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ABSTRACT
Current pre-trained language model approaches to information re-
trieval can be broadly divided into two categories: sparse retrievers
(to which belong also non-neural approaches such as bag-of-words
methods, e.g., BM25) and dense retrievers. Each of these categories
appears to capture dierent characteristics of relevance. Previous
work has investigated how relevance signals from sparse retrievers
could be combined with those from dense retrievers via interpol-
ation. Such interpolation would generally lead to higher retrieval
eectiveness.

In this paper we consider the problem of combining the relev-
ance signals from sparse and dense retrievers in the context of
Pseudo Relevance Feedback (PRF). This context poses two key chal-
lenges: (1) When should interpolation occur: before, after, or both
before and after the PRF process? (2) Which sparse representation
should be considered: a zero-shot bag-of-words model (BM25), or a
learned sparse representation? To answer these questions we per-
form a thorough empirical evaluation considering an eective and
scalable neural PRF approach (Vector-PRF), three eective dense
retrievers (ANCE, TCTv2, DistillBERT), and one state-of-the-art
learned sparse retriever (uniCOIL). The empirical ndings from our
experiments suggest that, regardless of sparse representation and
dense retriever, interpolation both before and after PRF achieves
the highest eectiveness across most datasets and metrics.
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1 INTRODUCTION
Traditional unsupervised (bag-of-words – BOWs) sparse retrieval
models, such as BM25, use exact term matching to retrieve relevant
results from the collection. Recent studies have shown that these
models are more likely to retrieve results that partially match the
query, i.e., with low relevance labels [26]. Although unsupervised
sparse models often fail to rank the most relevant results at the
top, they often oer high recall. Combined with high eciency,
unsupervised bag-of-words sparse retrieval models like BM25 are
still widely used within information retrieval pipelines, often as the
initial retrieval stage of a more complex setup. To further enhance
precision and push highly relevant results to the top, transformer-
based dense retrievers (short for learned dense representations)
strike a good balance between eectiveness and eciency compared
to traditional unsupervised sparse models and transformer-based
deep language model re-rankers [10, 17, 18, 23, 24, 28, 30]. Dense
retrievers utilise dual BERT-style encoders to encode queries and
passages separately [16]; this allows the pre-encoding of passages
into embeddings at indexing time and their oine storage. Dur-
ing query time, the query embeddings can be eciently computed
“on-the-y” [32], and relevance estimations measured with a simple
similarity calculation. Thus, it becomes feasible to perform retrieval
over the entire collection using deep language models with e-
ciency comparable to traditional unsupervised sparse models, but
with much higher eectiveness. While dense retrievers are very ef-
fective at encoding passages characterised by high relevance labels
(i.e., highly relevant passages), they are less eective at identifying
passages of lower relevance value [26]. On the other hand, learned
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sparse models [2, 5, 6, 8, 9, 14, 19, 22, 31], also strike a good bal-
ance between eectiveness and eciency compared to traditional
unsupervised sparse models and transformer-based deep language
model re-rankers [21]. They use transformer-based language mod-
els to learn term weights, and achieve comparable eectiveness to
dense retrievers.

Interestingly, recent studies have found that interpolating sparse
and dense retrieval1 results can further enhance retrieval eective-
ness [14, 17, 26], suggesting that both groups of retrievers tend to
retrieve dierent relevant signals [14, 16]. An aspect that is still un-
clear in this context is what the contribution of PRF is with respect
to the interpolation of sparse and dense models: this is the focus of
our paper.

In this paper, we are interested in investigating the interpol-
ation of dense and sparse retrieval results within the context of
Pseudo-Relevance Feedback (PRF). Specically, we adapt the in-
terpolation approach on top of a recently proposed PRF method
called Vector-PRF (VPRF) [12] that is designed for dense retrievers.
This PRF method conducts the rst round of dense retrieval to get
the top retrieved passages’ dense vectors and then uses these pas-
sage vectors to improve the original query’s dense representation,
which is then used to perform the second round of dense retrieval.
In our experiments, we consider combining dense and sparse re-
trieval interpolation with VPRF in three dierent settings: Before
Vector-PRF (Pre-PRF), after Vector-PRF (Post-PRF) and both
(Both-PRF). For Pre-PRF interpolation, we interpolate the sparse
retriever with the dense retriever in the rst round of retrieval, then
apply Vector-PRF to generate the new query representation, and
perform a second retrieval. For Post-PRF interpolation, we keep the
two rounds of VPRF retrieval unchanged, but perform the sparse
interpolation to the second round retrieval results. For Both-PRF,
we apply interpolation in both the rst round of retrieval and on
the nal results of VPRF. The research questions that we aim to
address in this paper are:
RQ1: When is it better to do interpolation? Before Vector-PRF

(Pre-PRF), after Vector-PRF (Post-PRF) or both (Both-
PRF)?

