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Abstract—Climate change leads to more frequent and
severe floods and droughts. Precise water flow forecasts
for rivers and streams help mitigate damage and are
direly needed. We evaluate physically-based and data-
driven models on the task of streamflow prediction in
the Lake Erie region: Physically-based models capture
simplified representations of the physical processes that
underlie streamflow, while purely data-driven models
encode no such knowledge explicitly. Experiments show
that data-driven approaches can provide more accurate
predictions than a physically-based model, suggesting
potential in hybrid approaches that combine hydrological
understanding with high prediction accuracy.

I. INTRODUCTION

Accurate prediction of streamflow—the amount of
water that flows through a river at a certain time—plays
a vital role in managing extreme floods and droughts.
Due to climate change, such disasters have become
increasingly frequent and impact the lives of people
around the world. Hydrology has a long history of
developing streamflow prediction models: for different
watersheds, based on different datasets, and based on
different evaluation criteria. However, it often remains
unclear which model is best under which conditions.
The ongoing Great Lakes Runoff Inter-comparison
Project for Lake Erie (GRIP-E) compares hydrologic
models in the largest Canadian effort yet to overcome
these issues [1].

GRIP-E mostly considers physically-based hydro-
logic and land-surface models; by this, we mean models
that replicate simplified representations of the underly-
ing physical processes to predict streamflow. We, how-
ever, believe that data-driven, machine-learning models
can in fact provide meaningful contributions towards
understanding streamflow, too. Although researchers
have been hesitant to adopt machine-learning models
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that are often black-box predictors, our work shows
that data-driven models can aid hydrologists’ advance-
ment in explaining the physical processes that underlie
streamflow. Purely data-driven models reveal how much
streamflow information is extractable from the datasets
that are used in physically-based models.

Our study compares a physically-based model with
data-driven linear and tree-based models in their ability
to accurately predict the water flow of a stream at a
particular gauging station, given meteorological data
of the surrounding area. We use a five-year meteoro-
logical dataset of the Lake Erie watershed to predict
the streamflow at gauging stations in sub-watersheds
around the lake. The purely data-driven approaches
predict streamflow more accurately than the physically-
based model. To us, this is good news, as it shows
that there is sufficient signal in existing data to make
accurate predictions, and points to potential hybrid
models that are both useful for advancing hydrological
understanding and making high-quality forecasts.

II. DATA AND METHODS

As streamflow ground truth, we use daily measure-
ments at 46 gauging stations in the Lake Erie region
from 2010 to 2014. These stations divide the watershed
into sub-watersheds, each comprised of the area in
which all water flows towards the gauging station.
Figure 1 shows a map of the gauging stations used for
GRIP-E and their corresponding sub-watersheds.

Both physically-based and data-driven models use
gridded meteorological forcing data as input. In hy-
drology, forcing data are time-series datasets that are
required to run, or force, the model. Many physically-
based models additionally use geophysical inputs such
as soil and elevation maps that change little over time.
The forcing data used in this study include hourly
meteorological variables of temperature, precipitation,
pressure, wind speed, specific humidity, and short- and
longwave radiation with a spatial resolution of around
15km spanning five years (2010 to 2014). Table I
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Fig. 1: Geographical outlines of the 46 sub-watersheds
in our analysis, each draining towards a gauging station
(black dots).

Variable  Explanation Level Unit
PRO Quantity of precipitation surface m

TT Air temperature 40m °C

FB Downward solar flux 40m W m™2
FI Surface incoming infrared flux 40 m Wm™?2
PO Surface pressure surface mbar
HU Specific humidity 40 m kgkg™*
uvC Wind speed 40m kn

TABLE I: Meteorological forcing variables used in
this study. Each variable covers the entire Lake Erie
watershed at a resolution of around 15 km for the years
2010 to 2014 at an hourly resolution. The variables are
available at the different vertical levels indicated.

summarizes more details about the variables. Figure 2
visualizes a snapshot of the temperature forcing data.

Formally, we aim to solve a regression problem. We
predict the streamflow 3 at station S at time ¢, given
the history of meteorological forcings Xﬁ’t]:

X‘[gu] = [X%,...,X%,...,X{'S,. ,xfs]

The superscripts 1, ..., pg identify the pg grid cells in
the sub-watershed of station S, the subscripts 1,...,¢
represent time steps, and each x§ is a vector of seven
forcing variables (Table I). Since we use machine-
learning models that operate on vectors rather than
matrices, we introduce the following vectorization:
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Fig. 2: Gridded forcing data for the Lake Erie watershed
(black outline). As an example, the temperature of
Jan 1, 2012 6pm (UTC) is depicted (colored tiles). Each
tile is about 15 x 15km? in size.

