations 
between variables, our statistical significance tests are expected to find 
bogus relationships based purely on chance.1

•• Big data cannot replace the scientific method. They cannot provide a sub-
stitute for a well-formulated hypotheses and the training required to inter-
pret the nuances of a particular data collection method.

•• Signals gathered by big data techniques are often the output of instruments 
that have not been properly calibrated and verified as producing reliable 
data.

These statements are all absolutely true and are precepts of what we would 
consider “good science.” Indeed, big data techniques can tell us about correla-
tions but offer no help in untangling causation. Big data are no substitute for 
hypothesis-driven scientific discovery, and many of the types of data gathered are 
dependent on the idiosyncrasies of the data collection system. However, I con-
tend that these criticisms are largely irrelevant when the objective is to build an 
effective computational artifact. It may sound tautological, but if the goal is to 
improve a particular metric, the only thing that matters is improving that 
metric.

Let us explore in more detail this distinction between science and engineering 
with the following observations:

1.	 Global average temperatures are (negatively) correlated with the number 
of pirates.2

2.	 Per capita chocolate consumption correlates with the number of Nobel 
laureates (by country) (Messerli 2012).

3.	 Cloud cover correlates with stock market movements.3

Most people would dismiss the first correlation as not meaningful. No serious 
climate scientist would include “number of pirates” as an input to climate simula-
tions, as the purpose of climate modeling is to better understand and explain the 
interactions among the atmosphere, oceans, land masses, and human activities. 
The predictions generated by the models are important only insofar as they lead 
to insights about climate phenomena. Accurate forecasting without satisfactory 
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explanations in terms of underlying physical mechanisms has little scientific 
value.

The second example comes from an article published in the prestigious New 
England Journal of Medicine (Messerli 2012). It was meant as a joke, but the 
author proposed a causal mechanism: “flavanols, which are widely present in 
cocoa . . . [seem] to be effective in slowing down or even reversing the reductions 
in cognitive performance that occur with aging” (p. 1562). Thus, “chocolate con-
sumption could hypothetically improve cognitive function not only in individuals 
but also in whole populations” (p. 1562). Regardless of the original intent, this 
article has inspired at least one serious research study, which disproved the 
hypothesis (Maurage, Heeren, and Pesenti 2013). Despite the lack of scientific 
validity, from an engineering perspective, if one wanted to build a model that 
predicts intelligence, this may nevertheless be a feature to consider including 
(more below).

The final example comes from a recent retrospective event involving Peter 
Brown and Bob Mercer, two pioneers in data-driven approaches to natural lan-
guage processing, particularly machine translation. Their seminal contributions 
happened at IBM in the late 1980s and early 1990s, but soon after, the research-
ers left IBM and helped to build one of the world’s most successful hedge funds. 
In discussing signals relevant for prediction, Brown says, “It turns out that when 
it’s cloudy in Paris, the French market is less likely to go up than when it’s sunny 
in Paris. That’s true in Milan, it’s true in Tokyo, it’s true in Sao Paulo, it’s true in 
New York. It’s just true.” He isn’t bothered by the seemingly inexplicable connec-
tion and continues, “We have . . . like 90 PhDs in Math and Physics, who just sit 
there looking for these signals all day long. We have 10,000 processors in there 
that are constantly grinding away looking for signals.” It is clear from his descrip-
tion that understanding the underlying causal mechanisms is not a priority. He 
nicely summarizes: “It’s ruthless. Either your models work better than the other 
guy’s, and you make money, or they don’t, and you go broke.”4

This final example starkly illustrates the contrast I am drawing between sci-
ence and engineering. The types of analyses that data scientists engage in are 
much closer to hedge funds trying to make money than climate scientists trying 
to understand physical phenomena. For the purposes of optimizing a particular 
metric, standard techniques in machine learning such as cross-validation, feature 
selection, and regularization are remarkably powerful in determining which sig-
nals are useful and which are not. Thus, it is better to let the machine learning 
algorithm “do its job,” since it is far more sensitive to statistical patterns than 
human intuition. In fact, the standard approach in machine learning is to throw 
in “the kitchen sink” of features (and the cross product of features with other 
features, plus the features transformed or discretized in some way, and so on) and 
let the model sort them out.

