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Abstract

Current question answering systems succeed in many respects regarding questions about textual 
documents. However, information exists in other media, which provides both opportunities and 
challenges for question answering. We describe our efforts in extending question answering 
capabilities to video data: our implemented prototype, Spot, can answer questions about moving 
objects in a surveillance setting. This novel application of vision and language technology is 
situated within a larger framework designed to integrate knowledge from multiple domains 
under a common representation. We believe that our framework will support the next generation 
of multimodal natural language information access systems. 

1. Introduction 

Although many advances have been made in question answering over the last 
few years, most existing systems are exclusively text-based (Voorhees, 2001; 
Voorhees, 2002). While such systems are undoubtedly useful, information exists 
in many other types of media as well; a truly effective information access system 
should not only be able to answer questions about text, but also about pictures, 
movies, sounds, etc. Furthermore, since text is often not the most appropriate 
response to user requests, an intelligent information access system should be 
able to choose the answer format that will best satisfy users’ information needs. 

Our research centers on extending question answering capabilities to new 
domains: specifically, video footage captured in a surveillance setting. We have 
developed Spot, a system that answers questions about moving objects found in 
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video footage. In response to user questions, our system returns dynamically 
generated video clips that directly satisfy the user query. For example, when the 
user asks “Show me all southbound cars.”, Spot displays a video that consists 
solely of cars heading south; all other traffic, both pedestrian and vehicular, is 
omitted. This research effort is made possible by integrating motion-tracking and 
natural language technologies developed at the MIT Computer Science and 
Artificial Intelligence Laboratory. 

Our prototype video-surveillance question answering system is situated in a 
general framework for integrating vision and language systems, called CLiViR 
(Common Linguistic-Visual Representation). In order to exploit the synergies 
that arise from fusing multimodal information streams, we are developing 
common representations capable of capturing salient aspects of both language 
and vision. This general framework supports four major capabilities: event 
recognition, question answering, event description, and event filtering. 

Although there exist information retrieval systems that operate on video clips 
and still images (Aslandogan and Yu, 1999; Smeaton et al., 2001), the vast 
majority of them treat multimedia segments as opaque objects. For the most part, 
current multimedia information retrieval systems utilize textual data, such as 
captions and transcribed speech, as descriptors of content for indexing purposes. 
For many types of media, the required textual metadata is hard to obtain. 
Furthermore, the content of multimedia segments cannot be adequately captured 
by representations purely derived from text; these representations will 
necessarily be impoverished. Although there has been research on automatically 
extracting features from video and images, it has been limited to such 
information as color, shape, and texture; these low-level features alone are 
insufficient to capture the semantic content of non-textual segments. In addition, 
automatically translating user queries into sets of appropriate low-level features 
is a challenge yet to be overcome. 

In certain domains it is possible to integrate computer vision and natural 
language technology in order to extract high-level events from video input and 
generate symbolic representations that capture the semantics of those events. We 
attempt to break the inter-media barrier by developing shared representations 
that are capable of bridging different modalities. 
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1.1. A Common Framework 

Common Linguistic-Visual Representation (CLiViR) lies at the heart of our 
effort to integrate vision and language. The central goal is to develop a 
framework that supports practically-grounded shared representations capable of 
bridging the visual and linguistic domains. Our desire is to capture the salient 
aspects of both visual and linguistic data relevant for answering user questions, 
while discarding irrelevant details. Our framework supports four major 
capabilities that cross the boundaries of language and vision (see Figure 1): 

Event Recognition. CLiViR serves as an “event language” for 
describing visual scenes. Our representation abstracts away raw video 
into symbolic structures that can be easily analyzed and manipulated. 

Question Answering. Natural language questions can be translated into 
queries in CLiViR, and then matched against recognized events. With 
such capabilities, users can ask questions in English and get back 
appropriate answers, either video clips or textual descriptions. Because 
the matching is done on symbolic representations, the system can provide 
concise responses that capture large variations in the video data. 

