
Which BM25 Do You Mean? A Large-Scale
Reproducibility Study of Scoring Variants

Chris Kamphuis,1 Arjen P. de Vries,1 Leonid Boytsov,2 and Jimmy Lin3

1 Radboud University, Nijmegen, The Netherlands
2 Pittsburgh, USA

3 University of Waterloo, Waterloo, Canada

This is the preprint of an accepted ECIR 2020 reproducibility paper.

Abstract. When researchers speak of BM25, it is not entirely clear
which variant they mean, since many tweaks to Robertson et al.’s origi-
nal formulation have been proposed. When practitioners speak of BM25,
they most likely refer to the implementation in the Lucene open-source
search library. Does this ambiguity “matter”? We attempt to answer
this question with a large-scale reproducibility study of BM25, consider-
ing eight variants. Experiments on three newswire collections show that
there are no significant effectiveness differences between them, including
Lucene’s often maligned approximation of document length. As an added
benefit, our empirical approach takes advantage of databases for rapid
IR prototyping, which validates both the feasibility and methodological
advantages claimed in previous work.

Keywords: scoring functions · relational databases

1 Introduction

BM25 [8] is perhaps the most well-known scoring function for “bag of words” doc-
ument retrieval. It is derived from the binary independence relevance model to
include within-document term frequency information and document length nor-
malization in the probabilistic framework for IR [7]. Although learning-to-rank
approaches and neural ranking models are widely used today, they are typically
deployed as part of a multi-stage reranking architecture, over candidate docu-
ments supplied by a simple term-matching method using traditional inverted
indexes [1]. Often, this is accomplished using BM25, and thus this decades-old
scoring function remains a critical component of search applications today.

As many researchers have previously observed, e.g., Trotman et al. [11], the
referent of BM25 is quite ambiguous. There are, in fact, many variants of the
scoring function: beyond the original version proposed by Robertson et al. [8],
many variants exist that include small tweaks by subsequent researchers. Also,
researchers using different IR systems report (sometimes quite) different effec-
tiveness measurements for their implementation of BM25, even on the same
test collections; consider for example the results reported in OSIRRC 2019, the

2 C. Kamphuis et al.

open-source IR replicability challenge at SIGIR 2019 [2]. Furthermore, BM25 is
parameterized in terms of k1 and b (plus k2, k3 in the original formulation), and
researchers often neglect to include the parameter settings in their papers.

Our goal is a large-scale reproducibility study to explore the nuances of dif-
ferent variants of BM25 and their impact on retrieval effectiveness. We include in
our study the specifics of the implementation of BM25 in the Lucene open-source
search library, a widely-deployed variant “in the real world”. Outside of a small
number of commercial search engine companies, Lucene—either stand-alone or
via higher-level platforms such as Solr and Elasticsearch—has today become the
de facto foundation for building search applications in industry.

Our approach enlists the aid of relational databases for rapid prototyping, an
idea that goes back to the 1990s and was more recently revived by Mühleisen et
al. [6]. Adding or revising scoring functions in any search engine requires custom
code within some framework for postings traversal, making the exploration of
many different scoring functions (as in our study) a tedious and error-prone
process. As an alternative, it is possible to “export” the inverted index to a
relational database and recast the document ranking problem into a database
(specifically, SQL) query. Varying the scoring function, then, corresponds to
varying the expression for calculating the score in the SQL query, allowing us
to explore different BM25 variants by expressing them declaratively (instead of
programming imperatively). We view our work as having two contributions:

– We conducted a large-scale reproducibility study of BM25 variants, focusing
on the Lucene implementation and variants described by Trotman et al. [11].
Their findings are confirmed: effectiveness differences in IR experiments are
unlikely to be the result of the choice of BM25 variant a system implemented.

– From the methodological perspective, our work can be viewed as reproducing
and validating the work of Mühleisen et al. [6], the most recent advocate of
using databases for rapid IR prototyping.

2 BM25 Variants

Table 1 summarizes the scoring functions of the BM25 variants we examined:

Robertson et al. [8] is the original formulation of BM25: N is the number
of documents in the collection, dft is the number of documents containing term
t, tftd is the term frequency of term t in document d. Document lengths Ld
and Lavg are the number of tokens in document d and the average number of
tokens in a document in the collection, respectively. Finally, k1 and b are free
parameters that can be optimized per collection.4

Lucene (default) is the variant implemented in Lucene (as of version 8), which
introduces two main differences. First, since the IDF component of Robertson

4 The original publication adds scoring components with constants k2 and k3 that are
rarely used and thus not considered in our study.

Which BM25 Do You Mean? 3

Table 1. Scoring functions of the BM25 variants examined in this work.

