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Abstract

Modern information retrieval research has evolved a standard workflow that involves first in-
dexing a document collection and then running ad hoc queries sequentially to evaluate retrieval
effectiveness using standard test collections. This paper explores how aspects of this workflow might
change in a MapReduce cluster-based environment. First, we present and evaluate two algorithms
for inverted indexing that take advantage of the programming model’s sorting mechanism to dif-
ferent extents. The running times of both algorithms scale linearly in terms of collection size up
to 102 million web pages. Second, we show that it is possible to efficiently perform batch query
evaluation with MapReduce by scanning all postings lists in parallel, as opposed to sequentially ac-
cessing each postings list. Third, we explore an approach that forgoes inverted indexing altogether
and simply computes all query—document scores from document vectors themselves. Experimental
results challenge us to think differently about previous assumptions in information retrieval, and
show that brute force approaches are surprisingly compelling under certain circumstances: parallel
scan of postings can effectively take advantage of large clusters and parallel scan of documents fits
naturally with ranking functions that use document-level features.

1 Introduction

Inverted indexing and ranked retrieval form the foundations of modern Information Retrieval (IR).
The standard research workflow consists of these two steps in sequence. Prior to running retrieval
experiments, a document collection must first be indexed. In a standard inverted index, each term
is associated with a list of postings, each of which consists of a document id and some payload in-
formation (e.g., term frequency). Inverted indexes are typically a fraction of the original collection
in size (depending on the payload), but are usually too large to hold in memory completely (leav-
ing aside caching of postings or results). Ranked retrieval involves random access to postings that
correspond to query terms (residing on disk) and systematically traversing the postings to compute
query—document scores based on a ranking model. In the academic community, it remains the norm
that indexing and retrieval are performed on individual machines. However, the continual growth of
collection sizes means that single-machine solutions are becoming increasingly impractical. We must
turn to distributed algorithms that take advantage of clusters.

This paper reexamines the standard workflow of indexing and retrieval in a cluster-based envi-
ronment built around the open-source Hadoop implementation of MapReduce [10], a framework for
processing large amounts of data on commodity clusters. We explicitly wanted to provide a “big pic-
ture” of running retrieval experiments from end to end in such an environment. The first question
we tackle is how to efficiently build inverted indexes using the MapReduce framework. We present



two algorithms that take advantage of the programming model to different extents and evaluate their
performance on segments of the ClueWeb09 web crawl (up to 102 million pages). Having built inverted
indexes, we turn our attention to the “bread and butter” of modern IR research: batch ad hoc re-
trieval. Typically, retrieval is performed sequentially, one query at a time, and involves random access
to on-disk postings lists. However, this underutilizes available processing capacity in a cluster. As an
alternative, we present an approach (called PScan) that involves a parallel scan of all postings, where
all queries in a testset are evaluated concurrently. This brute force approach is taken one step further
by dispensing with the inverted index altogether. With MapReduce, we can exploit the aggregate disk
bandwidth of all cluster nodes to compute query—document scores directly from the document vectors
(we call this DScan). Experiments show that these two non-traditional approaches are compelling for
different reasons: parallel scan of postings lets us take advantage of large clusters and parallel scan of
documents lets us easily work with ranking functions that use document-level features.

We view this work as having three contributions. First, we present and evaluate two scalable
algorithms for inverted indexing in MapReduce. Although the basic ideas behind these two algorithms
are not new, to our knowledge, their formulations in MapReduce are novel. Furthermore, we are not
aware of any previously-published work that has presented experiments on inverted indexing at the
scale of the collection sizes we report. Second, this paper critically examines the standard workflow in
academic IR, which focuses on batch ad hoc retrieval experiments, performed repeatedly. We challenge
the conventional wisdom of query evaluation as random postings lookup and traversal. Going even
further, we entertain the radical suggestion of dispensing entirely with the inverted index. Experimental
results challenge us to rethink rarely-questioned assumptions in information retrieval. Finally, to help
move the community forward, implementations of algorithms in this paper are part of Ivory, a new
open-source toolkit for web-scale retrieval that we are excited to share.