Event Description. Our common representation supports natural 
language generation, so that users can request “digested summaries” of a 
particular scene, e.g., “In the last five minutes, five cars passed in front of 
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Figure 1: The capabilities provided by CLiViR, our integrated vision and 
language framework 
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the building. A blue van stopped across the street for approximately a 
minute and then drove off.” 

Event Filtering. CLiViR allows users to issue standing queries that filter 
the incoming video in real-time, e.g., “Notify me whenever a black sedan 
pulls up into the driveway.” 

Our development of CLiViR is driven by both theoretical and practical 
considerations. On one hand, we believe that by leveraging existing work in 
knowledge representation and cognitive psychology, it is possible to synthesize 
theories of meaning expressive enough to capture linguistic and visual 
knowledge. On the other hand, our commitment to working with unaltered, real-
world video will ground our system in realistic scenarios, ensuring robustness 
and scalability. In essence, we are developing a platform capable of validating 
theories of representation against real-world data. 

1.1 Spot: A Prototype 

We have built a prototype information access system, called Spot, that can 
answer interesting questions about video surveillance footage taken around the 
Technology Square area in Cambridge, Massachusetts. The scene consists of a 
large parking garage to the west, a white office building to the east, and a north-
south roadway that runs between the two structures. The area experiences 
moderate to heavy amounts of both pedestrian and vehicular traffic, depending 
on the time of day. A typical video segment shows cars leaving and entering the 
parking garage, vehicles (e.g., cars and delivery trucks) driving both northbound 
and southbound, and pedestrians walking around. 

Our Spot system analyzes raw footage and attempts to recognize salient events in 
the video; these events, captured in a symbolic representation, are stored in a 
knowledge base and indexed for convenient retrieval. When asked a natural 
language question, Spot first transforms it into a symbolic query, which is then 
matched against the knowledge base of indexed events. Based on the match, 
Spot dynamically assembles an abridged video clip satisfying the user request. 
Currently, we focus on various types of motion within the scene. For example, 
when a user asks “Show me cars pulling up to the white office building.”, the 
system responds with a video clip showing cars entering the driveway of that 
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particular building; all other vehicular and pedestrian traffic is omitted. Figure 2 
shows several still frames from the answer. 

Our prototype can presently answer a variety of interesting questions, e.g., 

Show me cars dropping off people in front of the white building. 
Did any cars leave the garage towards the north? 
How many cars pulled up in front of the office building?  
Show me cars entering Technology Square. 
Give me all northbound traffic. 

Spot is a proof of concept demonstrating the viability of question answering for 
video surveillance applications. Much in the same way that traditional question 
answering systems can respond to queries about textual documents, Spot allows 
users to ask interesting questions about objects moving in a particular scene.  

2. Underlying technology 

Our Spot system is the result of integrating computer vision and natural language 
understanding technology. Our prototype is supported by two systems developed 
at the MIT Computer Science and Artificial Intelligence Laboratory: a real-time 
motion tracking system and the START Natural Language System. 

Figure 2: Still frames taken from Spot’s answer to “Show me cars pulling up to the white 
office building.” 
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2.1 Robust Object Tracking 

By combining the latest in both computer vision and machine learning 
techniques, we have developed systems that can robustly track multiple moving 
objects in both indoor and outdoor settings. Under a bottom-up, data-driven 
framework called Perceptual Data Mining (PDM) (Stauffer, 2002), we have 
created autonomous perceptual systems that can be introduced into almost any 
environment and, through experience, learn to model the active objects of that 
environment (Stauffer and Grimson, 2000). Over the last five years, we have 
processed billions of images. Using novel attention mechanisms and adaptive 
background estimation techniques, our system can isolate moving objects from 
stationary background scenery.