Robertson et al.
∑
t∈q log

(
N−dft+0.5
dft+0.5

)
· tftd

k1·
(
1−b+b·

(
Ld

Lavg

))
+tftd

Lucene (default)
∑
t∈q log

(
1 + N−dft+0.5

dft+0.5

)
· tftd

k1·
(
1−b+b·

(
Ldlossy
Lavg

))
+tftd

Lucene (accurate)
∑
t∈q log

(
1 + N−dft+0.5

dft+0.5

)
· tftd

k1·
(
1−b+b·

(
Ld

Lavg

))
+tftd

ATIRE
∑
t∈q log

(
N
dft

)
· (k1+1)·tftd
k1·

(
1−b+b·

(
Ld

Lavg

))
+tftd

BM25L
∑
t∈q log

(
N+1
dft+0.5

)
· (k1+1)·(ctd+δ)

k1+ctd+δ

BM25+
∑
t∈q log

(
N+1
dft

)
·

(
(k1+1)·tftd

k1·
(
1−b+b·

(
Ld

Lavg

))
+tftd

+ δ

)

BM25-adpt
∑
t∈q G

1
q ·

(k′1+1)·tftd

k′1·
(
1−b+b·

(
Ld

Lavg

))
+tftd

TFl◦δ◦p×IDF
∑
t∈q log

(
N+1
dft

)
·

(
1 + log

(
1 + log

(
tftd

1−b+b·
(

Ld
Lavg

) + δ

)))

et al. is negative when dft > N/2, Lucene adds a constant 1 before calcu-
lating the log value. Second, the document length used in the scoring func-
tion is compressed (in a lossy manner) to a one byte value, denoted Ldlossy.
With only 256 distinct document lengths, Lucene can pre-compute the value
of k1 · (1 − b + b · (Ldlossy/Lavg)) for each possible length, resulting in fewer
computations at query time.

Lucene (accurate) represents our attempt to measure the impact of Lucene’s
lossy document length encoding. We implemented a variant that uses exact doc-
ument lengths, but is otherwise identical to the Lucene default.

ATIRE [10] implements the IDF component of BM25 as log (N/dft), which also
avoids negative values. The TF component is multiplied by k1 + 1 to make it
look more like the classic RSJ weight; this has no effect on the resulting ranked
list, as all scores are scaled linearly with this factor.

BM25L [5] builds on the observation that BM25 penalizes longer documents too
much compared to shorter ones. The IDF component differs, to avoid negative
values. The TF component is reformulated as ((k1 + 1) · ctd) /(k1 + ctd) with

4 C. Kamphuis et al.

ctd = tftd/(1 − b + b · (Ld/Lavg)). The ctd component is further modified by
adding a constant δ to it, boosting the score for longer documents. The authors
report using δ = 0.5 for highest effectiveness.

BM25+ [4] encodes a general approach for dealing with the issue that ranking
functions unfairly prefer shorter documents over longer ones. The proposal is to
add a lower-bound bonus when a term appears at least one time in a document.
The difference with BM25L is a constant δ to the TF component. The IDF
component is again changed to a variant that disallows negative values.

BM25-adpt [3] is an approach that varies k1 per term (i.e., uses term specific
k1 values). In order to determine the optimal value for k1, the method starts
by identifying the probability of a term occurring at least once in a document
as (dfr + 0.5)/(N + 1). The probability of the term occurring one more time is
then defined as (dfr+1 + 0.5)/(dfr + 1). The information gain of a term occur-
ring r + 1 instead of r times is defined as Grq = log2 ((dfr+1 + 0.5)/(dfr + 1)) −
log2 ((dftr + 0.5)/(N + 1)), where dfr is defined as follows: |Dt|ctd≥r−0.5| if r > 1,
dft if r = 1, and N if r = 0 (ctd is the same as in BM25L). The information
gain is calculated for r ∈ {0, . . . , T}, until Grq > Gr+1

q . The optimal value for
k1 is then determined by finding the value for k1 that minimizes the equation

k
′

1 = argmink1
∑T
r=0

(
Grq/G

1
q − ((k1 + 1) · r)/(k1 + r)

)2
. Essentially, this gives a

value for k1 that maximizes information gain for that specific term; k
′

1 and G1
q

are then plugged into the BM25-adpt formula.
We found that the optimal value of k

′

1 is actually not defined for about 90% of
the terms. A unique optimal value for k

′

1 only exists when r > 1 while calculating
Grq. For many terms, especially those with a low df , Grq > Gr+1

q occurs before
r > 1. In these cases, picking different values for k1 has virtually no effect on
retrieval effectiveness. For undefined values, we set k

′

1 to 0.001, the same as
Trotman et al. [11].