But of course, training a model is akin to predicting the past. This is where A/B 
testing comes in: if a relationship is nonexistent and the perceived signal is actu-
ally noise, prospective (i.e., future) predictions will fail. Similar to Feynman’s 
declaration that “nature cannot be fooled,” real-world user behavior is the ulti-
mate validation. That is, of course, assuming proper A/B testing methodology 
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(see Kohavi et al. [2009, 2012] on the nuances of properly executing such con-
trolled experiments). Why does cloud cover impact stock prices? Who knows; but 
the more important point is, who cares? If the feature “works”—in the strict 
sense that it makes accurate future predictions (i.e., makes money for the hedge 
fund)—we should use it without prejudice, even if it appears inexplicable.5

I am not denying the usefulness of explanatory models but simply saying that 
they may not be necessary if the goal is to build a computational artifact that 
accomplishes a well-defined task. In short, prediction does not require under-
standing, although understanding certainly may help. Indeed, the most effective 
machine learning approaches arise from features that encode plausible causal 
linkages—such approaches combine the strength of humans (domain knowledge) 
and machines (extracting statistical regularities). As a hypothetical example, sup-
pose that a data scientist notices a correlation between global average tempera-
tures and online sales volume. She could simply throw that feature into the 
model, as with the cloud cover example, and move on to another task. The 
machine learning algorithm might be able to extract a small signal that leads to a 
miniscule increase in effectiveness. Or alternatively, the data scientist might dig 
a little deeper: perhaps an explanation might be that online sales tend to increase 
when it is cold because shoppers prefer to stay home. From this insight, follow-
up analyses might show that this effect is most pronounced for North American 
and European cities, and only during the winter months in the northern hemi-
sphere. This would lead to much stronger signals that could be integrated into 
the model, and the discovery about connections between weather and consumer 
behavior could be generalized and applied to other scenarios, such as weather-
based strategies for email campaigns. This is an example where the desire to 
make accurate predictions is complemented by an attempt to understand the 
phenomena involved, which leads to better solutions.

Nevertheless, the inability to make sense of a signal should not prevent us 
from introducing it into a model, letting the machine learning algorithm “figure 
it out,” and allowing A/B tests to determine the ultimate success. While such an 
approach may not be intellectually satisfying, the history of human knowledge is 
full of examples where the ability to accomplish certain tasks predates our under-
standing of the underlying principles that govern it. For example, steam engines 
and powered flight came before our understanding of thermodynamics and aero-
dynamics, respectively. Cathedrals soared into the sky long before structural 
engineers formally understood static and dynamic loads. Mendel was able to 
“predict” the color of peas in the next generation without knowledge of the 
molecular underpinnings. The pragmatist says that as long as we can build some-
thing useful today, understanding can come tomorrow.

In contrast to “building a better mousetrap” and a focus on engineering arti-
facts that achieve higher effectiveness on well-defined metrics, many social sci-
entists are using big data to understand the complexities of human behavior, such 
as how individuals form and maintain social ties and the dynamics of influence 
and power. This, of course, is a fundamentally different endeavor; since we desire 
understanding, improving metrics is neither necessary nor sufficient to make a 
contribution to knowledge. As an illustrative example, I contrast two studies that 
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are concerned with link formation on Twitter, but have completely different 
goals. Romero and Kleinberg (2010) studied the directed closure process in 
hybrid social-information networks. Their work is grounded in the well-known 
process of triadic closure in social networks (Rapoport 1953; Granovetter 1973), 
which they extended to directed information networks (since social networks are 
typically modeled as undirected graphs). They hypothesized a mechanism for this 
process based on information “copying” and related their analyses to preferential 
attachment (Albert and Barabási 2002). Contrast this work with a description of 
Twitter’s Who-to-Follow (WTF) service (Gupta et  al. 2013)—the production 
system that provides recommendations to users and is responsible for creating 
millions of connections daily. Note that although both studies are concerned with 
edge formation on the Twitter follow graph and use similar metrics for evalua-
tion, they have vastly different aims. Romero and Kleinberg use “closure rate” to 
validate their model of link formation, and thus advance our understanding of the 
directed closure process. In the WTF service, clickthrough rate is simply a metric 
used in A/B testing to determine if one algorithm is better than another. Some of 
the features used in the WTF algorithm are inspired by constructs that sociolo-
gists would recognize; for example, one could argue that the random walk algo-
rithms used by WTF operationalize notions of closure. However, there are many 
features that are not grounded on any sociological principle and are more akin to 
the “cloud cover” feature discussed above. The WTF service attempts to balance 
the science and engineering aspects, which is productive since there is a vast 
literature on tie formation from the social sciences. However, there is no confu-
sion about the ultimate goal: to increase the density of the Twitter follow graph 
(to ultimately promote more engagement among users). In contrast, the work of 
Romero and Kleinberg is about science. Once this distinction becomes clear, the 
criteria for assessing quality are straightforward: In the former case, does the 
model reveal some insight about user behavior in online networks? In the latter 
case, have we improved the relevant metric?

