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Abstract

We present RecService, a distributed real-time graph
processing engine that drives billions of recommenda-
tions on Twitter. Real-time recommendations are framed
in terms of a user’s social context and real-time events in-
cident on that social context, generated from ad hoc point
queries and long-lived standing queries. Results form the
basis of downstream processes that power a variety of
recommendation products. A noteworthy aspect of the
system’s design is a partitioning scheme whereby ma-
nipulations of graph adjacency lists are local to a cluster
node. This eliminates cross-node network traffic in query
execution, enabling horizontal scalability and avoiding
“hot spots” caused by vertices with large degrees.

1 Introduction

Twitter users wish to stay informed about the world, and
the goal of the company’s recommendation products is to
notify them about what’s happening in real time. These
recommendations identify relevant accounts, Tweets,
and other content in a personalized manner, delivered via
a variety of mechanisms, including emails and push no-
tifications to users’ mobile devices. In this paper, we
present RecService, a distributed real-time graph pro-
cessing engine that powers billions of recommendations
in production today.

RecService frames recommendations in terms of two
central constructs: a user’s social context and real-time
events incident on the user’s social context. A simpli-
fied description of a user’s social context is the set of
accounts that the user follows (more details later). Real-
time events, which we also refer to as engagements, in-
clude Tweets, likes, replies, and other Twitter “verbs”
that characterize different types of user actions. Rec-
Service is designed to power two types of queries: (1) ad
hoc “point” queries that reference a particular social con-
text and events incident on it, and (2) long-lived stand-

ing queries that trigger when some property of real-time
events and a user’s social context is satisfied.

RecService is a distributed real-time graph process-
ing engine at Twitter that is provided to teams within
the company as a service: on top of RecService, internal
customers build applications whose output powers down-
stream products. This paper describes the architecture of
RecService and a number of applications that have been
built on top of it. We view our work as having two main
contributions: First, framing the real-time recommenda-
tion problem as intersections between social context and
real-time events is novel, and we provide examples of
how such a formulation supports different ways to gener-
ate recommendations. Second, we describe a distributed,
horizontally-scalable graph-processing engine designed
to handle point and standing queries organized around
lookup, traversal, and intersection of adjacency lists. A
noteworthy aspect of our design is that all graph manipu-
lations are performed on a particular cluster node; that is,
we avoid all cross-node network traffic and the shuffling
of graph edges. This partitioning scheme is specifically
designed to avoid “hot spots” that arise from activity on
graph vertices with large degrees.

2 Motivation and Problem Formulation

Twitter has substantial experience building and deploy-
ing graph-based recommendation engines. We can iden-
tify five distinct systems, listed in roughly chronologi-
cal order in Table 1, summarizing their most salient fea-
tures. Perhaps the single biggest lesson we’ve learned
over the years is that recommendations delivered in real
time, based on the dynamic state of the graph (i.e., real-
time signals), are highly engaging (denoted by the “RT”
column)—compared to Cassovary [3], our first system
that computed recommendations in batch on static graph
snapshots. Our first foray into such real-time systems,
MagicRecs [4], can be thought of as a system hard-coded
to execute a single standing query and hence highly in-



System RT? Algorithm Impl. Scaling
Cassovary [3] no random walks custom up
RealGraph [1] no random walks Hadoop out
MagicRecs [4] yes hard-coded motif custom out
GraphJet [11] yes random walks custom up
RecService yes intersections custom out

Table 1: Comparisons between several generations of
graph-based recommendation systems at Twitter.
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Figure 1: Schematic illustration of social context (A→ B
edges) and real-time events (B→C edges).

flexible. It paved the way for two systems that are still
in production today: GraphJet [11] and RecService, the
focus of this paper. The former focuses on random-walk
style algorithms, whereas RecService recommendations
are based on traversals and intersections of adjacency
lists, a generalization of MagicRecs. Other salient char-
acteristics of interest: We have tried building systems on
top of Hadoop [1], and general data processing platforms
remain involved in pre-processing today, but custom in-
frastructure provides a better solution for our needs. Fi-
nally, Twitter has experimented with both scale-up as
well as scale-out architectures; consistent with McSherry
et al. [9], another lesson we learned is that scale-up solu-
tions should not be readily dismissed.

System performance (e.g., latency and through-
put) and output quality (e.g., relevance) are both impor-
tant in recommendation products. Production algorithms
at Twitter comprise two main phases: candidate genera-
tion and refinement. The first identifies a pool of candi-
dates that are then further refined: additional processing
involves application of business rules (e.g. don’t notify
users too frequently) and machine-learned models. Final
outputs frequently involve ensembles and draw from dif-
ferent variants as part of ongoing experimentation. The
primary role of RecService (and indeed all the systems
listed in Table 1) is to provide candidate recommenda-
tions to feed downstream pipelines, so we focus only on
system performance in this paper.

