
From MaxScore to Block-Max WAND: The
Story of How Lucene Significantly Improved

Query Evaluation Performance

Adrien Grand,1 Robert Muir,2 Jim Ferenczi,1 and Jimmy Lin3

1 Elastic NV 2 Ntrepid Corporation
3 David R. Cheriton School of Computer Science, University of Waterloo

This is the preprint of an accepted ECIR 2020 reproducibility paper.

Abstract. The latest major release of Lucene (version 8) in March 2019
incorporates block-max indexes and exploits the block-max variant of
Wand for query evaluation, which are innovations that originated from
academia. This paper shares the story of how this came to be, which
provides an interesting case study at the intersection of reproducibility
and academic research achieving impact in the “real world”. We offer ad-
ditional thoughts on the often idiosyncratic processes by which academic
research makes its way into deployed solutions.

Keywords: open-source software · technology adoption

1 Introduction

We share the story of how an innovation that originated from academia—block-
max indexes and the corresponding block-max Wand query evaluation algorithm
of Ding and Suel [6]—made its way into the open-source Lucene search library.
This represents not only a case study in widespread reproducibility, since every
recent deployment of Lucene has access to these features and thus their perfor-
mance benefits can be easily measured, but also of academic research achieving
significant impact. How did these innovations make their way from the “ivory
tower” into the “real world”? We recount the sequence of events, including false
starts, that finally led to the inclusion of block-max Wand in the latest major
version of Lucene (version 8), released in March 2019.

We see this paper as having two main contributions beyond providing a nar-
rative of events: First, we report results of experiments that attempt to match
the original conditions of Ding and Suel [6] and present additional results on a
number of standard academic IR test collections. These experiments character-
ize the performance of Lucene’s implementation and show the extent to which
performance improvements are retained when moving from a research proto-
type to a production codebase. Second, we offer a number of observations about
the adoption of academic innovations, perhaps providing some insight into how
academics might achieve greater real-world impact with their work.



2 Grand et al.

2 Setting the Stage

From its very beginnings in 1999, Lucene has mostly existed in a “parallel uni-
verse” from academic IR researchers. Part of this can be attributed to its “target
audience”: developers who wish to build real-world search applications, as op-
posed to researchers who wish to write papers. Academic IR researchers have
a long history of building and sharing search engines, dating back to the mid
1980s with Cornell’s SMART system [4]. The tradition continues to this day,
with Lemur/Indri [12, 13] and Terrier [14, 8] being the most successful examples
of open-source academic search engines, still popular with many researchers to-
day. Until recently, there has been little exchange between Lucene and these
systems, other than a few academic workshops [21, 16].

Lucene has, for the longest time, been somewhat of a laughingstock in the
academic IR community. For much of its existence, its default ranking model was
a variant of TF-IDF that was not only ad hoc, but demonstrably less effective
than ranking models that were widely available in academic systems [18]. Okapi
BM25 was not added to Lucene until 2011,1 more than a decade after it gained
widespread adoption in the research community; the consensus had long emerged
that it was more effective than TF-IDF variants. This lag has contributed to the
broad perception by researchers that Lucene produces poor search results and
is ill-suited for information retrieval research.

This negative perception of Lucene, however, began to change a few years
ago. In 2015, an evaluation exercise known as the “open-source reproducibility
challenge” [7] benchmarked seven open-source search engines and demonstrated
that Lucene was quite competitive in terms of both effectiveness and efficiency.
It was the fourth fastest system (of seven) in terms of query evaluation, beating
all the systems that were better than it in terms of effectiveness.

Since then, there has been a resurgence of interest in adopting Lucene for
information retrieval research, including a number of workshops that brought
together like-minded researchers over the past few years [2, 1]. Anserini [19, 20] is
an open-source toolkit built on Lucene that was specifically designed to support
replicable information retrieval research by providing many research-oriented
features missing from Lucene, such as out-of-the-box support for a variety of
common test collections. The project aims to better align IR researchers and
practitioners, as Lucene has become the de facto platform used in industry to
build production search solutions (typically via systems such as Elasticsearch
and Solr). The experiments in this paper were conducted with Anserini.