RQ2: For sparse retrievers, which representation is more eective,
unsupervised (BOWs) or learned? To address this research
question, we consider BM25 and uniCOIL [14], respectively.

2 RELATEDWORK
There are two lines of research that are related to our work. The
rst line of research investigates the integration of PRF with dense
retrievers. Li et al. [12] proposed a simple PRF method called Vector-
PRF which adapted the classic Rocchio PRF method [25] used on
bag-of-words representations, to dense retrievers in a zero-shot
manner. Vector-PRF has been shown to improve eectiveness, at
additional minimal eciency expense. We adopt this method in our
paper. Wang et al. [27] proposed a more complex model that uses a
clustering technique to model the PRF signals; this is in turn applied
to the ColBERT dense retriever [11]. However, the improvements
achieved by this method come at the cost of eciency. Yu et al. [29],
on the other hand, proposed the ANCE-PRF model that requires the
training of a new query encoder based on the original ANCE [28]
1Also known as hybrid models.

query encoder. ANCE-PRF achieved signicant improvements over
ANCE. However, due to the input limit of the BERT-style model
(512 tokens [7]), ANCE-PRF is limited in the amount of feedback it
can consider: experimentally, 𝑘 = 5 is the maximum PRF depth for
MS MARCO.

The second line of research regards the interpolation of sparse re-
trieval models and deep language models to further boost eective-
ness, especially in terms of recall. Wang et al. [26] investigated the
interpolation of BM25 and dense retrievers. Their ndings suggest
that dense retrievers are highly eective in encoding strong relev-
ance signals, but they are not as eective when dealing with weak
relevance signals. The interpolation of BM25 and dense retrievers
is able to make up for each other’s weaknesses: this interpolation
can signicantly improve the eectiveness of dense retrievers. Fur-
thermore, Lin and Ma [14], Lin et al. [18] and Arabzadeh et al. [1]
also investigated dierent approaches to combine learned sparse
retrieval results with dense retrieval results to improve retrieval
eectiveness, and signicant improvements are recorded from their
experiments. Importantly, according to Wang et al. [26], dense re-
trievers are not so good at dealing with weak relevance signals.
Therefore, PRF approaches based on dense retrievers might also
inherit this limitation. To the best of our knowledge, there is no
previous study that has examined the interpolation of sparse and
dense retrievers within the PRF framework.

3 METHODS
Next, we introduce our method for interpolating sparse retriever
and dense retrievers in the context of PRF, and in particular of
the Vector-PRF approach [12]. In this paper, we adopt the same
interpolation strategy used by Wang et al. [26]: a linear interpola-
tion between sparse retriever scores and dense retriever scores, as
shown in equation (1).

𝑠 (𝑝) = _𝑠𝑆𝑝𝑎𝑟𝑠𝑒 (𝑝) + (1 − _)𝑠𝐷𝑒𝑛𝑠𝑒 (𝑝) (1)

That is, the score of a passage is the linear interpolation of the
sparse retriever score of the passage and the score of the same
passage from the dense model, modulated by a parameter _, which
controls the contribution of the sparse retriever score to the nal
score of the passage. In our experiments, Sparse refers to BM25 or
uniCOIL, Dense refers to any dense retrieval model we use. This
interpolation mechanism is a simple yet eective approach to “help”
the dense retrievers capture the passages’ weak relevance signals.

As mentioned, for PRF, we used the Rocchio Vector-PRF ap-
proach of Li et al. [12]. The way we do interpolation with PRF can
be categorized into three dierent types; we discuss each type in
detail in the following subsections.

3.1 Pre-PRF Interpolation
The PRF process often involves two rounds of retrieval [12]. The
rst retrieval round is to generate the initial results for preparing
PRF feedback candidates. After getting the initial retrieval results,
top-𝑘 passages for each query from these results are selected as
PRF feedback passages and are used to modify the original query
representations. Therefore, the interpolation can be performed at
either round of retrieval.



For Pre-PRF zero-shot interpolation, we perform the sparse re-
triever interpolation with the rst round of dense retrieval results,
then we apply PRF with the interpolated results to generate the
new query representations for the second round of retrieval. After
the interpolation, the ranking of the passages in the results are
likely to be dierent, aecting the PRF’s eectiveness.

