
Scaling Populations of a Genetic Algorithm for Job Shop
Scheduling Problems using MapReduce

Di-Wei Huang
Department of Computer Science

University of Maryland
dwh@cs.umd.edu

Jimmy Lin
iSchool

University of Maryland
jimmylin@umd.edu

ABSTRACT
Inspired by Darwinian evolution, a genetic algorithm (GA)
approach is one of the popular heuristic methods for solving
hard problems, such as the Job Shop Scheduling Problem
(JSSP), which is one of the hardest problems where there
lacks efficient exact solutions. It is intuitive that the pop-
ulation size of a GA may greatly affect the quality of the
solution, but it is unclear how a large population helps in
finding good solutions. In this paper, a GA is implemented
to scale the population using MapReduce, a framework run-
ning on a cluster of computers that aims to provide large-
scale data processing. The experiments are conducted on a
cluster of 414 machines, and population sizes up to 107 are
inspected. It is shown that larger population sizes not only
tend to find better solutions, but also require fewer genera-
tions. It is clear that when dealing with a hard problem like
JSSP, an existing GA can be improved by scaling up popula-
tions, whereby MapReduce can handle massive populations
efficiently within reasonable time.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCE—Problem Solving, Control Methods, and Search

[Heuristic methods, Scheduling]; D.1.3 [Software]: PRO-
GRAMMING TECHNIQUES— Concurrent Programming

[Distributed programming]

Keywords
Job shop scheduling, genetic algorithms, MapReduce

1. INTRODUCTION
In solving hard problems where there lacks efficient exact

solutions, heuristic approaches, including genetic algorithms
(GAs) [5], simulated annealing [1], and tabu search [9], have
become popular alternatives. Among them, GAs can be eas-
ily parallelized to scale its computing ability because of its
intrinsic parallelism, and hence offer great potential toward
solving hard problems. GAs represent potential solutions by
strings of symbols, or linear chromosome, and simulate the
process of natural selection, crossover, and mutation among
a population of chromosomes, as inspired by Darwinian evo-
lution. Fitnesses of chromosomes are assessed based on the
quality of the solutions they represent, and the fitter chro-
mosomes are given higher probability of survival and repro-
duction. In this manner, a good solution is likely to be
evolved after a number of generations.

The emergence of the MapReduce framework [6] provides
new opportunities to empower GAs with the ability to han-
dle large populations (e.g., millions of individuals). Re-
sponding to the need to process huge volumes of data over
the growing Internet, MapReduce was designed to support
parallel large-scale data processing on a cluster of commod-
ity hardware, which is also known as cloud computing. It
aims to provide seamless scalability such that as more ma-
chines are plugged into the cluster, the computing capability
grows almost linearly. As shown in Figure 1, the framework
consists of two types of components: the mappers and the
reducers, which execute map and reduce tasks by invoking
user-defined map and reduce functions, respectively. Each
mapper and reducer can be located on separate machines.
In a MapReduce job, each mapper processes a portion of
the input data in the form of key-value pairs, where each
pair is sent as input to the map function. The map func-
tion produces zero or more intermediate key-value pairs.
These intermediate data are then shuffled, sorted, and sent
to the reducers. How these intermediate data are dispatched
is controlled by another user-defined component called the
partitioner. The reducers process the intermediate data and
output key-value pairs as the final results. The intermedi-
ate data sent to a reducer are aggregated and sorted by the
keys, where the reduce function is called once for every key.
As proposed in [18], GAs can be fitted into this framework
by computing each generation as a separate MapReduce job.
Since MapReduce can handle input data of large sizes (e.g.,
terabytes), it is possible to encode the population of GAs as
the input/output data, and benefit from a large population.

To assess the ability of GAs with large populations, the
Job Shop Scheduling Problem (JSSP) is chosen as the tar-
get problem to be solved. It has drawn much attention not
only for its practical applications in operation research, but
also for its computational complexity. The objective is to
schedule |J | jobs on |M | machines such that the makespan,
i.e., the overall time needed to complete all jobs, is mini-
mized. Each job consists of an ordered list of operations,
each of which requires being processed by a certain machine
for a certain uninterrupted duration. The ordering of oper-
ations represents precedences or dependencies among them.
Typically, each job contains |M | operations requiring dif-
ferent machines. Two constraints must be satisfied when
scheduling an operation of duration d at time t: (1) all
precedent operations are completed before t; (2) no other
operations are scheduled to the required machine from t to
t+d. The Traveling Salesman Problem (TSP), a well known
strong NP-complete problem, is a special case of JSSP [16].