The remainder of this paper is organized as follows. We begin in Section 2 with a brief overview of
MapReduce. Section 3 describes two inverted indexing algorithms, which we evaluate in Section 4 on
a web-scale collection. Section 5 focuses on the PScan algorithm for batch retrieval, where all postings
lists are processed in parallel. Section 6 explores the DScan algorithm for batch retrieval that dispenses
entirely with the inverted index and computes query—document scores directly from document vectors.
We conclude in Section 7 with a summary of our contributions.

2 Distributed Processing and MapReduce

It is fairly clear that web-scale collections have outgrown the capabilities of individual machines, neces-
sitating the use of clusters to tackle basic problems in information retrieval. Distributed computations
are inherently difficult to organize, manage, and reason about. With traditional programming mod-
els such as MPI, the developer must explicitly handle a range of system-level details, ranging from
synchronization to data distribution to fault tolerance. Recently, MapReduce [10] has emerged as an
attractive alternative: its functional abstraction provides an easy-to-understand model for designing
scalable and distributed algorithms.

MapReduce builds on the observation that many information processing tasks have the same basic
structure: a computation is applied over a large number of records (e.g., web pages, nodes in a graph)
to generate partial results, which are then aggregated in some fashion. Taking inspiration from higher-
order functions in functional programming, MapReduce provides an abstraction for programmer-defined
“mappers” (that specify the per-record computation) and “reducers” (that specify result aggregation),
with the following signatures:

map: (k:l,vl) — [(k‘z,vz)]
reduce: (ka, [ve]) — [(ks,v3)]
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Figure 1: Illustration of MapReduce. Mappers are applied to all input key-value pairs, which generate
an arbitrary number of intermediate key-value pairs. Reducers are applied to all values associated with
the same key. Between the map and reduce phases lies a barrier that involves a large distributed sort
and group by.

where k’s indicate keys, v’s indicate values, parentheses indicate a single record, and square brackets
indicate a list of records. Key-value pairs form the processing primitives in MapReduce. The mapper is
applied to every input key-value pair to generate an arbitrary number of intermediate key-value pairs.
The reducer is applied to all values associated with the same intermediate key to generate an arbitrary
number of final key-value pairs as output. A partitioning function divides up the intermediate key
space by assigning intermediate keys to reducers (in the simplest case, using a hash function), and
intermediate keys are guaranteed to be processed in sorted order in each reducer. This two-stage
processing structure is illustrated in Figure 1.

Under the MapReduce programming model, a developer needs only to provide implementations
of the mapper and reducer. On top of a distributed file system [13], the execution framework (i.e.,
“runtime”) transparently handles all other aspects of execution on clusters ranging from a few to a few
thousand cores, on gigabytes to petabytes of data. It is responsible, among other things, for scheduling
(moving code to data), handling faults, and the large distributed sorting and shuffling problem between
the map and reduce phases whereby intermediate key-value pairs must be grouped by key.

As an optimization, MapReduce supports the use of “combiners”, which are similar to reducers
except that they operate directly on the output of mappers; one can think of them as “mini-reducers”.
Combiners operate in isolation on each node in the cluster and cannot use partial results from other
nodes. Since the output of mappers (i.e., the key-value pairs) must ultimately be shuffled to the
appropriate reducer over a network, combiners allow a programmer to aggregate partial results, thus
reducing network traffic. In cases where an operation is both associative and commutative, reducers
can directly serve as combiners, although in general this is not the case.

The final component of MapReduce is the “partitioner”, which is responsible for dividing up the
intermediate key space and assigning intermediate key-value pairs to reducers. The default partitioner
computes the hash value of the key and then takes the mod of that value with the number of reducers.
This randomly assigns approximately the same number of keys to each reducer.

The open-source Hadoop implementation of MapReduce has given researchers a powerful tool for
tackling large-data problems in areas such as machine learning [8, 35, 26], text processing [4, 12, 11, 18],
databases [7, 27, 1] graph analysis [14, 20], and bioinformatics [30, 16], just to name a few. This paper
explores running retrieval experiments from end to end in this environment.



3 Inverted Indexing

Inverted indexing on a single machine is well understood and efficient algorithms can be found in IR
textbooks [34, 22, 6]. Distributed indexing has received attention in the research community since the
1990s [32, 28, 24] and is a problem that search engine companies have solved [5, 3]. However, since
companies are often hesitant to publish proprietary details, there is surprisingly little published results
dealing with the performance of web-scale indexing algorithms. Furthermore, there does not seem to
be much recent research activity directly focused on distributed indexing of large collections.