3.2 Post-PRF Interpolation
Other than applying interpolation before the PRF to the initially
retrieved results, we also apply interpolation to the results after the
second round of retrieval with PRF query representations. In this
approach, the initial retrieval results are directly used for generating
PRF query representations, then the PRF queries are used to perform
a second round of retrieval. After the second round of retrieval, the
results are then interpolated with the sparse retriever’s results to
obtain the nal results list.

3.3 Both-PRF interpolation
Finally, Both-PRF performs interpolation before and after PRF. To
perform Both-PRF, we rstly interpolate the sparse retriever’s res-
ults with the dense retriever’s results, then we apply PRF with the
interpolated results to generate the new query representations for
second round of retrieval. Then results from the second round of
retrieval are again interpolated with the sparse retriever’s results
to generate the nal results list.

4 EXPERIMENTAL SETUP
To investigate the interpolation of sparse retrievers with dense
retriever PRF approaches, we devise a number of empirical exper-
iments aimed at investigating: 1) the impact of interpolation on
dierent dense retriever PRF approaches; 2) the impact of interpol-
ating sparse retrievers before/after/both the PRF; 3) the impact of
interpolating on dierent sparse retrievers, unsupervised (BOWs)
or learned.

Datasets. For all of our experiments, we use the TREC Deep
Learning Track passage retrieval task 2019 [3] (DL19) and 2020 [4]
(DL20). DL19 contains 43 judged queries, while DL20 contains 54
judged queries. The relevance judgement levels for both datasets
range from 0 (not relevant) to 3 (highly relevant). We treat passages
with relevance label 1 as not relevant when we compute the binary
relevance metrics (i.e., MAP, Recall). The passage collection in
our experiments is the MS MARCO Passage Ranking Dataset [20],
which is a benchmark English dataset for ad-hoc retrieval that
contains ≈8.8 million passages. The average judgements per query
for DL19 and DL20 are 215.3 and 210.9, whereas the MS MARCO
Passage Ranking Dataset only has ≈1 judgement per query.

Baselines.We include:

• ANCE: First stage dense retriever [28]. We use the model imple-
mented in Pyserini2 [15] for inference;

• Vector-PRF (VPRF): A simple Rocchio PRF approach based on
dense retrievers [12]. We use the model implemented in Pyser-
ini3 [15];

2https://github.com/castorini/pyserini/blob/master/docs/experiments-ance.md
3https://github.com/castorini/pyserini/blob/master/docs/experiments-vector-prf.md

• TCT ColBERT V2 HN+ (TCTv2): A BERT-style distilled dense
retriever learned from ColBERT with reduced query/passage
embedding dimensions [18];

• TCT ColBERT V2 HN+ VPRF (TCTv2+VPRF): The application of
the Rocchio VPRF from Li et al. [12] on top of TCT ColBERT V2
HN+ dense retriever. This model is also made available by the
authors in Pyserini3 [15];

• DistilBERT KD TASB (DBB): A DistilBERT-style dense retriever
with balanced topic aware sampling training strategy [10]. We
use the model implemented in Pyserini4 [15] by the original
authors;

• DistilBERT KD TASB + VPRF (DBB+VPRF): The application of
the Rocchio VPRF from Li et al. [12] on top of DistilBERT KD
TASB dense retriever. This model is implemented by Li et al. [12]
and available to use in Pyserini3 [15].

In our experiments, we use the parameters 𝛼 = 0.4, 𝛽 = 0.6, and PRF
depth = 3 for Rocchio VPRF, following the settings recommended
by Li et al. [12]. In terms of the interpolation parameter _, we use
_ = 0.5 for all experiments. For generating the BM25 runs to be
used for interpolation, we use the BM25 implementation provided
by Pyserini [15] and we use the default parameter values for 𝑘1 and
𝑏 within Pyserini. For generating the uniCOIL runs, we also use
the pre-built uniCOIL index provided by Pyserini.

Evaluation Measures. We use the ocial evaluation metrics
from DL19 and DL20: nDCG@10 and Recall@1000. We also report
MAP as a complementary metric.

5 RESULTS
Next, we examine the results of our empirical investigation; for this
we follow the research questions we put forward in Section 1. The
main results are presented in Table 1. We note that all the models
used in our experiments are provided by the original authors andwe
do not train a new model. The training of a new model may lead to
variations in the eectiveness results because of, e.g., the stochastic
nature of the weight initialisation of the models. However, we
observe that Li et al. [13] have shown that the dierences observed
empirically in terms of model eectiveness across re-training of
the same model are minor and not statistically signicant. The
use of the original model checkpoint for each model then appears
a fair choice in the context of our work, and the variability that
the re-training of these models would cause seems a non-critical
direction to investigate in this short paper.