Mapper Mapper Mapper Mapper

Reducer Reducer Reducer Reducer

.....

.....

Input data (key-value pairs).....

Output data (key-value pairs)

.....

Figure 1: The architecture of the MapReduce frame-
work

Therefore, JSSP is much harder than TSP and is among the
hardest combinatorial optimization problems. Since there
are no efficient exact solutions to date, a heuristic approach
is needed.

In this study, a GA with massive populations for solv-
ing JSSP is implemented using MapReduce. The GA is
non-trivial in that it includes encoding/decoding chromo-
somes, building schedules, performing local searches, han-
dling tournament-base selections, and processing non-random
crossover. As it has been suggested by theoretical research [7,
19] that GAs with large population sizes are advantageous
in solving hard problems, our GA for JSSP is given mas-
sive populations and run on a cluster of 414 machines. The
experimental results show the effects of having massive pop-
ulations, and confirm that large populations indeed help in
finding good solution. Another experiment is done to show
the execution time decreases as the size of a cluster grows.

2. ALGORITHMS
This section describes in detail the algorithms used in this

paper and how they are implemented with MapReduce.

2.1 Representation
The operation-based representation is adopted [4, 3] to

encode and decode the chromosomes. Consider a set of jobs
J = {0, 1, 2, ...}, where each job j ∈ J contains Nj opera-
tions (j = 0, 1, ..., |J |−1). A chromosome contains

∑

j∈J
Nj

genes that are job names (i.e., members of J), where each
job j appears exactly Nj times. The job name appearing at
each gene represents an operation belongs to the job, where
the actual operation is determined by the order of occur-
rence of that job name, i.e., the kth occurrence of job j

represents the kth operation of j. For example, with J = 2
and N0 = N1 = 3, a chromosome may look like:

[0, 0, 1, 1, 0, 1]

where the first operation of job 0 comes first, followed by the
second operation of job 0, followed by the first operation
of job 1, and so on. Notice that any permutations of the
genes will always yield valid schedules if the operations are
added to the schedule in the order of their appearance in the
chromosome.

The data structure used to store an individual of the GA
is shown in Figure 2. This key-value structure is used as the
input, the intermediate, and the output data of MapReduce.
The key part contains an ID ∈ [0, 1) assigned to each indi-
vidual uniformly at random, and the value part contains a
makespan value, a generation value, and the chromosome.
The makespan value stores the length of the schedule im-
plied by the chromosome, that is, the length of time between
the execution of the earliest operation and the completion of
the latest one. The fitness can be evaluated directly through
the makespan value, where a lower makespan value makes
a fitter individual. The generation value facilitates tracing
of evolution by storing the number of generation descended
from the original population. Finally, the chromosome is
stored as an array of integers.

ID Makespan ChromosomeGeneration

Key Value

double int int int[]

Figure 2: The key-value structure to store an indi-
vidual

2.2 The genetic algorithm
The main GA is implemented in the MapReduce frame-

work where each generation of the GA is done by a Map-
Reduce job. The data structure shown in Figure 2 is used
as the input and output key-value pairs of both the map
and reduce phase. The map phase evaluates the fitnesses of
the population, where the schedules are built according to
the chromosome, and local search is performed to find the
makespans. The fittest individual is recorded. The parti-
tioner dispatches the resulting individuals to random reduc-
ers by referring to their randomly generated IDs. The reduce
phase processes selection and crossover, and produces a new
generation population as the output. After the new popu-
lation has been generated, a new MapReduce job is created
for this new generation. This process is continued until a
satisfactory solution, if not optimal, to the JSSP is found.