Much has changed since the above publications. In terms of hardware, computers have obviously
gotten faster, with more memory and bigger disks—but crucially, many assumptions about the rela-
tionship between processor, memory, and disk no longer hold. In terms of software, we have seen the
advent of programming models such as MapReduce that allow us to organize and reason about compu-
tations on a massive scale. MapReduce provides not only a framework for concisely expressing inverted
indexing algorithms, but also a much deeper analytics pipeline in which indexing might only form a
component. For these reasons, we think it is worth revisiting the problem of distributed indexing in
the context of MapReduce (specifically, Hadoop). We are aware of one other recent research paper on
inverted indexing with MapReduce [23], which we explicitly discuss later.

A baseline inverted indexing algorithm in MapReduce is shown in Figure 2. This algorithm can
be attributed to material prepared by Google employees for a university course in MapReduce and
for other training purposes.! Input to the mappers consists of document ids? (keys) paired with the
document content (values). Inside the mapper, each document is tokenized, stemmed, and filtered
for stopwords. From the processed terms, a histogram H of term frequencies is built—the details of
document processing are hidden in line 4 of the mapper code. The algorithm then iterates over all
terms: for each, a posting consisting of the document id and the term frequency is created (line 7 in
the mapper pseudo-code). The mapper then emits an intermediate key-value pair with the term as the
key and the posting as the value. In this simple case, the payload of each posting contains only the
term frequency tf, but this can easily be augmented with term positions to build positional indexes.

In the shuffle and sort phase, the MapReduce execution framework performs a large, distributed
“group by” of the postings by term. Without any additional effort by the programmer, all postings
associated with the same term are brought together in the reducer, which gathers them and writes the
postings to disk. The reducer begins by initializing an empty list and then iteratively appends incoming
values (i.e., postings). The postings are then sorted (by document id), compressed, and written to disk
(appropriately compressed).

The MapReduce programming model provides a very concise expression of the inverted indexing
algorithm. Its implementation is similarly concise: the basic algorithm can be implemented in as few as
a couple dozen lines of code in Hadoop (with minimal document processing). Such an implementation
can be completed as a week-long programming assignment in a course for advanced undergraduates or
first-year graduate students [15, 17]. In a non-MapReduce indexer, a significant fraction of the code is
devoted to grouping postings by term, given constraints imposed by memory and disk (e.g., memory
capacity is limited, disk seeks are slow, etc.). In MapReduce, the programmer does not need to worry
about any of these issues—most of the heavy lifting is performed by the execution framework.

3.1 Design Space of Algorithms

Of course, the baseline inverted indexing algorithm in MapReduce represents a single point in the
possible design space of MapReduce algorithms for inverted indexing. We briefly discuss alternatives
here before describing the two approaches explored in this paper.

Thttp://code.google.com/edu/parallel/
2We assume that documents are sequentially numbered.



class MAPPER
method MAap(docid n,doc d)
H <+ new ASSOCIATIVEARRAY > histogram to hold term frequencies
for all term ¢ € doc d do > processes the doc, e.g., tokenization and stopword removal
H{t} « H{t} +1
for all term ¢t € H do
EMIT(term ¢, posting (n, H{t})) > emits individual postings

class REDUCER
method REDUCE(term ¢, postings [(n1, f1) ...])
P < new LisT
for all (n, f) € postings [(n1, f1)...] do
P.AppEND((n, f)) > appends postings unsorted

P.SorT() > sorts for compression
EMmIT(term ¢, postingsList P)

Figure 2: Pseudo-code of the baseline inverted indexing algorithm in MapReduce.

Given an existing single-machine indexer, one simple way to take advantage of MapReduce is to
leverage reducers to merge indexes built on local disk. This might proceed as follows: an existing
indexer is embedded inside the mapper, and mappers are applied over the entire document collection.
Each indexer operates independently and builds an index on local disk for the documents it encounters.
Once the local indexes have been built, compressed postings are emitted as values, keyed by the term.
In the reducer, postings from each locally-built index are merged into a final index.?