5.1 RQ1: When is it better to do interpolation?
Pre-PRF, Post-PRF or Both-PRF?

To answer the rst research question, we perform Pre-PRF interpol-
ation, Post-PRF interpolation, and Both-PRF interpolation. We do
this across two sparse retrievers (one neural, uniCOIL, and one not,
BM25), and three dense retrivers (ANCE, TCTv2 and DistillBERT).

We rst discuss the results among each dense retriever with only
PRF or only interpolation involved. In this case, the interpolation
with uniCOIL always gives the highest eectiveness compared to
using PRF or using the dense retriever alone: this is regardless of
the dense retriever of choice and dataset. However, when BM25
4https://github.com/castorini/pyserini/blob/master/docs/experiments-distilbert_tasb.
md
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Dataset DL19 DL20

Sparse Model Dense Model PRF-Interpolation MAP nDCG@10 Recall@1000 MAP nDCG@10 Recall@1000

ANCE 0.3710 0.6452 0.7554 0.4076 0.6458 0.7764
ANCE-VPRF 0.3831 0.6512 0.7611 0.4118 0.6479 0.7800

BM25 ANCE

No-PRF 0.4264 0.6888 0.8607 0.4067 0.6264 0.8643
Pre-PRF 0.3868 0.6620 0.7638Z 0.4175 0.6548 0.7911Z

Post-PRF 0.4322Z 0.6885 0.8604★ 0.4140 0.6353 0.8666Z★

Both-PRF 0.4345Z 0.6895 0.8607 0.4100Z 0.6274 0.8662Z

uniCOIL ANCE

No-PRF 0.4587 0.6908 0.8459 0.4644 0.6984 0.8482
Pre-PRF 0.3857Z 0.6602Z 0.7584Z 0.4154Z 0.6545Z 0.7892Z

Post-PRF 0.4617★ 0.6910★ 0.8495★ 0.4693Z★ 0.7024★ 0.8500★

Both-PRF 0.4622 0.6917 0.8458 0.4699Z 0.7012 0.8500Z

TCTv2 0.4469 0.7204 0.8261 0.4754 0.6882 0.8429
TCTv2-VPRF 0.4626 0.7219 0.8377 0.4863 0.6952 0.8462

BM25 TCTv2

No-PRF 0.4474 0.7067 0.8753 0.4468 0.6696 0.8872
Pre-PRF 0.4698 0.7268 0.8436 0.4879Z 0.6987 0.8455Z

Post-PRF 0.4547Z 0.7045 0.8788 0.4511Z★ 0.6683 0.8918Z★

Both-PRF 0.4574Z 0.7061 0.8820Z 0.4490 0.6659 0.8902Z

uniCOIL TCTv2

No-PRF 0.4771 0.7245 0.8557 0.4895 0.718 0.8683
Pre-PRF 0.4659 0.7246 0.8415 0.4897 0.7083 0.8484Z

Post-PRF 0.4826Z★ 0.7347 0.8663Z 0.4926 0.7184 0.8718★

Both-PRF 0.4831 0.7268 0.8606Z 0.4920Z 0.7190 0.8723Z

DBB 0.4590 0.7210 0.8406 0.4698 0.6854 0.8727
DBB-VPRF 0.4667 0.7285 0.8479 0.4804 0.7027 0.8767

BM25 DBB

No-PRF 0.4584 0.6993 0.8622 0.4417 0.6491 0.8948
Pre-PRF 0.4711 0.7319 0.8526 0.4812Z 0.6968Z 0.8755
Post-PRF 0.4652Z 0.7053 0.8711 0.4509★ 0.6522★ 0.8974
Both-PRF 0.4665Z 0.7019 0.8720 0.4442 0.6474 0.8977

uniCOIL DBB

No-PRF 0.4779 0.7288 0.8542 0.4859 0.7041 0.8808
Pre-PRF 0.4726 0.7255 0.8468 0.4815 0.7002 0.8760
Post-PRF 0.4822 0.7298 0.8658 0.4915 0.7097 0.8836
Both-PRF 0.4858Z 0.7334 0.8669 0.4880Z 0.7062 0.8834

Table 1: The results of all baseline runs andNo-PRF, Pre-PRF, Post-PRF and Both-PRF interpolation runs of allmodels with the
Rocchio Vector PRF approach proposed by Li et al. [12]. Statistical signicance tests are conducted between Pre- and Post-PRF
models, signicant dierence are marked with★. We also tested the statistical signicance with Pre-PRF interpolation versus
No-PRF interpolation, and Post-PRF interpolation versus No-PRF interpolation, and Both-PRF interpolation versus no-PRF
interpolation, signicant dierence are marked with Z. Best eectiveness among each base sparse model is marked as Bold.

is used for interpolation, the interpolated results are lower than
those achieved by PRF for MAP and nDCG (but not recall@1000),
regardless of dense retriever and dataset.