2.2.1 Mapper: Fitness Evaluation
The algorithm for the map phase is shown in Algorithm 1,

which aims at evaluating the fitnesses (i.e., the makespans)
of an individual. The map function is invoked once per in-
dividual in parallel on multiple mappers. The mapper first
obtains an ordered list of operations by decoding the chro-
mosome. A schedule is then built based on the list, where
each job in the list is placed on the schedule at the earliest
possible time. A local search is performed to fine-tune the
resulting schedule [14]. First, the critical path of the sched-
ule is identified as blocks of continuous operations. For each
block, if swapping the first two operations or the last two
operations yields a shorter makespan then accept it, oth-
erwise undo the swapping. Notice that swapping the first
two operations or the last two operations will not improve
the schedule, and thus can be omitted. Once a new sched-
ule is obtained by swapping operations, local search is per-
formed again on the new schedule until no improvement can
be made. The mapper then outputs the individual with the
makespan updated.

In addition to evaluating and outputting individuals, each
mapper keeps track of the best individual it has seen. At the
end of the mapper’s lifecycle, the best individual is emitted
with the ID set to a special value null.

Algorithm 1 The map function of a single generation of
the GA. An ID is required as the key, and an individual is
required as the value, as shown in Figure 2.

function map(key, value)

begin

opList← decode(value.chromosome);
for each operation op in opList do

comment: add op to schedule at the earliest available spot
schedule.add(op); od

schedule.local search()
value.makespan← schedule.getMakespan();
output(key, value);
if best.makespan > value.makespan

then best← value; fi

end

finalization

output(null, best);

2.2.2 Partitioner
The partitioner assigns the individuals emitted from the

mappers to the reducers according to the IDs, as charac-
terized by Equation 1, where h(·) is a hash function and
r is the number of reducers. The null IDs are always sent
to the first reducer (i.e., reducer #0). The first reducer is
therefore responsible for comparing the best individual from
different mappers, and determining the best of the best indi-
vidual across the whole population. Otherwise, normal IDs
are used as input to a hash function to determine which re-
ducer to send to. Since IDs are generated at random, each
individual is sent to a random reducer.

reducer ←

{

0, if ID = null

h(ID)%r, otherwise
(1)

2.2.3 Reducer: Selection and Reproduction
The algorithm for the reduce phase is shown in Algo-

rithm 2, which selects good individuals and produces de-
scendants by crossing over their chromosomes. The reduce

function is invoked once per individual ID in parallel on mul-
tiple reducers. The first reducer, i.e., the reducer #0, which
receives the best individuals from each mapper, records the
best among them. This is the best solution found in this
generation of the GA. In the following, an approximation
of tournament selection is adopted, in which s individuals
are chosen randomly from the population and the fittest one
among them is selected for crossover. In this study, s is set
to 5 empirically. Since the individuals are sent to the re-
ducers at random, and their IDs by which the reducers sort
them are also random, their order in the input sequence to
a reducer is arbitrary and without regard to the fitnesses.
It is then reasonable to use a sliding window (indicated by
the variable window in Algorithm 2) of size s, go through
the input sequence of key-value pairs, and select the fittest
one within the window, to approximate the random choices

of s individuals in the tournament selection. Notice that
since the window has to wrap around when it reaches the
end of the input sequence, the first s individuals have to be
buffered (indicated by the variable firstWindow) for pro-
cessing after the reducer has seen all individuals.

When the winner of the tournament-based selection is de-
termined, it is used in the reproduction and crossover pro-
cedure to generate a new descendant. That is, the chro-
mosomes of the current and the previous winners are taken
as the first and the second parents in the crossover, respec-
tively. To preserve characteristics of the parents, a crossover
that maintains partially temporal relations among opera-
tions (i.e., genes) is needed. One of the crossovers proposed
in [15] is adopted (i.e., the “crossover 4”). The chromosomes
of the first and the second parent are decoded as two lists
(denoted as L1 and L2, respectively) of operations, and a
continuous portion L′

1 of L1 is chosen at random. A new
individual, kid, is created with a random ID and a list (de-
noted as L) of operations, which is initially identical to L2.
L′

1 is then inserted to L at the same starting position it
appears in L1, followed by a sweep through L to remove
operations contributed by L2 that exist in L′

1. Finally, the
chromosome of kid is updated to encode L.

Mutation with small probability is performed after the
crossover. Three positions of distinct symbols are randomly
selected from kid’s chromosome, and one of the six permu-
tations among them is applied uniformly at random. As
mentioned in [12], the importance of mutation recedes as
the population grows. Since we are more concerned with
large population sizes, the probability of mutation is set to
a small value of 1%.