Our motion-tracking algorithm is based on an adaptive background subtraction 
method that models each pixel as a mixture of Gaussians and uses an on-line 
approximation to update the model. The Gaussians are then evaluated using a 
simple heuristic to decide whether or not a pixel is part of the background 
process. Foreground pixels are segmented into regions by a two-pass, connected 
components algorithm. Objects are tracked across frames by using a linearly 
predictive multiple hypotheses tracking algorithm, which incorporates both 

Figure 3: A composite of motion tracks detected by our system in two different 
settings: an airport tarmac (left), and an entrance gate to an office park (right). 
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position and size. Our approach is able to robustly ignore environmental effects, 
e.g., flags fluttering or trees swaying in the wind, etc., and handle different 
weather conditions, e.g., rain or snow. Furthermore, our system is capable of 
maintaining tracks through cluttered areas, dealing with overlapping objects, and 
adjusting to gradual lighting changes. 

With our technology, it is possible to observe and characterize motions in a 
particular scene over long periods of time. By applying unsupervised 
classification techniques to the observed trajectories of moving objects, we can 
categorize patterns of usage in a site; these include common paths of movement 
through the site based on type of object as well as common patterns of usage as a 
function of time of day. As an example, Figure 3 shows two scenes, a tarmac at 
an airport and a gate of an office complex, with motion tracks superimposed. In 
the airport environment, our system is able to detect airplanes taking off and 
landing in the distance, typical taxi paths, and motion of cars along the roads. In 
the office gate setting, our system is able to observe cars entering and leaving, as 
well as pedestrians walking along the road. This classification provides us with a 
basis for flagging unusual behaviors, for retrieving similar instances of 
behaviors, and for gathering statistics on site usage. 

2.2 Natural Language Understanding 

The other component that supports the Spot system is natural language 
understanding technology, in the form of the START information access system 
(Katz, 1997; Katz et al., 2002). In December 1993, START became the first 
question answering system available for question answering on the World Wide 
Web. Since then, it has engaged in exchanges with hundreds of thousands of 
users all over the world, supplying them with useful knowledge. See Chapter 17 
in this volume for a more detailed description of our system. 

The START system is grounded in a technique called natural language 
annotation, in which English phrases and sentences are used to describe 
information segments and the types of questions that they are capable of 
answering. The system parses these annotations, converts the parsed structures 
into a set of ternary expressions (Katz, 1988), and stores them in a knowledge 
base with pointers back to the original information segments they describe. To 
answer a question, the user query is also converted into a set of ternary 
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expressions, which are then compared to the annotations stored in the knowledge 
base. Because this match occurs at the level of syntactic structures, linguistically 
sophisticated machinery such as synonymy/hyponymy, ontologies, and structural 
transformational rules are all brought to bear on the matching process. Linguistic 
techniques allow the system to achieve capabilities beyond simple keyword 
matching, for example, handling complex syntactic alternations involving verb 
arguments (Katz and Levin, 1988). If a match is found between ternary 
expressions derived from annotations and those derived from the query, the 
segment corresponding to the annotations is returned to the user as the answer. 
An important feature of the annotation concept is that any information segment 
can be annotated: not only text, but also images, multimedia, and even 
procedures. Figure 4 shows a screenshot of START answering a user question 
with both text and images. 

Figure 4: START answering the question “What European country has the 
highest life expectancy?” 
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3. Integrating Vision and Language 

In response to a user’s English question, Spot queries its knowledge base of 
recognized events to dynamically generate a video clip that satisfies the user’s 
information need. START assists in the process by understanding the question 
and translating it into an appropriate request to the event knowledge base. This 
section explains how Spot integrates language and vision to answer natural 
language questions. 

The basic unit of output from the motion tracking system is a track, which traces 
the motion of a single object over time. A track is comprised of a sequence of 
track instances. A track instance depicts a tracked object at a particular moment 
in time. Each track instance is tagged with a unique identifier and timestamp, 
and also contains information about the object's screen coordinates, size, velocity 
vector, and other meta information. In addition, each track instance contains the 
actual image of the object and its silhouette, making it possible to reconstruct a 
movie of the object in motion. 