TFl◦δ◦p×IDF [9] models the non-linear gain of a term occurring multiple times
in a document as 1 + log (1 + log (tftd)). To ensure that terms occurring at
least once in a document get boosted, the approach adds a fixed component
δ, following BM25+. These parts are combined into the TF component using
tftd/(1− b+ b · (Ld/Lavg)). The same IDF component as in BM25+ is used.

3 Experiments

Our experiments were conducted using Anserini (v0.6.0) on Java 11 to create
an initial index, and subsequently using relational databases for rapid prototyp-
ing, which we dub “OldDog” after Mühleisen et al. [6]; following that work we
use MonetDB as well. Evaluations with Lucene (default) and Lucene (accurate)
were performed directly in Anserini; the latter was based on previously-released
code that we updated and incorporated into Anserini.5 The inverted index was
exported from Lucene to OldDog, ensuring that all experiments share exactly

5 http://searchivarius.org/blog/accurate-bm25-similarity-lucene

Which BM25 Do You Mean? 5

Table 2. Retrieval effectiveness.

Robust04 Core17 Core18

AP P@30 AP P@30 AP P@30

Robertson et al. [8] .2526 .3086 .2094 .4327 .2465 .3647
Lucene (default) .2531 .3102 .2087 .4293 .2495 .3567
Lucene (accurate) .2533 .3104 .2094 .4327 .2495 .3593
ATIRE .2533 .3104 .2094 .4327 .2495 .3593
BM25L .2542 .3092 .1975 .4253 .2501 .3607
BM25+ .2526 .3071 .1931 .4260 .2447 .3513
BM25-adpt .2571 .3135 .2112 .4133 .2480 .3533
TFl◦δ◦p×IDF .2516 .3084 .1932 .4340 .2465 .3647

the same document processing pipeline (tokenization, stemming, stopword re-
moval, etc.). While exporting the inverted index, we precalculate all k

′

1 values
for BM25-adpt as suggested by Lv and Zhai [3]. As an additional verification
step, we implemented both Lucene (default) and Lucene (accurate) in OldDog
and compared results to the output from Anserini. We are able to confirm that
the results are the same, setting aside unavoidable differences related to floating
point precision. All BM25 variants are then implemented in OldDog as minor
variations upon the original SQL query provided in Mühleisen et al. [6]. The
term-specific parameter optimization for the adpt variant was already calcu-
lated during the index extraction stage, allowing us to upload the optimal (t, k)
pairs and directly use the term-specific k values in the SQL query. The advan-
tage of our experimental methodology is that we did not need to implement a
single new ranking function from scratch. All the SQL variants implemented for
this paper can be found on GitHub.6

The experiments use three TREC newswire test collections: TREC Disks
4 and 5, excluding Congressional Record, with topics and relevance judgments
from the TREC 2004 Robust Track (Robust04); the New York Times Annotated
Corpus, with topics and relevance judgments from the TREC 2017 Common
Core Track (Core17); the TREC Washington Post Corpus, with topics and rele-
vance judgments from the TREC 2018 Common Core Track (Core18). Following
standard experimental practice, we assess ranked list output in terms of average
precision (AP) and precision at rank 30 (P@30). The parameters shared by all
models are set to k1 = 0.9 and b = 0.4, Anserini’s defaults. The parameter δ is
set to the value reported as best in the corresponding source publication. Table 2
presents the effectiveness scores for the implemented retrieval functions on all
three test collections.

All experiments were run on a Linux desktop (Fedora 30, Kernel 5.2.18,
SELinux enabled) with 4 cores (Intel Xeon CPU E3-1226 v3 @ 3.30GHz) and 16
GB of main memory; the MonetDB 11.33.11 server was compiled from source
using the --enable-optimize flag. Table 3 presents the average retrieval time

6 https://github.com/Chriskamphuis/olddog

6 C. Kamphuis et al.

Table 3. Average retrieval time per topic in ms: Anserini (top) and OldDog (bottom).

robust04 core17 core18

Lucene (default) 52 111 120
Lucene (accurate) 55 115 123

Robertson et al. [8] 158 ± 25 703 ± 162 331 ± 96
Lucene (default) 157 ± 24 699 ± 154 326 ± 90
Lucene (accurate) 157 ± 24 701 ± 156 324 ± 88
ATIRE 157 ± 24 698 ± 159 331 ± 94
BM25L 158 ± 25 697 ± 160 333 ± 96
BM25+ 158 ± 25 700 ± 160 334 ± 96
BM25-adpt 158 ± 24 700 ± 157 330 ± 92
TFl◦δ◦p×IDF 158 ± 24 698 ± 158 331 ± 96

per topic in milliseconds (without standard deviation for Anserini, which does
not report time per topic). MonetDB uses all cores for both inter- and intra-query
parallelism, while Anserini is single-threaded.