Let us return to the criticism from Lazer et al. (2014), who charged that “big 
data hubris is the often implicit assumption that big data are a substitute for, 
rather than a supplement to, traditional data collection and analysis” and that 
“quantity of data does not mean that one can ignore foundational issues of meas-
urement and construct validity and reliability and dependencies among data.” I 
believe that this is an unfair attack on a straw man, as no experienced data scien-
tist would seriously advocate throwing out everything we know about a subject 
and using only big data for studies where a deeper understanding of the phenom-
enon is the goal.6 Well-trained data scientists know to be careful in confusing 
correlation with causation. They know that explanation is possible only via the 
formulation of testable hypotheses that propose a causal link from observations 
to outcomes. Vast data mining and other bottom-up efforts to see “what the data 
say” are guides to hypothesis generation and should not be mistaken for explana-
tory models. The unfair criticism aside, the quote above gets it right: big data are 
a supplement, not replacement, to traditional techniques.

I believe that much of the criticism of big data stems from confusion over the 
science versus engineering dichotomy. To further highlight this, consider a 
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parallel from efforts to apply computational techniques to language. It is clear 
that there are two very different endeavors: one is to build computational systems 
that process natural language to accomplish a task, for example, speech recogni-
tion or machine translation. The other is to take advantage of computational 
models to better understand the human capacity for language, for example, simu-
lations of language change in speaker populations or models that try to explain 
phoneme perception. Perhaps because these different studies are carried out by 
largely disjointed communities, there is very little confusion about the objectives. 
Consider Google’s approach to improving machine translation by building statis-
tical language models on terabytes of web data (Brants et al. 2007). Few would 
criticize the technique by saying that no human could possibly read that much 
text, and so the approach is not a cognitively valid model of how humans perform 
translation. While the above statement is factually correct, most people would 
recognize the argument as a non sequitur. How humans translate languages is 
irrelevant to building systems that accomplish the same task.

Let us apply the same logic back in the domain of large-scale human behavior: 
in a recent editorial,7 the well-known computational biologist Steven Salzberg 
attributed the failure of Google Flu (Ginsberg et al. 2009) (using Google search 
volume to predict flu outbreaks) to the fact that ordinary people do not really 
understand the complex virology of influenza: often when they search for flu-like 
symptoms, they do not really have the flu. While Salzberg is correct about the 
complexities of the illness, I think his criticism misses the point. The question is 
not about the public’s understanding, but whether there is any signal in search 
queries that can be useful for early disease detection and public health. As such, 
the only important measurement of success is whether Google Flu makes correct 
predictions about the future (and the associated costs). In this respect, Lazer et al. 
(2014) point out several flaws (which is the right argument to be having), but they 
concede that “greater value can be obtained by combining GFT [Google Flu 
Trends] with other near-real-time health data. . . . For example, by combining 
GFT and lagged CDC [Centers for Disease Control and Prevention] data. . . . We 
can substantially improve on the performance of GFT or the CDC alone.” This is 
exactly the point I am making. Of course we should take advantage of all features 
that are available, including data from traditional sources, but at the same time, 
we should not discount a signal (search query volume) simply because we do not 
completely understand it or because we have questions about its validity.

Conclusion

I conclude by considering another criticism from Lazer et al. (2014), which is that 
there is a lack of transparency associated with many of the signals that are derived 
from big data. If we analogize such signals as readings from scientific instru-
ments, we should be concerned about the lack of calibration, evidence of reliabil-
ity, and so on. For example, in the Google Flu study, there is no disclosure of 
exactly which search terms are considered in measuring the search volume; 
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furthermore, the Google search algorithm is constantly evolving and would likely 
affect the signal itself. Of course, Google can internally validate its measure-
ments, so this criticism is really about who has access to the data, an issue also 
raised by boyd and Crawford (2011).

This “data divide” is by no means a new problem. Ever since the dawn of writ-
ing, when Sumerian scribes committed information to clay tablets that were then 
collected in the archives of the kings, society has had asymmetries between those 
who have access to information and those who do not. It is not even clear that big 
data have exacerbated the divide; consider, for example, the tiny fraction of the 
population in Europe that had access to books in the Middle Ages.