We have developed a symbolic representation that abstracts away from the raw 
tracking stream. Our representation captures only the salient aspects of the 
motion observed, and allows for a compact description of the visual data. A 
compact, yet expressive representation is crucial because the tracking 
information provided by the vision system is continuous and extremely large—a 
single camera is capable of generating over one hundred thousand images an 
hour, most of which may not be relevant to the user. 

The basis of our representation is adapted from Jackendoff's representation of 
motion and paths (Jackendoff, 1983; Jackendoff, 1990). This representation is a 
component of Lexical Conceptual Structures (LCS), a syntactically-grounded 
semantic representation that captures many cross-linguistic generalizations. It 
has been successfully used in applications such as interlingual machine 
translation (Dorr, 1992) and intelligent tutoring (Dorr, 1995). 

As an example, a car leaving the garage would be represented by the following 
(simplified) expression: 

MOVE(Object213, [PATH Source(Garage57)])
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In this representation, objects moving along paths are specified by a series of 
path primitives. These primitives capture the relationship between the object in 
motion and other (mostly stationary) objects. Path primitives are ideal for 
serving as the intermediary between vision and language. They correspond to 
features that can be easily extracted from raw video (using only screen 
coordinates and other tracking information). In addition, natural language 
queries about motion are most naturally specified in terms of prepositional 
phrases, which correspond to path primitives. Thus, our framework for capturing 
motion and paths serves not only as an expressive representation, but also as a 
powerful query language. Our structures can contain any number of path 
primitives; underspecification can be used to indicate missing or unknown 
knowledge. As another example, the well-known verse of a popular winter song: 

Over the river and through the woods, to grand-mother's house we go... 

could be expressed as 

MOVE(We,  [PATH Over(River35)
   Through(Woods23)
   Destination(GrandmothersHouse1)])

This representation would allow us to answer a variety of questions, e.g., 

Where did we go? 
What did we pass to get to grandmother's house? 
Did we go through anything on our way? 

An essential component of our representational framework is the mapping from 
symbolic locations to on-screen coordinates. Currently, this is accomplished 
manually: a human must identify the interesting landmarks in a particular scene 
and map the screen location of those landmarks to their symbolic 
representations. In the future, such mappings could be constructed automatically 
or semi-automatically by clustering visible behavior into interesting regions and 
positing the existence of relevant landmarks in the scene. 
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To efficiently answer natural language questions, we have constructed a 
knowledge base for storing representations derived from raw video. Spot queries 
this store using partially instantiated CLiViR structures with unbound variables. 

3.1 Answering Questions 

Consider the query “Show me all cars leaving the garage.” START translates the 
English question into the following query: 

 Query(MOVE(car?, [PATH Source(Garage57)]))

Since we have not yet integrated object recognition technology into Spot, size is 
used as a surrogate for object detection, i.e., blobs above a certain size are 
classified as “cars”. 

The translation of natural language questions into CLiViR queries is 
accomplished by augmenting the lexical entries of verbs such as leave and enter
with fragments of CLiViR queries that are dynamically assembled and 
instantiated during parse-time. Such lexical knowledge is stored alongside the 
subcategorization frames associated with each verb. In this particular example, 
the direct object of leave, “the garage”, is extracted from the parse tree, 
translated into its corresponding CLiViR location, Garage57, and instantiated as 
the argument of the “Source” primitive of the path. The mapping from natural 
language locations to CLiViR locations is specified in terms of nouns and 
various syntactic constraints on those nouns (e.g., adjectives). Because our 
lexicon contains information about synonymy, different terms such as parking
structure and parking garage all map to the same CLiViR symbol. Cardinal 
directions like “north” and “south” are treated as special instances of locations. 