To obtain predictions, we train the parameters w of a
model f to output an estimate §; = f (X[S1 t];w).

A. Physically-Based Hydrologic Models

Physically-based hydrologic models capture a sim-
plified simulation of the underlying physical processes
that result in streamflow and other hydrologic fluxes.
These models often use various sources of data such as
land cover maps, soil maps, or digital elevation models
as their setup basis. Similar to data-driven models,
the parameters w of a hydrologic model are usually
trained, or calibrated, against the observed streamflow
time series at one or multiple gauges.

For this study, we make use of the Variable Infil-
tration Capacity model based on Grouped Response
Units (VIC-GRU). This model originates from the VIC
model [2], [3], which is a large-scale, semi-distributed
hydrologic model that simulates each grid cell inde-
pendently. VIC-GRU is a variant of VIC that processes
spatial extents with similar characteristics as so-called
grouped response units (GRUs). This grouping makes
the simulation computationally more efficient, which
allows us to use input data at a higher resolution.

We train one VIC-GRU model on all gauging sta-
tions, as the model already incorporates varying spa-
tial characteristics through geospatial input information
such as soil maps. As physically-based models approx-
imate natural system states and fluxes, they need to
attain realistic initial model conditions for the training
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period before generating accurate output. To evaluate
the model’s goodness-of-fit, we discard the first year
of model simulations (2010) as the so-called warm-up
period, and only use the NSE coefficient for the training
period 2011 to 2012. We use the parameter set that
generates the best NSE values in the training period to
predict the test period 2013 to 2014.

B. Machine-Learning Models

We use a cross-validated random search to find suit-
able parameters for each model. To reduce dimension-
ality, we only use the meteorological forcing data of the
ps grid cells in sub-watershed S. As the models we use
neither naturally incorporate temporally-distributed nor
spatially-distributed input, we flatten the data to a fixed
history window of eight days and train one model per
gauging station. We further aggregate the hourly forcing
data into daily values to match the target streamflow
data resolution. This aggregation uses the minimum and
maximum temperature per day and total precipitation
on that day. Preliminary experiments show that the
remaining forcing variables do not improve prediction
accuracy (results not shown). We therefore exclude
them from the inputs for the data-driven models.

As a baseline, we train a linear ridge regression
model to predict streamflow. Linear regression finds a
parameter vector w € R7(8Ps) that minimizes the sum
of squared residual differences between target values
y? and predicted values §; = Xﬁ—?,t]w‘ As our prob-
lem involves high-dimensional data, ridge regression is
an appropriate choice because it includes a weighted
regularization term to reduce overfitting.

We also employ XGBoost as a more sophisticated
approach that trains gradient-boosted regression trees
(GBRTs) [4]. GBRTs iteratively train K regression
trees fr and generate an overall prediction g}f as the
sum of their outputs. Additionally, GBRTs provide
regularization parameters such as a maximum tree depth
to control overfitting. For more details on the objective
function minimization, see Chen and Guestrin [4].

C. Evaluation

We split the available data into a training period from
2010 to 2012 and a test period from 2013 to 2014. Our
data-driven models are trained using mean squared error
(MSE). After fitting a model during the training phase,
we apply it to the test period and evaluate its prediction
accuracy. Following common practice in hydrology,
we use the Nash-Sutcliffe efficiency coefficient (NSE)
to evaluate the simulated streamflow §° compared to

Statistic VIC-GRU  Ridge regression  XGBoost
Do —6.302 —1.677 —0.206
P25 0.184 0.298 0.412
P50 0.328 0.380 0.522
P75 0.376 0.469 0.561
P1oo 0.597 0.585 0.666
P75 — P25 0.191 0.170 0.149

TABLE II: Minimum pg, maximum piqg, quartiles pos
and pr5, median psp, and interquartile range prs — pa2s
of the NSE distributions for the physically-based model
VIC-GRU and the two data-driven models (ridge regres-
sion and XGBoost).

the observed streamflow time series y° for station S,
defined as follows:

T
S @7 —v)?
NSE = 1-— t?
t_Zl (y? — 7°)?
MSE
= 1- 3)

Sl

T
; Py (v — 7°)*

where §° is the mean observed streamflow at station
S across all 7' time steps. Hence, the denominator
is the variance of the streamflow observations y°.
Equation 3 shows that NSE and MSE are strongly
correlated [5]. NSE values range between —oo and 1,
with 1 representing perfect predictions. A score of 0 is
obtained when predicting 7° at every time step.