3 From MaxScore to Block-Max WAND

At Berlin Buzzwords in 2012, Stefan Pohl gave a presentation about Max-
Score [17] to raise awareness about efficient retrieval techniques in the Lucene
community [15]. The presentation was accompanied by a working prototype.2

1 https://issues.apache.org/jira/browse/LUCENE-2959
2 https://issues.apache.org/jira/browse/LUCENE-4100



From MaxScore to Block-Max Wand 3

This contribution was exciting but also challenging to integrate as it conflicted
with some of the flexibility that Lucene provides, requiring an index rewrite.
There were ideas on how to address these issues, but they entailed a lot of effort,
and so the issue remained stalled for about five years.

Five years is a long time and many changes occurred meanwhile. The switch
from TF-IDF to BM25 as Lucene’s default scoring function in 2015 created a
natural upper bound on scores due to BM25’s saturation effect, which made
it possible to implement retrieval algorithms that reasoned about maximum
scores without changes to Lucene’s index format. This led to an effort to im-
plement a general-purpose Wand [3], based on a previous implementation for
BooleanQuery. Lucene received support for Wand at the end of 2017 (although
it wasn’t released until version 8.0 with block-max indexes).

Implementing Wand introduced two new issues. First, the total hit count
would no longer be accurate, since not all matches are visited. Common an-
alytics use cases depend on this count, and many search engines display this
value in their interfaces (see additional discussion in Section 5). Second, the fact
that some Lucene queries could produce negative scores became problematic, so
Lucene now requires positive scores.3

Support for block-max indexes was the final feature that was implemented,
based on the developers’ reading of the paper by Ding and Suel [6], which re-
quired invasive changes to Lucene’s index format. Note that the paper describes
directly storing the maximum impact score per block, which fixes the scoring
function at indexing time. To provide flexibility in being able to swap in differ-
ent scoring functions, the Lucene implementation stores all tf (term frequency)
and dl (document length) pairs that might yield the maximum score. If we have
one such pair (tfi, dli) then we can remove all other pairs (tfj , dlj) where tfj ≤
tfi ∧ dlj ≥ dll, since they are guaranteed to yield lower (or equal) scores—based
on the assumption that scores increase monotonically with increasing tf and de-
creasing dl. This is implemented by accumulating all such pairs in a tree-like
structure during the indexing process. These pairs are stored in skip lists, so the
information is available to groups of 8, 64, 512, 4096, . . . blocks, allowing query
evaluation to skip over more than one block at a time.

An interesting coda to this story is that academic researchers were exploring
alternatives to per-block impact scores circa 2017, for exactly the same reason
(to allow the scoring model to be defined at search time). For example, Macdon-
ald and Tonellotto [10] showed how to derive tight approximate upper bounds
for block-max Wand, based on work that dates back to 2011 [9]. Similarly, the
recently-released PISA research system stores flexible block-level metadata [11].
Unfortunately, the Lucene developers were not aware of these developments dur-
ing their implementation.

The journey from MaxScore to block-max Wand concluded in March 2019,
with the rollout of all these features in the version 8.0 release of Lucene. They
are now the out-of-the-box defaults in the world’s most popular search library.

3 https://issues.apache.org/jira/browse/LUCENE-7996



4 Grand et al.

Table 1. Per-query latency (ms), comparing Ding and Suel [6] with Lucene under
similar experimental conditions, but on different hardware (k = 10).

TREC 2005 TREC 2006

Ding and Suel [6]: exhaustive Or 369 226
Ding and Suel [6]: Wand 64 78
Ding and Suel [6]: Bmw 21 28

Lucene: exhaustive Or 98 188
Lucene: Bmw 32 55

4 Experimental Evaluation

During the implementation of block-max Wand, performance improvements
were quantified in terms of Lucene’s internal benchmark suite, which showed
a 3× to 7× improvement in query evaluation performance. As part of a formal
reproducibility effort, we present experiments that attempt to match, to the
extent practical, the original conditions described by Ding and Suel [6].