Another relatively straightforward adaptation of a single-machine indexer is demonstrated by
Nutch.* Its algorithm processes documents in the map phase, and emits pairs consisting of docids
and analyzed document contents. The sort and shuffle phase in MapReduce is used essentially for doc-
ument partitioning, and the reducers build each individual index partition independently. In contrast
with the above approach, Nutch basically embeds a traditional indexer in the reducers, instead of the
mappers. With this approach, the number of reducers specifies the number of document partitions—
which limits the degree of parallelization that can be achieved.

We decided not to pursue the two approaches discussed above since they seemed like incremental
improvements over existing indexing methods. Instead, we implemented and evaluated two distinct
algorithms that make fuller use of the MapReduce programming model. The first is a scalable variant of
the baseline inverted indexing algorithm in MapReduce, in which the mappers emit individual postings.
The second is an algorithm in which the mappers emit partial lists of postings. The algorithms primarily
differ in how postings are sorted: by the execution framework (in the first algorithm) or by the indexing
code itself (in the second algorithm). Detailed descriptions of both are provided below, followed by a
general discussion of their relative merits.

3.2 Emitting Individual Postings

The starting point of our first algorithm, based on mappers emitting individual postings, is an obser-
vation about a significant bottleneck in the baseline algorithm in Figure 2: it assumes that there is
sufficient memory to hold all postings associated with the same term before sorting them. Since the
MapReduce execution framework makes no guarantees about the ordering of values associated with
the same key, the reducer must first buffer all postings and then perform an in-memory sort before the

3Indri is capable of distributed indexing using exactly this approach, albeit outside of the MapReduce framework.
“http://lucene.apache.org/nutch/



class MAPPER
method MAap(docid n,doc d)
H < new ASSOCIATIVEARRAY
for all term ¢ € doc d do > builds a histogram of term frequencies
H{t} « H{t} +1
for all term ¢t € H do
Emrt(tuple (t,n),tf H{t}) > emits individual postings, with a tuple as the key

class PARTITIONER
method PARTITION(tuple (t,n),tf f)
return HASH(¢) mod NumOfReducers > keys of same term are sent to same reducer

W o

1: class REDUCER

2 method INITIALIZE

3 tprev — @

4: P < new POSTINGSLIST

5: method REDUCE(tuple (¢, n), tf [f])
6 if ¢ 7é tprev A tprev 7é Q) then

7

8

9

EMIT(term ¢, postings P) > emits postings list of term tp,e,
P.RESET()
P.AppEND((n, f)) > appends postings in sorted order
10: tprev < t
11: method CLOSE
12: EMIT(term ¢, postings P) > emits last postings list from this reducer

Figure 3: Pseudo-code of the inverted indexing algorithm based on emitting individual postings (IP).

postings can be written out to disk. Of course, as collections grow in size there may not be sufficient
memory to perform this sort (bound by the term with the largest df).

Since the MapReduce programming model guarantees that keys arrive at each reducer in sorted
order, we can overcome the scalability bottleneck by letting the execution framework do the sorting.
Instead of emitting key-value pairs of the form:

(term ¢, posting (docid, f))
we emit intermediate key-value pairs of the form:
(tuple (t,docid), tf f)

In other words, the key is a tuple containing the term and the document number, while the value is
the term frequency. We need to redefine the sort order so that keys are sorted first by term ¢, and then
by docid n. Additionally, we need a custom partitioner to ensure that all tuples with the same term
are shuffled to the same reducer. Having implemented these two changes, the MapReduce execution
framework ensures that the postings arrive in the correct order. This, combined with the fact that
reducers can hold state across multiple keys, allows compressed postings to be written with minimal
memory usage.

The revised MapReduce inverted indexing algorithm is shown in Figure 3. The mapper remains
unchanged for the most part, other than differences in the intermediate key-value pairs. The key space
of the intermediate output is partitioned by term; that is, all keys with the same term are sent to the
same reducer. This is guaranteed by the partitioner. The reducer contains two additional methods:



INITIALIZE, which is called before keys are processed, and CLOSE, which is called after the final key is
processed (both API hooks in Hadoop). The REDUCE method is called for each key (i.e., (t,n)), and
by design, there will only be one value associated with each key. For each key-value pair, a posting
can be directly added to the postings list. Since the postings are guaranteed to arrive in the correct
order, they can be incrementally encoded in compressed form—thus ensuring a small memory footprint.
Finally, when all postings associated with the same term have been processed (i.e., t # tprey ), the entire
postings list is written out to disk. The final postings list must be written out in the CLOSE method.