The resulting query is then executed against the database of stored event 
structures. In response, Spot dynamically generates video that contains only 
motion tracks satisfying the user request. START’s syntactic machinery 
automatically allows Spot to handle variations in language, e.g., 

Did any cars leave the garage? 
Give me all cars that exited the garage. 
Display cars leaving the garage. 
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As another example, START’s knowledge about natural language allows Spot to 
translate the question “Show me all southbound traffic.” into the query 

Query(MOVE(car?, [PATH Source(Road17) Direction(South)])) 

Accordingly, Spot displays a video showing only vehicles driving from north to 
south.

4. Related Work 

Object and event recognition in the general domain is far beyond the capabilities 
of current technology. Instead, current video and image retrieval systems rely on 
low-level features such as color, texture, and shape that can be automatically 
extracted; see Aslandogan and Yu (1999) and Yoshitaka and Ichikawa (1999) for 
a survey. However, such systems are fundamentally incapable of capturing high-
level semantics.  

A method for overcoming the limitations of low-level feature indexing is to 
utilize textual annotations that may accompany multimedia content. For 
example, image retrieval systems have been built around the use of image 
captions (Smeaton and Qigley, 1996; Wactlar et al., 2000); similarly, video 
retrieval systems have incorporated textual transcripts (either taken from closed-
captions or generated by speech recognition systems) and other manually entered 
annotations (Smeaton et al., 2001). There are several drawbacks to this approach. 
Often unstructured text simply is not be the best representation for multimedia 
content. Furthermore, descriptive annotations often cannot be obtained 
automatically and require human labor to gather. In contrast, one major 
advantage offered by our approach stems from the compositional nature of our 
semantic representation. Instead of using fixed annotations to described pre-
defined multimedia segments, our CLiViR framework allows complex events to 
be built up from simple primitives. Although we must still specify the semantics 
for individual primitives, a compositional semantics allows unparalleled 
flexibility and the ability to describe novel unseen events. 

Other attempts to automatically extract higher-level semantics from multimedia 
segments include pseudo-semantic classification, where items are broken down 
into broad, generic categories like nature vs. man-made or indoor vs. outdoor 
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(Smith et al., 2001; Chen et al., 1999). Object recognition technology has also 
been applied to image and video retrieval, although most efforts have been 
focused on specific objects, e.g., faces, numbers, etc. Video Semantic Directed 
Graph (Day et al., 1995), an object oriented framework for representing video 
sequences, focuses on modeling physical objects and their appearance or 
disappearance rather than events and activities. In contrast to these approaches, 
we are attempting to develop automatic methods for extracting and modeling 
high-level semantic events. 

5. Next Steps 

Although our current path representation is limited in scope and in the types of 
questions that it can answer, we believe that Jackendoff’s LCS representation 
serves as a solid basic foundation upon which to build more expressive 
structures. Our immediate goal is to augment existing representations with 
attributes such as time, speed, color, size, etc. to allow richer questions: 

Show me the last delivery truck that stopped in front of the office. 
How many people walked out of the building in the last 15 minutes? 
Display all blue cars entering the garage from the south this morning. 

We are presently in the process of developing a language that can manipulate 
primitive building blocks such as paths and path primitives to craft more 
complex events. A significant portion of this effort focuses on exploring possible 
ways in which primitives can be combined to form more complex events such as 
sequences or causal chains. From this, we hope to develop a meaningful set of 
“connectors” to explicitly relate primitive events. This event language would 
allow users to ask very interesting questions: 

In the last hour, did any car pull up to the curb and let out passengers? 
Have any trucks circled the building more than twice within the last day? 
Show me any instance of a man getting into a car and then getting out of 

the car within five minutes. 