According to the paper, experiments were conducted on the Gov2 web col-
lection, on a randomly-selected subset of 1000 queries from the TREC 2005 and
2006 Efficiency Tracks, which we were able to obtain from the authors. For their
experiments, the inverted index was completely loaded into main memory and
query evaluation latency was measured to retrieval depth ten.

Our experiments were conducted with the Anserini IR toolkit,4 comparing
v0.5.1, which depends on Lucene 7.6 and uses an optimized exhaustive Or query
evaluation strategy [5] with v0.6.0, which depends on Lucene 8.0 and uses block-
max Wand. We used Anserini’s standard regression test settings on the different
collections, as described on its homepage. Results represent averages over three
trials on a warm cache. While the indexes were not explicitly loaded into memory,
Lucene benefits from caching at the OS level.

All experiments were conducted using a single thread on an otherwise idle
server with dual Intel Xeon E5-2699 v4 processors and 1TB RAM running RHEL
(release 7.7). Results are shown in Table 1, where figures in the top three rows
are copied from Table 1 in the original paper. It is interesting that Ding and Suel
report a much larger increase in performance comparing exhaustive Or to Bmw
(18× on TREC 2005 and 8× on TREC 2006) than the comparable conditions
in Lucene (a more modest improvement of around 3×). This is due to a more
optimized implementation of exhaustive Or in Lucene, which, for example, im-
plements block processing [5]. Interestingly, Ding and Suel report faster query
evaluation in absolute terms, even on hardware that is much older: among the
differences include C++ vs. Java, as well as the simplicity of a research proto-
type vs. the realities of a fully-featured search library. Beyond implementation
differences, Lucene must additionally compute the upper bound scores per block
from the stored (tf, dl) pairs on the fly.

4 http://anserini.io/



From MaxScore to Block-Max Wand 5

Table 2. Per-query latency (ms) for different queries, collections, and retrieval depths.

Collection ClueWeb09b ClueWeb12-B13
Retrieval depth k 10 100 1000 10 100 1000

TREC 2005 queries
Lucene: exhaustive Or 331 371 521 321 371 669
Lucene: Bmw 96 137 370 94 148 489

Speedup 3.4× 2.7× 1.4× 3.4× 2.5× 1.4×
TREC 2006 queries
Lucene: exhaustive Or 424 464 659 404 442 693
Lucene: Bmw 123 191 431 127 186 526

Speedup 3.4× 2.4× 1.5× 3.2× 2.4× 1.3×

Table 3. Indexing time in seconds.

Collection Lucene 7.6 Lucene 8.0

Gov2 2528 2719 +7.6%
ClueWeb09b 6333 6817 +7.6%
ClueWeb12-B13 7514 7943 +5.7%

We also report performance evaluations on two other standard test collections
frequently used in academic information retrieval: ClueWeb09b and ClueWeb12-
B13, with the same sets of queries. These results are shown in Table 2, where we
report figures for different values of retrieval depth k, also averaged over three
trials. These numbers are consistent with Figure 7 in Ding and Suel’s paper:
performance of exhaustive Or drops modestly as depth k increases, but Bmw
performance degrades much more quickly. This is exactly as expected.

Finally, we quantify the modest increase in indexing time due to the need to
maintain (tf, dl) pairs in the inverted indexes, shown in Table 3 (averaged over
three trials, using 44 threads in all cases). These experiments used Anserini’s de-
fault regression settings on the respective collections, which builds full positional
indexes and also stores the raw documents.

5 Discussion

The story of block-max Wand in Lucene provides a case study of how an innova-
tion that originated in academia made its way into the world’s most widely-used
search library and achieved significant impact in the “real world” through hun-
dreds of production deployments worldwide (if we consider the broader Lucene
ecosystem, which includes systems such as Elasticsearch and Solr). As there are
very few such successful case studies (the other prominent one being the incor-
poration of BM25 in Lucene), it is difficult to generalize these narratives into
“lessons learned”. However, here we attempt to offer a few observations about
how academic research might achieve greater real-world impact.