Since each reducer writes its output in a separate file, our final index will be split across r files,
where r is the number of reducers. However, there is no need to consolidate the r files, since we can keep
track of which index file a term’s postings list is found in (for looking up postings during retrieval). It
is important to note that these files are stored on the distributed file system (HDF'S for Hadoop), which
means that data comprising each index file are stored in blocks, distributed and replicated throughout
nodes in the cluster.

Two more details complete the description of this indexing algorithm: positional information and
parameter settings for postings list compression. First, positional indexes can be built by simply
replacing the intermediate value f (term frequency) with an array of term positions (gap-compressed
with v codes [34]). Second, parameters must be appropriately set for compression of the postings
lists. One common practice is to use Golomb compression on first order document id differences (i.e.,
d-gaps) [34, 36]. The difficulty, however, is that Golomb compression requires two parameters: the size
of the document collection and the number of postings for a particular term (i.e., document frequency
or df). The first is easy to obtain and can be passed into the reducer as a constant. The df of a term,
however, is not known until all the postings have been processed—and unfortunately, the parameter
must be known before any posting is encoded. A two-pass solution that involves first buffering the
postings (in memory) would suffer from the memory bottleneck we have been trying to avoid in the
first place.

To get around this problem, we need to somehow inform the reducer of a term’s df before any of its
postings arrive. The solution is to have the mappers emit special keys of the form (¢, %) to communicate
partial document frequencies. The mapper holds an in-memory associative array that keeps track of
how many documents a term has been observed in (i.e., the local document frequency of the term for
the subset of documents processed by the mapper). Once the mapper has processed all input records,
special keys of the form (¢, ) are emitted with the partial df as the value.

To ensure that these special keys arrive first, we define the sort order of the tuple so that the special
symbol x precedes all documents. Thus, for each term, the reducer will first encounter a series of (¢, )
keys, representing partial dfs originating from each mapper. Summing all these partial contributions
will yield the term’s df, which can then be used to set the Golomb compression parameter. This allows
the postings to be encoded in one pass.

3.3 Emitting Lists of Postings

The key difference in the second algorithm is that instead of emitting individual postings, the mappers
emit compressed partial lists of postings. The basic idea is to replace a “flush to disk” operation in a
traditional single-machine indexer with a “flush to intermediate key-value pairs” in MapReduce. This
algorithm is shown in Figure 4.

The initial steps of the algorithm are quite similar to a traditional single-machine indexer that
performs in-memory inversion. Each mapper preserves state across input documents in the data struc-
ture M, which holds a dictionary of terms that have been encountered so far and pointers to lists of
postings for each term. As each document is processed, postings are added to M until the mapper
runs out of memory. This triggers a call to FLUSH, in which the global data structure M is converted
into m Golomb-compressed, document-sorted postings lists (one for each unique term in the processed



1: class MAPPER

2 method INITIALIZE

3 M < new ASSOCIATIVEARRAY > holds partial lists of postings
4 method MAP(docid n,doc d)

5: H < new ASSOCIATIVEARRAY > builds a histogram of term frequencies
6 for all term ¢ € doc d do

7 H{t} « H{t} +1

8 for all term t € H do

9 M{t}.App(posting (n, H{t})) > adds a posting to partial postings lists
10: if MEMORYFULL() then
11: FLusH()
12: method FLUSH > flushes partial lists of postings as intermediate output
13: for all term t € M do
14: P < SorRTANDENCODEPOSTINGS(M {t})
15: EMIT(term ¢, postingsList P)
16: M.CLEAR()
17: method CLOSE
18: FrusH()

1: class REDUCER

2 method REDUCE(term ¢, postingsLists [Py, Pa, . ..])

3 Pj < new LisT > temporarily stores partial lists of postings
4: R + new LisT > stores merged partial lists of postings
5: for all P € postingsLists [Py, P»,...] do

6 P;. App(P)

7 if MEMORYNEARLYFULL() then

8 R.ApD(MERGELISTS(Py))

9: P;.CLEAR()
10: R.ApD(MERGELISTS(FPy))
11: EMIT(term ¢, postingsList MERGELISTS(R)) > emits fully merged postings list of term ¢

Figure 4: Pseudo-code of the inverted indexing algorithm based on emitting lists of postings (LP).

documents). These partial postings lists are emitted as values, keyed by the terms. In our actual
implementation, positional information is also encoded in the postings lists, but this detail is omitted
from the pseudo-code for presentation purposes.