A schematic illustration of our real-time context ap-
proach to recommendation with its two central constructs
is shown in Figure 1. Generically, we denote the user for
which we’re making a recommendation A, and the user’s
social context as A to Bi edges, where the Bi’s can be
thought of as the “influencers” of A. In the simplest case
the Bi’s are accounts that user A follows, but in produc-

Figure 2: Example use of social proof.

tion this is slightly more complex as we incorporate en-
gagement metrics to refine a user’s social context (e.g., if
A rarely engages with Tweets from a Bi, it may be pruned
from A’s social context). Real-time events (engage-
ments) are shown as the Bi to C edges: these edges are
typed, capturing activities such as Tweets, likes, replies,
engagements with hashtags and entities, etc. RecService
supports an arbitrary number of real-time graphs, what-
ever can be extracted from logs.

It is worth emphasizing that Figure 1 is drawn
schematically to illustrate how we frame the recommen-
dation problem. In reality, every user is an A (we aim to
make recommendations to everyone); every user is po-
tentially a B (i.e., influences someone) and also a C (in-
volved in some type of activity), although C vertices can
represent other objects such as Tweets, hashtags, etc.

Given this model, we provide two examples of point
queries for generating recommendations:

• Social Proof. Given a specific user Aq and a hashtag C:
who are the people that Aq follows that engaged with
C? We call this “social proof” because these queries
help contextualize the relevance of certain algorithmic
output. For example, Figure 2 shows how such a query
can “explain” personalized trends—in this case, be-
cause people that you follow are also Tweeting about
a particular hashtag.

• Content recommendation. A generalized version of
the social proof query described above can be used to
provide recommendations for different types of con-
tent. For example, what hashtags are a user’s influ-
encers including in their posts? This could provide a
recommendation to explore new content.

Similarly, we provide two examples of recommendation
algorithms based on standing queries:

• Notification of live video broadcasts. We wish to no-
tify users if someone in their social context (i.e., an
influencer) starts a live video stream, in which case
the notified users might want to tune in.

• Replies to engagement. We can notify a user about
replies to Tweets that they have liked from people they
follow. This lets users learn about conversations that
they might be interested in.



3 System Design

Before detailing the architecture of RecService, we de-
scribe a number of assumptions and design choices that
come together to yield a scalable, efficient solution to
real-time context recommendations.

At a high-level, point queries boil down to sequences
of adjacency list lookups, traversals, and intersections.
Our previous system MagicRecs [4] demonstrated that
standing queries translate into graph motif detection,
which can be similarly decomposed into manipulations
of graph adjacency lists. However, MagicRecs was lim-
ited to a specific physical query plan, and with Rec-
Service we aimed to design a more general solution.

To make this problem more tractable, we treat the so-
cial context graph and the real-time event graphs very
differently. A user’s social context (A → Bi edges) is
static but updated periodically via offline computations.
This design choice is based on our observation that social
context evolves slowly enough as to not require real-time
processing. Viewing the Bi’s as influencers of A, influ-
ence grows (or wanes) on a timescale that is slower than
the periodic updates provided to the system. Unlike the
social context, the real-time engagements (Bi→C edges)
are updated at a high velocity; our design requirement
targets O(104) events (graph edges) per second.

Our design partitions the social context across multi-
ple nodes in a distributed architecture but not the real-
time event graphs; that is, they are replicated across all
nodes. There are several reasons for this design: in gen-
eral, the social context graph is larger than the real-time
event graphs. Whereas everyone has influencers, engage-
ments tend to be more sparse. Furthermore, social con-
text grows cumulatively (i.e., influence accumulates over
time), whereas real-time events are transient, since their
value decays (which is the entire point of real-time rec-
ommendations). We can tune memory consumption and
algorithmic quality in a way that allows full replication
of the real-time graphs (more discussion later).

The combination of the above design choices leads to
the most interesting and novel aspect of our architecture:
a partitioning scheme in which all postings intersection
operations are node local. That is, all query operations
related to a user A are completely handled by the clus-
ter node responsible for user A. Specifically, we avoid
all cross-node network traffic, for example, shuffling of
graph adjacency lists (particularly problematic for ver-
tices with large degrees). This ensures horizontal scala-
bility, as we can simply increase the number of partitions
to distribute query load without needing to worry about
network crosstalk. For point queries, we rely on a service
proxy to route the request to the node responsible for user
A. For standing queries, each node computes recommen-
dations for a partition of the user space in parallel.
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Figure 3: Partitioning of the social context.

In more detail, we co-partition the social context graph
and its transpose by A, as shown in Figure 3 (in this case,
we partition even and odd A’s). The co-partitioning of
the graph and its transpose allows easy traversal, both
forward and backward, of the social context. That is,
we can query who influences Aq as well as who Bq in-
fluences. Note that since the social context is computed
offline, graph transposes are easy to compute using any
batch processing framework.