Algorithm 2 The reduce function of a single generation of
the GA.
function reduce(key, values)

initialization

count← 0; s← 5;
begin

if key = null then best← argminv∈values v.makespan;
print(best); return; fi

for each value in values do

if count < s

then window[count] ← value;
firstWindow[count]← value;

else window[count % s]← value;
reproduction(); fi

count← count + 1; od

where

proc reproduction() ≡
prevWinner← winner;
winner ← argmini∈window i.makespan;
kid.chromosome← crossover(prevWinner,winner);
if random() < 0.01 then kid.mutate(); fi

kid.makespan← −1;
kid.generation← winner.generation+ 1;
output(random(), kid); .

end

finalization

for i← 0 to s− 1 do

window[(count + i) % s]← firstWindow[i];
reproduction(); od

2.3 Initialization
Initialization of the population is done by a separate Map-

Reduce job without reducers. Although many of the previ-
ous studies use random initial populations, they may require
more generations to find a good solution. This increases the
overhead of MapReduce, because each MapReduce job run-
ning a generation requires a certain amount of time to ini-
tiate the mappers and the reducers, and to shuffle and sort
the intermediate data over the network. For this reason, a
good initial population is generated as suggested in [8, 15],
which is outlined in Algorithm 3. The individuals generated
in this manner always yield active schedules, in which no
operation can be scheduled earlier without delaying some
other operations or breaking a precedence constraint. The
optimal solution of JSSP is always an active schedule.

Algorithm 3 The map function to generate initial popula-
tion of size N .
function map(key, value)

J : the set of all jobs
N : the target size of population
numOp: the total number of operations
begin

for i← 1 to N do

schedule.clear();
kid.chromosome← {};
kid.generation← 0;
comment: C: the set of schedulable operations
C ← {the 1st operation of job j, ∀j ∈ J};
comment: op.est: the earliest schedulable time for op

op.est← 0, ∀op ∈ C;
for k ← 1 to numOp do

p← argminop∈C{op.est+ op.processingT ime};
G← {op ∈ C s.t. op.machine = p.machine,

and op.est < p.est+ p.processingT ime};
q ← G.randomElement();
schedule.add(q);
kid.chromosome = kid.chromosome+ q;
C.remove(q);
C.add(q.nextOperationInJob());
update op.est according to schedule,∀op ∈ C; od

output(random(), kid); od

end

3. EXPERIMENTS
The JSSPs listed in Table 1 are tested. This problem set

can be obtained from the OR-library [2]. These problems
are by no means an exhaustive list of all available problems,
but they are chosen to represent various difficulty levels,
and because their optimal solutions are known. FT10 and
FT20 were first proposed by [13] and have become standard
benchmark problems. LA40 [11], a somewhat tricky prob-
lem, is concerned with scheduling 15 jobs on 15 machines.
The hardest problem, SWV14 [17], consists of 50 jobs where
intensive contention for machines can be expected. This
study does not put emphasis on proposing innovative al-
gorithms or on outperforming other solutions to JSSP, but
shows the effects of a GA running large populations in par-
allel, as a potential enhancement to existing solutions. Two
experiments are conducted. The first experiment shows how

population sizes affect the GA in approaching a good solu-
tion; the second one shows how the running time can be
reduced by scaling the size of the cluster.

Table 1: Profiles of JSSP instances
Name #Jobs #Machines Optimal Makespan

FT10 10 10 930
FT20 20 5 1165
LA40 15 15 1222
SWV14 50 10 2968

3.1 Effects of the Population Size
The first experiment was run on a cluster provided by

Google and managed by IBM, shared among a few universi-
ties as part of NSF’s CLuE (Cluster Exploratory) Program
and the Google/IBM Academic Cloud Computing Initiative.
The cluster used in our experiments contained 414 physical
nodes; each node has two single-core processors (2.8 GHz),
4 GB memory, and two 400 GB hard drives. The entire
software stack (down to the operating system) was virtu-
alized; each physical node runs one virtual machine host-
ing Linux. Experiments used Java 1.6 and Hadoop version
0.20.1. Population sizes p = 105, 106, and 107 were run with
1000 mappers and 100 reducers.