6 Grand et al.

In short, block-max Wand is in Lucene because the developers learned about
Ding and Suel and decided to reimplement it. This is somewhat stating the ob-
vious, but this fateful decision highlights the idiosyncratic nature of technology
adoption. We could easily imagine alternative scenarios where the Lucene de-
velopers had not come across the paper and developed a comparable solution
in isolation, or they might have come across the paper and instead elected to
take a different approach. In either case, the Lucene solution would likely differ
from block-max Wand in some respects. This would be akin to convergent evo-
lution in evolutionary biology, whereby different organisms independently evolve
similar traits because they occupy similar environments. In such an “alternate
reality”, this paper would be comparing and contrasting different solutions to
handling score outliers, not describing a reproducibility effort. Could a lesson
here be that researchers need to better “evangelize” their innovations?

Eight years passed from the publication of the original paper (2011) until the
release of Lucene that included block-max Wand (2019). The entire course of
innovation was actually much longer if we trace the origins back to MaxScore
(1995) and Wand (2003). One obvious question is: Why did it take so long?

There are many explanations, the most salient of which is the difference be-
tween a research prototype and a fully-featured search library that was already
widely deployed. This decomposes into two related issues, the technical and the
social. From a technical perspective, supporting Bmw required invasive changes
to Lucene’s index format and a host of related changes in scoring functions—
for example, scores could no longer be negative, and implementations could no
longer access arbitrary fields (which was an API change). These had to be staged
incrementally. Concomitant with technical changes and backwards-compatibility
constraints were a host of “social” changes, which required changing users’ ex-
pectations about the behavior of the software. In short, Bmw was not simply a
drop-in replacement. For example, as discussed in Section 3, the hit count was
no longer accurate, which required workarounds for applications that depended
on the value. Because such major changes can be somewhat painful, they need
to be justified by the potential benefits. This means that only dramatic improve-
ments really have any hope of adoption: multiple-fold, not marginal, performance
gains. An interesting side effect is that entire generations of techniques might be
skipped, in the case of Lucene, directly from exhaustive Or to Bmw, leapfrog-
ging intermediate innovations such as MaxScore and Wand.

6 Conclusions

Aiming to achieve real-world impact with academic research is a worthwhile
goal, and we believe that the case study in this paper represents an endorsement
of efforts to better align research prototypes with production systems, as exem-
plified by Lucene-based projects like Anserini. If academic researchers are able
to look ahead “down the road” to see how their innovations might benefit end
applications, the path from the “ivory tower” to the “real world” might become
more smoothly paved.



From MaxScore to Block-Max Wand 7

7 Acknowledgments

This work was supported in part by the Natural Sciences and Engineering Re-
search Council (NSERC) of Canada. We’d like to thank Craig Macdonald and
Antonio Mallia for helpful discussions on the intricacies of computing flexible
per-block score bounds, and Torsten Suel for providing us with the original
queries used in their evaluations.

References

1. Azzopardi, L., Crane, M., Fang, H., Ingersoll, G., Lin, J., Moshfeghi, Y., Scells, H.,
Yang, P., Zuccon, G.: The Lucene for Information Access and Retrieval Research
(LIARR) Workshop at SIGIR 2017. In: Proceedings of the 40th Annual Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2017). pp. 1429–1430. Tokyo, Japan (2017)

2. Azzopardi, L., Moshfeghi, Y., Halvey, M., Alkhawaldeh, R.S., Balog, K., Di Buccio,
E., Ceccarelli, D., Fernández-Luna, J.M., Hull, C., Mannix, J., Palchowdhury, S.:
Lucene4IR: Developing information retrieval evaluation resources using Lucene.
SIGIR Forum 50(2), 58–75 (2017)

3. Broder, A.Z., Carmel, D., Herscovici, M., Soffer, A., Zien, J.: Efficient query eval-
uation using a two-level retrieval process. In: Proceedings of the Twelfth Interna-
tional Conference on Information and Knowledge Management (CIKM 2003). pp.
426–434. New Orleans, Louisiana (2003)