4 System Architecture

The overall architecture of RecService comprises a ser-
vice proxy and a number of query processing nodes.
Each partition of the social context graph is assigned to a
node (see Figure 3). The real-time events are consumed
from Kafka by all nodes. Each query processing node is
replicated to provide robustness. The overall architecture
takes advantage of Zookeeper [5] for service discovery,
partition and replica assignment, and graceful failover.
We adopt standard best practices, some of which are de-
scribed in Leibert et al. [7].

A service proxy provides the external API endpoint for
point queries. The proxy is responsible for dispatching
requests to the node that is responsible for the partition
containing the user Aq. The service proxy also transpar-
ently handles load balancing across replicas, service dis-
covery as nodes fail and are reinitialized, and a number
of common issues associated with distributed systems.
The standing queries are “registered” at all the process-
ing nodes, and the triggering of those queries yields can-
didate recommendations that are written to Kafka, driv-
ing downstream processes in a loosely-coupled manner.
This represents a completely different code and dataflow
path from the point queries.

The architecture of each query processing node is
shown in Figure 4. In the middle we show the core graph
data structures: the social context on the bottom and the
real-time graphs on the top.
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Figure 4: Detail of a query processing node.

4.1 Graph Data Structures

The social context graph is static and computed offline,
via a series of MapReduce jobs from the source-of-truth
follow graph. These jobs deposit the adjacency lists
along with its transpose on HDFS. Each RecService node
periodically checks for a new version and loads the new
graph if necessary. The MapReduce jobs constructing
the social context pre-partition the graph on HDFS, sim-
plifying the bulk load process into RecService. Storage
of the graph data as adjacency lists supports querying by
Aq to retrieve all outgoing edges (corresponding to the in-
fluencers of Aq) as well as by Bq to retrieve all incoming
edges (corresponding to the users influenced by Bq).

The social context graph partitions are stored using
an implementation inspired by cdb, short for “constant
database”, which provides an on-disk associative array
that can be memory mapped, allowing us to swap ver-
sions of the social context atomically. The query perfor-
mance of our implementation is on par with in-memory
hashmaps, but data loading is two orders of magnitude
faster since we do not need to insert key–values pairs
one by one. The MapReduce jobs creating the graph
partitions are orchestrated to write the format needed by
RecService directly.

The real-time events are read from Kafka and also or-
ganized as adjacency lists, maintained using techniques
similar to GraphJet [11], Twitter’s other real-time graph
processing engine. This is handled by the graph updater
in the upper left corner of Figure 4. Note that these edges
are typed, corresponding to different engagements (e.g.,
likes, replies, etc.). Each real-time graph is stored sep-
arately, and the only mode of accessing each of these
graphs is querying by Bq to retrieve all outgoing typed
edges to C’s (i.e., the adjacency lists). Quite explicitly,
we do not store the transpose of the real-time graphs, for
efficiency considerations.

Since the stream of engagement events is endless, we
must bound memory usage. This is managed in a coarse-
grained manner by dividing each graph into temporal
segments with a maximum number of edges. Once a
segment is full, a new segment is created, and the old
segment is dropped (also similar to GraphJet [11]). Con-
ceptually, we are maintaining a moving window of re-
cent events. As discussed in the context of GraphJet, we
have noticed that the value of engagements in providing
high-quality recommendations falls off as the event ages.
Thus, storage management of the real-time graphs is a
balancing act between resource consumption (primarily
memory) and algorithmic quality.

4.2 Query Processing

On the right in Figure 4 is the query processor for point
queries. Each node exposes an internal service API,
which receives dispatches from the service proxy.

Point queries translate into adjacency list lookups,
traversals, and intersections on graph structures de-
scribed above. For example, in the “social proof” query
(see Section 2), the B→C edges are users and the hash-
tags they have engaged with. Given a user Aq and a hash-
tag Ch, the service proxy first dispatches the query to the
node containing the user Aq. The system looks up all the
influencers of Aq and checks if any of them have engaged
with the hashtag Ch by consulting the real-time graph. As
another example, suppose we wish to recommend hash-
tags to a user Ar. The system looks up the top influencers
for Ar and examines the hashtags (i.e., the C’s) that they
have engaged with. This is an intersection operation on
the adjacency lists of the Bi’s, which yields a list of N
potential hashtag recommendations.

The final component of each query node is the execu-
tor for the standing queries (the left side of Figure 4).
After every engagement event is updated in the real-time
graphs, it is dispatched to all registered standing queries.
As an example, we describe the execution of the “live
video broadcast” query (see Section 2), where we want
to notify users of live video streams by their influencers:
For this particular application, a B→C edge represents
a user B who just initiated a live video broadcast C. Each
node receives this engagement event, looks up all the Ai
users that are influenced by the broadcaster B, and writes
these results to a Kafka topic.