The results are shown in Figure 3. As the population size
increases, fewer generations are required to converge. Par-
ticularly in Figure 3(a), only 4 generations are required to
reach the optimal makespan when p = 107, while 18 and 26
generations are required when p = 106 and 105, respectively.
The same observation can be made in Figure 3(b), where
19 generations are required to reach the optimal makespan
when p = 107, while 25 are required by p = 106. In Fig-
ure 3(c), although both experiments with p = 105 and 106

converge at the same local minimum, the latter approaches
it with fewer generations. Since MapReduce incurs over-
head for every generation, it is desirable to find solutions
with fewer generations. This can be achieved by using a
larger population as shown in the results.

In addition, GAs with larger populations are more likely
to find good solutions. In Figure 3(b), the experiment with
p = 105 converges at a local minimum 1178, while the ones
with larger population sizes yield the optimal makespan
of 1165. Similarly, in Figure 3(c), both experiments with
p = 105 and 106 converge at 1252, while a better makespan
1233 is found by scaling the population size to 107. In Fig-
ure 3(d), however, the effects of increasing population sizes
are not phenomenal. The reason may be that this problem
is too hard to be solved within a few tens of generations,
but more generations incur more overhead in MapReduce.
More experiments with p > 107 on a larger cluster have to
be done to further investigate this issue.

3.2 Effects of the Cluster Size
This experiment runs the GA on Amazon’s Elastic Com-

pute Cloud (EC2) clusters of different sizes, and the comple-
tion time for each generation is observed. The GA is given a
population of 104 individuals to solve LA40. For each clus-
ter size, the GA is run for 10 generations, and the average
execution times and the standard deviations are plotted in
Figure 4. The execution time for a cluster of one machine is

 930

 940

 950

 960

 970

 980

 990

 0 5 10 15 20 25 30

M
ak

es
pa

n

Generation

(a) FT10

p = 105

p = 106

p = 107

optimal

 1160
 1170
 1180
 1190
 1200
 1210
 1220
 1230
 1240
 1250
 1260
 1270

 0 5 10 15 20 25 30

M
ak

es
pa

n

Generation

(b) FT20

p = 105

p = 106

p = 107

optimal

 1220

 1240

 1260

 1280

 1300

 1320

 1340

 0 5 10 15 20 25 30 35 40

M
ak

es
pa

n

Generation

(c) LA40

p = 105

p = 106

p = 107

optimal

 2900

 3000

 3100

 3200

 3300

 3400

 3500

 3600

 3700

 3800

 0 5 10 15 20 25 30 35 40 45
M

ak
es

pa
n

Generation

(d) SWV14

p = 105

p = 106

p = 107

optimal

Figure 3: The results of GA with various population sizes p for the problems (a) FT10, (b) FT20, (c) LA40,
and (d) SWV14

shown as a baseline for comparison with other clusters with
multiple machines. As the number of machine instances in
the cluster increases, the running time decreases as a result
of increasing computing power. It is therefore beneficial to
increase the cluster size when running GAs with large pop-
ulation sizes.

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 r
un

tim
e

pe
r

ge
ne

ra
tio

n
(s

ec
on

ds
)

Machine instances

Figure 4: The effects of cluster size

For comparison, a typical profile of execution time for one
generation is listed in Table 2. The GA is given a popula-
tion of size 104 to solve LA40. Only 1 mapper and 1 reducer
are used. The total job completion time and the cumula-
tive running time for the map and the reduce functions are
recorded. Most of the execution time (i.e., ≈ 95%) is spent
on running the map and the reduce functions, while the re-
maining portion (≈ 5%) of the time is labeled as “overhead”.

Table 2: A typical profile of execution time when
running the GA for one generation to solve LA40,
using one mapper and one reducer. The population
size is 104.

Job Completion Time map() reduce() Overhead

356.067 (seconds) 331.155 7.191 17.721
100% 93.00% 2.02% 4.98%

4. CONCLUSION
In this study, a GA for JSSP is implemented using Map-

Reduce, and experiments are run with various population
sizes (i.e., up to 107) and on clusters of various sizes. Our
implementation of GA with MapReduce is based on [18],
while adding more GA features to cope with real-world prob-
lems, including local search, non-random crossover, and non-
random initial populations. The chromosome representation
and the schedule evaluation for JSSP also increase the com-
plexity.