The observed differences in effectiveness are very small and can be fully at-
tributed to variations in the scoring function; our methodology fixes all other
parts of the indexing pipeline (tag cleanup, tokenization, stopwords, etc.). Both
an ANOVA and Tukey’s HSD show no significant differences between any vari-
ant, on all test collections. This confirms the findings of Trotman et al. [11]:
effectiveness differences are unlikely an effect of the choice of the BM25 variant.
Across the IR literature, we find that differences due to more mundane settings
(such as the choice of stopwords) are often larger than the differences we observe
here. Although we find no significant improvements over the original Robertson
et al. [8] formulation, it might still be worthwhile to use a variant of BM25 that
avoids negative ranking scores.

Comparing Lucene (default) and Lucene (accurate), we find negligible differ-
ences in effectiveness (contrary to ‘popular opinion’). However, the differences
in retrieval time are also negligible, which calls into question the motivation be-
hind the original length approximation. Currently, the ranking function needs
to be defined during index time; changing to the accurate BM25 implementa-
tion would allow for different ranking functions to be swapped at query time, as
no information would be discarded during indexing. We therefore suggest that
Lucene might benefit from storing exact document lengths.

4 Conclusions

In summary, this work describes a double reproducibility study—we method-
ologically validate the usefulness of databases for IR prototyping claimed by
Mühleisen et al. [6] and performed a large-scale study of BM25 to confirm the
findings of Trotman et al. [11]. Returning to our original motivating question
regarding the multitude of BM25 variants: “Does it matter?”, we conclude that
the answer appears to be “no, it does not”.

Which BM25 Do You Mean? 7

5 Acknowledgements

This work is part of the research program Commit2Data with project number
628.011.001, which is (partly) financed by the NWO. Additional support was
provided by the Natural Sciences and Engineering Research Council (NSERC)
of Canada.

References

1. Asadi, N., Lin, J.: Effectiveness/efficiency tradeoffs for candidate generation in
multi-stage retrieval architectures. In: Proceedings of the 36th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Re-
trieval (SIGIR 2013). pp. 997–1000. Dublin, Ireland (2013)

2. Clancy, R., Ferro, N., Hauff, C., Lin, J., Sakai, T., Wu, Z.Z.: Overview of the 2019
Open-Source IR Replicability Challenge (OSIRRC 2019). In: Proceedings of the
Open-Source IR Replicability Challenge (OSIRRC 2019) at SIGIR 2009. CEUR
Workshop Proceedings, vol. Vol-2409. Paris, France (2019)

3. Lv, Y., Zhai, C.: Adaptive term frequency normalization for BM25. In: Proceed-
ings of the 20th ACM International Conference on Information and Knowledge
Management (CIKM 2011). pp. 1985–1988. Glasgow, Schotland (2011)

4. Lv, Y., Zhai, C.: Lower-bounding term frequency normalization. In: Proceedings
of the 20th ACM International Conference on Information and Knowledge Man-
agement (CIKM 2011). pp. 7–16. Glasgow, Scotland (2011)

5. Lv, Y., Zhai, C.: When documents are very long, BM25 fails! In: Proceeding of
the 34th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2011). pp. 1103–1104. Beijing, China (2011)

6. Mühleisen, H., Samar, T., Lin, J., de Vries, A.: Old dogs are great at new tricks:
column stores for IR prototyping. In: Proceedings of the 37th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR 2014). pp. 863–866. Gold Coast, Australia (2014)

7. Robertson, S., Zaragoza, H.: The probabilistic relevance framework: BM25 and
beyond. Foundations and Trends in Information Retrieval 3(4), 333–389 (2009)

8. Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M., Gatford, M.: Okapi
at TREC-3. In: Proceedings of the 3rd Text Retrieval Conference (TREC-3). pp.
109–126. Gaithersburg, Maryland, USA (1994)

9. Rousseau, F., Vazirgiannis, M.: Composition of TF normalizations: New insights on
scoring functions for ad hoc IR. In: Proceedings of the 36th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR 2013). pp. 917–920. Dublin, Ireland (2013)

10. Trotman, A., Jia, X.F., Crane, M.: Towards an efficient and effective search en-
gine. In: SIGIR 2012 Workshop on Open Source Information Retrieval. pp. 40–47.
Portland, Oregon, USA (2012)

11. Trotman, A., Puurula, A., Burgess, B.: Improvements to BM25 and language mod-
els examined. In: Proceedings of the 2014 Australasian Document Computing Sym-
posium (ADCS ’14). pp. 58–66. Melbourne, Australia (2014)