ITI. RESULTS

Table II outlines characteristics of the three models’
NSE distributions across all 46 gauging stations. The
third row (p5g) shows the median NSE values, and the
other rows list the measure at different percentiles as
well as the interquartile range (see table caption for
details). We see that a simple ridge regression model
outperforms the physically-based VIC-GRU model, and
that XGBoost provides the most accurate predictions
of the three examined models. The XGBoost model
outperforms VIC-GRU in 40 of the 46 stations by
an average NSE difference of 0.473. Not only are
the XGBoost predictions more accurate overall, but
they also show fewer outliers (i.e., make terribly bad
predictions) and a smaller variation of NSE coefficients
for different stations.

In Figure 3, we provide an overview of results for
three sample gauging stations: one where all models
perform relatively well, one where VIC-GRU performs
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Station 04207200: Tinkers Creek, Bedford, OH
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Fig. 3: Differences between actual streamflow y; and predictions §J; for VIC-GRU (red), ridge regression (green),
and XGBoost (purple) at gauging stations 04207200, 04177000, and 04166500 during the test period.

better than machine-learning models, and one where the
machine-learning models outperform VIC-GRU. Each
panel shows the differences between the actual and
predicted streamflows at each gauging station based on
the three models; the corresponding figures on the right
highlight the stations’ geographical locations on a map.

All three models provide rather good predictions for
station 04207200 in Bedford, OH, USA (Figure 3, top),
with NSE values between 0.44 (VIC-GRU) and 0.57
(XGBoost). For station 04177000 in Toledo, OH, USA
(Figure 3, middle), VIC-GRU yields a better NSE than
XGBoost. Largely, this seems to be due to a few over-
estimated streamflow spikes at the end of 2013 and
around August 2014. In the third example, VIC-GRU
makes very poor predictions for station 04166500 in
Detroit, MI, USA (Figure 3, bottom), with an NSE
score well below zero, while XGBoost and ridge re-
gression provide far better results. VIC-GRU appears
to struggle with the prediction of streamflow peaks,

as it frequently incorrectly predicts high streamflows
above 50 m3s~! during the winter and spring months.
XGBoost and ridge regression are more conservative
and rarely predict streamflows above 30 m3 s, likely
because the station’s training data contain few high-
streamflow examples. This difference partly explains
the more accurate predictions of the data-driven models,
because the NSE calculation includes squared differ-
ences that emphasize outliers. Ridge regression often
produces erratic predictions for periods of low stream-
flow, which explains the model’s lower NSE coefficients
compared to XGBoost.

It is further noteworthy that station 04166500 is
located in the highly urbanized metropolitan area of De-
troit. Such regions are more prone to human water reg-
ulation, which is often not included in the assumptions
physically-based models make. In contrast, machine-
learning techniques are able to implicitly capture water
regulation policies.
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I'V. DISCUSSION

Our results show that, in relative terms, imprecise
predictions by VIC-GRU cannot be solely explained by
insufficient data, as the purely data-driven approaches
outperform the physical model using only a subset of
the data. In other words, it appears that the model does
not yet fully exploit the available signals due to its
design and the restrictive assumptions it makes. This is
more pronounced in urban regions, where we envision
great potential in augmenting physically-based models
with machine-learning techniques.

We note, however, that the three-year time frame
from 2010 to 2012 is a rather short training period
for a physically-based model. As the GRIP-E project is
still ongoing and awaiting an extended forcing dataset,
we are unfortunately unable to train on a longer time
period. Given the large differences in prediction accu-
racy, we however do not expect that additional data
would fundamentally change our findings, especially
since more data would benefit data-driven models also.

V. FUTURE WORK

Unfortunately, our data-driven models do not yet pro-
vide insights into how physically-based models could be
improved. In future work, we therefore plan to study
machine-learning models whose structures are more
specifically targeted towards predictions on geospatial
time series. Such models might allow for more inter-
pretability as they more closely resemble the mechanics
of physically-based models. With these models, we
could further train one model to predict streamflow
at arbitrary locations, which allows for more detailed
comparisons to physically-based models.

Besides ridge regression and XGBoost, we have be-
gun to explore predictions with neural networks, specif-
ically simple long short-term memory cell (LSTM) ar-
chitectures. In preliminary experiments, however, these
neural models did not perform better than XGBoost.
We assume that more sophisticated deep-learning ap-
proaches that are better suited for spatially-distributed
input data would improve prediction accuracy.

VI. CONCLUSION

Our study shows that data-driven approaches predict
streamflow more accurately than a physically-based
model for the specific case study that we examined.
The more rigid structure of a physically-based model
prevents it from fully exploiting signals that are avail-
able in the input data. Especially for stations in highly

urbanized regions, our data-driven models are better
able to adapt to patterns of human water regulation.

From a high-level perspective, our project has the
goal to both deliver more accurate streamflow predic-
tions and advance hydrological understanding. We have
taken only a small step in this direction, but are excited
about future prospects.
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