The effects of large populations are prominent, in that a
larger population tends not only to find a better solution,
but also to converge with fewer generations. The results
confirm what was mentioned in [10, p. 198-200], but our ex-
periments consist of a much harder problem and much larger
populations. Moreover, having fewer generations is benefi-
cial regarding the overall MapReduce overhead. Because
for each run of MapReduce there exists certain initializa-
tion/shuffling overhead, having fewer generation, and hence

fewer iterations of MapReduce, reduces the overall overhead.
The effects of cluster sizes is also presented, which show the
speedup of execution time by increasing nodes in the cluster.
This may serve as a rough guideline regarding what cluster
size to use and what speedup to expect.

In general, GAs with massive populations provide a new
possibility toward solving hard problems, and this can be
achieved by using MapReduce running on a cluster of com-
modity hardware.

Acknowledgements
This work was supported in part by Google and IBM, via
the Academic Cloud Computing Initiative (ACCI).

5. REFERENCES
[1] E. Aarts and J. Korst. Simulated annealing and

Boltzmann machines. John Wiley & Sons New York,
1989.

[2] J. Beasley. OR-Library: Distributing test problems by
electronic mail. Journal of the Operational Research

Society, 41(11):1069–1072, 1990.

[3] C. Bierwirth, D. Mattfeld, and H. Kopfer. On
permutation representations for scheduling problems.
Parallel Problem Solving from Nature—PPSN IV,
pages 310–318, 1996.

[4] R. Cheng, M. Gen, and Y. Tsujimura. A tutorial
survey of job-shop scheduling problems using genetic
algorithms–I. Representation. Computers and

Industrial Engineering, 30(4):983–997, 1996.

[5] L. Davis et al. Handbook of genetic algorithms.
Citeseer, 1991.

[6] J. Dean and S. Ghemawat. MapReduce: a flexible data
processing tool. Commun. ACM, 53(1):72–77, 2010.

[7] S. Droste, T. Jansen, and I. Wegener. Upper and
lower bounds for randomized search heuristics in
black-box optimization. Theory of Computing

Systems, 39(4):525–544, 2006.

[8] B. Giffler and G. Thompson. Algorithms for solving
production-scheduling problems. Operations Research,
8(4):487–503, 1960.

[9] F. Glover and B. Melián. Tabu search. Metaheuristic

Procedures for Training Neutral Networks, 36:53–69,
2006.

[10] J. Koza. Genetic programming: on the programming of

computers by means of natural selection. The MIT
press, 1992.

[11] S. Lawrence. Resource constrained project scheduling:
an experimental investigation of heuristic scheduling
techniques (Supplement). Ph.D. Thesis Graduate

School of Industrial Administration, Carnegie-Mellon

University, Pittsburgh, PA, 1984.

[12] S. Luke and L. Spector. A comparison of crossover
and mutation in genetic programming. Genetic

Programming, 97:240–248, 1997.

[13] J. Muth and G. Thompson. Industrial scheduling.
Prentice-Hall, 1963.

[14] E. Nowicki and C. Smutnicki. A fast taboo search
algorithm for the job shop problem. Management

Science, 42(6):797–813, 1996.

[15] B. Park, H. Choi, and H. Kim. A hybrid genetic
algorithm for the job shop scheduling problems.

Computers & industrial engineering, 45(4):597–613,
2003.

[16] S. Reddi and C. Ramamoorthy. On the flow-shop
sequencing problem with no wait in process.
Operational Research Quarterly, 23(3):323–331, 1972.

[17] R. H. Storer, S. D. Wu, and R. Vaccari. New search
spaces for sequencing problems with application to job
shop scheduling. Management Science,
38(10):1495–1509, October 1992.

[18] A. Verma, X. Llorà, D. Goldberg, and R. Campbell.
Scaling genetic algorithms using MapReduce.
Proceedings of the 2009 Ninth International

Conference on Intelligent Systems Design and

Applications, pages 13–18, 2009.

[19] C. Witt. Population size versus runtime of a simple
evolutionary algorithm. Theoretical Computer Science,
403(1):104–120, 2008.