We now consider interpolation with BM25. Unlike the ndings
obtained by comparing the use of the dense retriever with either
only interpolation or only PRF, better eectiveness is achievedwhen
both PRF and interpolation with BM25 are used. The eectiveness
of the Post-PRF interpolation condition is very close to that of Both-
PRF interpolation; however, Both-PRF interpolation achieves the
highest eectiveness most of the time and across all dense retrievers
and datasets. However, the dierence between Post-PRF and Both-
PRF interpolation is not signicant, and Both-PRF interpolation
requires some extra computations compared to Post-PRF. Pre-PRF
interpolation tends to enhance early precision, while Post-PRF

interpolation tends to enhance deep recall. Overall, however, Pre-
PRF interpolation is the least eective of the three interpolation
conditions, regardless of dense retriever, metric and dataset.

We now consider interpolation with uniCOIL. Here also we ob-
serve that PRF with uniCOIL interpolation can consistently achieve
higher eectiveness than using the dense retrievers or sparse re-
trievers alone. Furthermore, we also nd that using Post-PRF inter-
polation or Both-PRF interpolation outperforms results obtained
with interpolation but not PRF, regardless of dense retriever and
dataset. However, if Pre-PRF interpolation is used, then eective-
ness is often similar or lower than when interpolation is used but
no PRF. Indeed, Both-PRF can achieve the highest eectiveness
most of the time.



Overall, the condition with interpolation both before and after
PRF (Both-PRF) showcased often high eectiveness regardless of
dense and sparse retriever. The condition with interpolation per-
formed after PRF (Post-PRF) showcased high eectiveness only
with the uniCOIL sparse retriever, but not with BM25.

5.2 RQ2: Which sparse retriever is more
eective, unsupervised (BOWs) or learned?

In our experiments we considered BM25 and uniCOIL as sparse
retrievers. The uniCOIL method is a typical neural sparse retriever
trainedwith contrastive loss that uses BERT to predict impact scores
for both query tokens and document tokens. Before performing
predictions, uniCOIL uses doc2query-T5 [22] to expand all passages
in the collection by adding potential relevant tokens that are not in
the original passages. BM25 instead is a traditional BOWs sparse
retriever, where the representation is not learned. We now consider
which of these sparse representations is best to combine with the
signal from the dense retrievers; we do this not in the context of
PRF (Pre-PRF, Post-PRF, and Both-PRF interpolation) and when not
considering PRF (No-PRF).

The results show that the use of uniCOIL guarantees an increase
in MAP and nDCG@10 compared to BM25, but a lower recall@1000.
This result is valid across all dense retrievers, datasets and for No-
PRF, Post-PRF and Both-PRF interpolation conditions.

For the Pre-PRF interpolation method, however, no general trend
is found when comparing the two sparse models. On DL2019, uni-
COIL consistently underperforms BM25 in the pre-PRF interpola-
tion condition, with the only exception ofMAPwhenDBB is used as
the dense retriever. On DL2020, uniCOIL always outperforms BM25
when the dense retrievers are TCTv2 or DBB, but underperforms
BM25 when ANCE is used as dense retriever.

Overall, we nd that when performing PRF and interpolating
with the Post-PRF and Both-PRF conditions, an unsupervised BOWs
sparse retriever leads generally to high recall, while a neural, trained
sparse retriever achieves higher MAP and nDCG@10. However, the
Pre-PRF condition shows no stable trends in terms of which sparse
retriever to use.

6 CONCLUSION
Previous work has argued that sparse and dense retrievers encode
dierent relevance characteristics of a document [16, 26]. Because
of this, methods for the combination of these two signals have
emerged; the simplest method being the interpolation of the scores
originating from a sparse and a dense retriever [26].

In this paper, we conducted an extensive investigation to study
the eect of interpolation between sparse and dense retrievers in
the context of Pseudo Relevance Feedback for dense retrievers, and
in particular for the scalable and eective Vector-PRF method [12].
With this respect, we studied applying BM25 and uniCOIL as sparse
retrievers, along with three dense retrievers: ANCE, TCTv2 and Dis-
tillBERT. In terms of when to interpolate sparse and dense signals,
we considered doing this before PRF, after PRF, and both before
and after PRF.

The empirical results show that interpolation often can boost
retrieval eectiveness, regardless of the choice of sparse and dense
retrievers. Among the choices of when to interpolate, we nd that

interpolating both before and after the PRF process is the condition
that most often lead to substantial gains.
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