This particular application also illustrates how our par-
titioning scheme distributes query load across all pro-
cessing nodes, particularly for “supernodes” with large
vertex degrees. For example, if a highly-popular broad-
caster B (i.e., with millions of followers) begins stream-
ing video, we may need to dispatch notifications to many
users. Since we partition by A, these users are distributed
across all the query processing nodes; the recommenda-



tions are computed in parallel without a single “hot spot”
and written to a Kafka topic.

Note that for both point and standing queries, Rec-
Service provides the initial candidate recommendations.
There is substantial downstream processing beyond the
scope of this paper—refinement by machine-learned
models and the application of business logic—before
recommendations are finally delivered to users.

5 Deployment and Evaluation

Development of RecService began in late 2015 and the
system first went into production in early 2016. Cur-
rently, we logically partition the social context graph into
256 partitions, distributed among 64 physical machines.
For robustness we employ 2× replication, so in total we
have 128 query processing nodes. Each of these ma-
chines are commodity servers with two Intel Xeon pro-
cessors (E5-2620 v2) and 32 GB of memory.

As detailed in Section 4, each query processing node
holds a partition of the social context graph and the real-
time graphs. Memory pressure for the social context
graph can be managed by increasing the number of par-
titions. Memory consumption of the real-time graphs is
managed separately for each type of engagement. For ex-
ample, we store about a day’s worth of hashtag engage-
ments but only about eight hours of engagements asso-
ciated with topic entities extracted from Tweets. These
temporal thresholds are heuristically tuned to meet prod-
uct requirements. Storing more events doesn’t necessar-
ily yield better results, since events age at different rates
in terms of contributions to algorithmic quality.

The real-time graphs are built by reading engagement
events from Kafka. On average, about 12k events per
second are ingested with a peak of about 17k events per
second. The hashtag engagement graph receives around
2.8k edges per second and the topic entities graph re-
ceives around 1.9k edges per second. The median la-
tency between an event being written to Kafka (by an
upstream process) and the corresponding graph edge be-
ing accurately reflected in the real-time graphs is 150ms,
with a 99th percentile latency of 430ms.

At present, the system serves about 20k point queries
per second, with a median and 99th percentile latency
of 2ms and 13ms, respectively. There are currently only
a couple of standing queries in production, although we
have a handful of other prototypes not yet fully deployed.
Once the triggering event is processed, the execution of
standing queries is very similar to point queries in terms
of performance. The latency between an engagement
event arriving in Kafka and the output of standing queries
being written back to Kafka is well under one second.
At present, roughly 450 recommendations per second are
generated by the standing queries.

6 Related Work

Beyond Twitter, there is of course a large body of work
on graph processing, and a proper survey is beyond the
scope of this paper. However, we can divide related
work into two categories at a high level. On the one
hand, there are a number of analytical graph processing
frameworks (see MuCune et al. [8] for a survey). These
are generally focused on efficiently implementing large
traversals on static graphs and do not handle real-time
graph updates for the most part. On the other hand, there
are a number of graph stores—the most well known be-
ing Neo4j—which are targeted at real-time update work-
loads and point queries (although Pacaci et al. [10] ar-
gue that even traditional RDBMSes provide good per-
formance for real-time graph workloads). Most of these
graph stores do not handle standing queries, although
Graphflow [6] is a notable exception.

In general, Twitter systems for graph-based recom-
mendations, including RecService, were not designed
as general-purpose graph engines, unlike nearly all sys-
tems referenced above. Instead, our focus might be best
characterized as building general domain-specific graph
processing engines. Each of the systems described in
Section 2 reflect a particular formulation of the recom-
mendation problem. For example, RecService encodes a
real-time context model of recommendations; GraphJet
assumes a bipartite user–content interaction graph. The
inclusion of domain-specific constructs leads to designs
that provide clever solutions to common challenges in
graph processing—in this case, partitioning that supports
node-local operations. These designs would be difficult
to implement in the general case.

7 Future Work and Conclusions

RecService continues to be in active development inside
Twitter and there are a number of ongoing efforts: We
are continually adding new queries to power new down-
stream products. Point queries are easy to understand,
but we find that standing queries are conceptually more
challenging to formulate, which explains why there are
relatively few that have been productionized. We are ex-
ploring ways to help algorithm designers reason about
highly-dynamic graphs.

Overall, the capabilities that Twitter has developed
around graph-based recommendations, as captured in
several generations of systems, are reasonably mature.
One direction of future work is how to integrate graph-
based signals with other sources that have not received
as much attention, e.g., Tweet content [2] and location.
However, the ultimate goal remains the same: to surface
relevant, personalized, and timely content to inform users
around the world.
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