With traditional video-retrieval systems, it is often very difficult to construct 
meaningful queries in terms of low-level features like textures and colors, e.g., 
for events such as a car dropping a passenger off at the curb or a van making a 
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U-turn. Yet, many of these complex events can be easily specified in natural 
language. By building a suitable abstraction between language and vision for 
capturing high-level semantic events, we can build systems that provide users 
with effective access to video information. 

Furthermore, traditional information-retrieval-based question answering 
technology can be integrated with a system like Spot to form a generalized 
multimodal information access system. Such an integration would provide users 
with powerful tools for analyzing situations from different perspectives. For 
example, consider a busy freeway intersection: integration of video and textual 
data would allow a user to understand anomalous traffic patterns (detected by 
video) by consulting traffic and weather reports (textual data). 

Input using multiple modalities is another direction that we would like to 
explore. In our domain of visual surveillance, gestures could play an important 
role as a possible mode of querying. For example, a user could ask “Show me all 
cars that went like this [gesturing an indirect path the leads from the garage to 
intersection.” Or “Did anyone leave this building [pointing to a specific office 
building] in the last hour?” 

An important aspect of video sequences that cannot be easily captured by 
Jackendoff’s LCS representation is the notion of time and temporal intervals. For 
modeling temporal aspects of activity, Allen’s work (1983) on qualitative 
relations between temporal intervals is highly relevant. Correspondingly, there 
has been some work on relations in the spatial domain that we could capitalize 
on (Chang et al., 1987; Egenhofer and Franzosa, 1991). In addition, 
representations focusing on change and transitions between states (Borchardt, 
1992), rather than states themselves, could also be helpful in the development of 
CLiViR.

6. Challenges 

Our endeavor seeks to bring together maturing technologies from different fields 
to tackle fundamental problems in artificial intelligence. Although increasing 
trends towards specialization have resulted in many spectacular breakthroughs in 
narrow domains, the fragmentation of artificial intelligence research into a 
multitude of sub-disciplines has lead to stagnation of progress in “grand 
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challenges”. We believe that technologies from various disparate areas are 
mature enough to support integration into a common framework, and that the 
potential synergies resulting from such integration will allow us to develop 
applications with far-reaching consequences. 

Nevertheless, in pursuing our objectives, we may encounter both theoretical and 
practical challenges. The inherent assumption of our shared representation is the 
decompositional nature of knowledge across different modalities. Although 
preliminary successes are encouraging, it remains an open research question 
whether complex events can indeed be broken down into simple primitives. 
Furthermore, can primitives then be assembled to productively describe novel 
and unanticipated events? If the expansion of a system like Spot into new 
domains leads to an endless proliferation of new primitives, then perhaps our 
common representation approach to integrating vision and language is untenable. 
Perhaps, even if this were the case, the failure of our approach would teach us 
something about the nature of knowledge itself. 

Aside from theoretical considerations, there are practical concerns with the 
scaling of video knowledge bases. Currently, Spot can successfully handle days 
worth of video (on the order of hundreds of megabytes). However, real-world 
applications might require storage of months, and maybe even years, of footage. 
The vast amounts of data involved, coupled with the rich symbolic structures 
derived from them, create a potential problem in the storage, indexing, and 
retrieval of video knowledge. Nevertheless, we are confident that such issues can 
be addressed through a combination of increased computing power and better 
algorithms. 

7. Conclusion 

The integration of vision and language technologies presents both difficult 
challenges and exciting opportunities for information access systems. We have 
taken several steps towards crossing the chasm between different modalities—
not only have we implemented a prototype question answering system for video 
surveillance footage, but also sketched a general framework for integrating the 
visual and linguistic domains under a shared representation. 
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Psychologists have long believed that language and vision are two very 
important aspects of cognition that contribute to human intelligence. People are 
able to effortlessly integrate visual and linguistic data to reason and learn, an 
ability far beyond that of present day computers. By creating a framework for 
bridging vision and language, not only can we build more effective information 
access systems, but perhaps we can also shed some light on the wonders of 
human cognition. 
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