4. Buckley, C.: Implementation of the SMART information retrieval system. Depart-
ment of Computer Science TR 85-686, Cornell University (1985)

5. Cutting, D.R., Pedersen, J.O.: Space optimizations for total ranking. In: Computer-
Assisted Information Searching on Internet (RIAO ’97). pp. 401–412. Paris, France
(1997)

6. Ding, S., Suel, T.: Faster top-k document retrieval using block-max indexes. In:
Proceedings of the 34rd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR 2011). pp. 993–1002. Beijing,
China (2011)

7. Lin, J., Crane, M., Trotman, A., Callan, J., Chattopadhyaya, I., Foley, J., Ingersoll,
G., Macdonald, C., Vigna, S.: Toward reproducible baselines: The open-source IR
reproducibility challenge. In: Proceedings of the 38th European Conference on
Information Retrieval (ECIR 2016). pp. 408–420. Padua, Italy (2016)

8. Macdonald, C., McCreadie, R., Santos, R.L., Ounis, I.: From puppy to maturity:
Experiences in developing Terrier. In: Proceedings of the SIGIR 2012 Workshop
on Open Source Information Retrieval. pp. 60–63. Portland, Oregon (2012)

9. Macdonald, C., Ounis, I., Tonellotto, N.: Upper-bound approximations for dynamic
pruning. ACM Transactions on Information Systems 29(4), 17:1–17:28 (2011)

10. Macdonald, C., Tonellotto, N.: Upper bound approximation for BlockMaxWand.
In: Proceedings of the ACM SIGIR International Conference on Theory of Infor-
mation Retrieval (ICTIR ’17). pp. 273–276 (2017)

11. Mallia, A., Siedlaczek, M., Mackenzie, J., Suel, T.: PISA: Performant Indexes and
Search for Academia. In: Proceedings of the Open-Source IR Replicability Chal-
lenge (OSIRRC 2019): CEUR Workshop Proceedings Vol-2409. pp. 50–56. Paris,
France (2019)



8 Grand et al.

12. Metzler, D., Croft, W.B.: Combining the language model and inference network
approaches to retrieval. Information Processing and Management 40(5), 735–750
(2004)

13. Metzler, D., Strohman, T., Turtle, H., Croft, W.B.: Indri at TREC 2004: Terabyte
track. In: Proceedings of the Thirteenth Text REtrieval Conference (TREC 2004).
Gaithersburg, Maryland (2004)

14. Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier:
A high performance and scalable information retrieval platform. In: Proceedings
of the SIGIR 2006 Workshop on Open Source Information Retrieval. pp. 18–25
(2006)

15. Pohl, S.: Efficient scoring in Lucene. In: Berlin Buzzwords 2012 (2012)
16. Trotman, A., Clarke, C.L., Ounis, I., Culpepper, S., Cartright, M.A., Geva, S.:

Open source information retrieval: A report on the SIGIR 2012 workshop. SIGIR
Forum 46(2), 95–101 (2012)

17. Turtle, H., Flood, J.: Query evaluation: Strategies and optimizations. Information
Processing and Management 31(6), 831–850 (1995)

18. Turtle, H., Hegde, Y., Rowe, S.A.: Yet another comparison of Lucene and Indri
performance. In: Proceedings of the SIGIR 2012 Workshop on Open Source Infor-
mation Retrieval. pp. 64–67. Portland, Oregon (2012)

19. Yang, P., Fang, H., Lin, J.: Anserini: Enabling the use of Lucene for information
retrieval research. In: Proceedings of the 40th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR 2017).
pp. 1253–1256. Tokyo, Japan (2017)

20. Yang, P., Fang, H., Lin, J.: Anserini: Reproducible ranking baselines using Lucene.
Journal of Data and Information Quality 10(4), Article 16 (2018)

21. Yee, W.G., Beigbeder, M., Buntine, W.: SIGIR06 workshop report: Open source
information retrieval systems (OSIR06). SIGIR Forum 40(2), 61–65 (2006)