Although in an ideal world data would be freely accessible to researchers, this 
is simply not possible given the realities of today’s competitive environment. For 
many organizations, the data form the “secret sauce” and thus are jealously 
guarded. Available APIs are burdened by usage restrictions, for example, rate-
limiting by Twitter, which preclude easy bulk collection. However, academic 
researchers should give their industry colleagues more credit in understanding 
the importance of data sharing and collaborative efforts. Beyond genuine privacy 
concerns in many cases, hesitation is not borne from malice or apathy but simply 
a matter of competing priorities—most corporate cultures do not reward external 
engagement, which means that there is little incentive to help researchers with 
data requests. Nevertheless, as companies mature, they generally become more 
receptive to external engagement; for example, witness the introduction of 
Twitter’s data grant program for researchers.8

In an attempt to be constructive, I offer two suggestions. First, collaborations 
between academics and industry partners provide access to valuable data. 
However, building meaningful collaborations requires substantial investments 
from both parties: I spent two years working at Twitter to build the relationships 
that support mutually beneficial collaborations. Scores of faculty spend sabbati-
cals at Google, Yahoo, and Facebook, which lead to joint research and publica-
tions, so getting access to data is possible. In the absence of direct faculty 
involvement, students who spend summer internships in industry provide bridges 
back to their home academic institutions, which often lead to lasting impact in 
the student’s research (and today this is commonplace). The scarcity of talent in 
the technology sector means that industry is eager to recruit the best and bright-
est, and they understand that an internship is often a prelude to future perma-
nent employment.

Second, even without direct collaborative ties to an organization, much mean-
ingful work can still be accomplished. Let me elaborate from both the engineer-
ing and the science perspectives: one important aspect of engineering is the 
ability to build useful artifacts from unreliable components. In particular, much 
of software engineering is concerned with composing abstractions that are only 
accessible through well-defined interfaces. In a service-oriented architecture, 
which represents one common approach to building large systems today, the 
services are assumed to be unreliable. Why can big data signals not be treated the 
same way? If the signal is useful, it should be exploited, even as a black box. This 
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highlights the importance of continuous monitoring and testing, so that we can 
identify when a signal stops working and remove it from our models.

From a science perspective, the potential unreliability of big data signals forms 
a subject worthy of inquiry. In many scientific disciplines that involve use of com-
plex instruments, studies of the instruments help to establish the context for their 
proper use. Indeed, Galileo made substantial improvements to the refracting 
telescope before turning his creation toward the skies. Why can the same ideas 
not be applied to big data “instruments”? If GFT lack transparency and replica-
bility, why not search for alternative correlates that are more easily obtainable, 
say from Twitter (Paul and Dredze 2011)? If we find Twitter’s API too restrictive 
to reconstruct data about a particular topic, can we devise a principled methodol-
ogy that works within the constraints but is able to maximize coverage (Ruiz, 
Hristidis, and Ipeirotis 2014)? What are the effects of data sampling strategies on 
the ability to accurately characterize a phenomenon on social media  
(De Choudhury et al. 2010)? These and related studies are critical to helping the 
field better understand the limitations of big data and place themselves as con-
tributions to knowledge.

I believe that most of the complaints about lack of data access are actually 
about lack of easy data access. Many researchers want to visit a website, down-
load a dataset, and immediately begin analysis. In some disciplines this is indeed 
possible, for example, taking advantage of the University of California, Irvine’s, 
machine learning repository.9 Unfortunately, this is an unrealistic expectation 
when working with social media data. Data collection represents an integral part 
of any empirical research effort, especially ones that study human behavior, and 
I believe the discussion above outlines a productive agenda for overcoming 
obstacles related to data access today.

Recognizing the dichotomy between science and engineering is critical to 
properly situating big data research, particularly as it relates to the social sci-
ences. Researchers should clearly articulate whether the goal of their work is to 
“understand the human condition” or to “build a better mousetrap,” as this dis-
tinction lays out the criteria by which contributions should be assessed.

Notes

1. See http://xkcd.com/882/.
2. See http://www.venganza.org/about/open-letter/.
3. See http://cs.jhu.edu/~post/bitext/.
4. See Brown and Mercer (2013).
5. An important related point that is often neglected is that a model needs to be continuously validated 

over time to ensure that it keeps making accurate predictions. If we cannot explain why a particular signal 
is helpful, we are also unlikely to know when that signal stops working.

6. It may perhaps be the case that reports on the successes of big data are often too flippant without 
careful consideration of the nuances of a complex problem, and media reports are partially to blame in 
their oversimplification. However, this is a question of tone, not substance.

7. See http://www.forbes.com/sites/stevensalzberg/2014/03/23/why-google-flu-is-a-failure/.
8. See https://blog.twitter.com/2014/twitter-datagrants-selections.
9. See http://archive.ics.uci.edu/ml/.
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