In the reduce phase, all partial postings lists associated with the same term are brought together by
the execution framework. The reducer must then merge all these partial lists (arbitrarily ordered) into
a final postings list. For this, we adopted a two-pass approach. In the first pass, the algorithm reads
postings lists (let’s call them py, po, . ..) into memory until memory is nearly exhausted. These are then
merged to create a new postings list (let’s call this p,). The partial postings lists are in compressed
form, which means we can store quite a few of them in memory. The memory needed for merging
is relatively modest for two reasons: First, we know how many postings are in pj,ps,..., SO we can
compress p, incrementally—very few postings are actually materialized. Second, the d-gaps in p, are
smaller post-merging, so compression becomes more efficient. At the end of the first pass, we obtain a
smaller number of partial postings lists (pg, pp, - - - in R), which are then merged in a second pass into
a single postings list. This is emitted as the final value, keyed by the term, and written to disk. As
in the previous algorithm, the key space is partitioned by term. The final index will be split across r



files, where r is the number of reducers, stored on the distributed file system.

This algorithm requires the mappers and reducers to more actively manage their memory footprint,
which can be controlled by a few parameters. In the mapper, we must decide at what point to flush
postings to intermediate key-value pairs. We elected to express this as a fraction of total memory
consumed and the number of documents processed. However, improper settings can have a significant
impact on performance: too conservative, and the algorithm generates more partial postings lists than
necessary (more merging later on); too aggressive, and the algorithm may run out of memory. In the
reducer, we must decide how many partial postings lists to merge at once. We elected to control this
as a parameter expressed in terms of the fraction of total memory used.

In theory, this algorithm could benefit from the use of combiners to perform local aggregation on the
output of the mappers. The reducer itself could be used as a combiner to consolidate partial postings
lists emitted by the mappers; this has the effect of modestly reducing the number of intermediate keys.
In practice, however, the addition of combiners actually hurts indexing performance and increases
running time, since combiners compete with mappers for memory, resulting in suboptimal memory-
access patterns.

3.4 Discussion

For convenience, we refer to the first algorithm as IP (individual postings) and the second algorithm
as LP (lists of postings). As previously mentioned, the algorithms primarily differ in how postings are
sorted. In the IP algorithm, the MapReduce execution framework handles both grouping postings by
term and sorting terms by document. In the LP algorithm, MapReduce handles grouping of partial
postings lists by term, but not sorting postings themselves; the mapper and reducer code shoulders the
burden of sorting postings by document.

The advantage with the IP algorithm is simplicity, since a great deal of the complexity involved in
inverted indexing is offloaded to mechanisms that are built into the MapReduce programming model.
The other advantage is scalability “for free”—the sorting and grouping of postings will scale as long as
the MapReduce implementation itself scales (which is not a worry since Hadoop has successfully scaled
to sorting petabyte-sized datasets®). The downside, however, is inefficiency. In the IP algorithm,
each individual posting is materialized and emitted as an intermediate key-value pair: the term is
duplicated for every posting and the postings cannot benefit from gap-based compression. This results
in a tremendous amount of intermediate data that needs to be copied across the network.

The LP algorithm manifests exactly the opposite set of tradeoffs. Since the mappers and reducers
explicitly handle the sorting of postings by document, we can take advantage of best practices such as
gap-based compression to significantly reduce the amount of intermediate data. Furthermore, since the
mappers generate far fewer intermediate key-value pairs, less effort is spent by the execution framework
in sorting and grouping terms (the keys). The tradeoff, however, is more complex code. In terms of
programming effort, the LP algorithm was more difficult to implement and debug than the IP algorithm.
For example, we spent a lot of time trying out different approaches to merging the partial postings
lists in the reducer: seemingly simple tweaks translated into orders of magnitude differences in running
times.

In addition, setting the various parameters in the LP algorithm required some amount of trial and
error—having “more knobs to twiddle”, in this case, was a disadvantage. First, we had to decide an
allocation of memory for each map task, but this is dependent on the amount of memory on each
cluster node and the number of concurrent tasks that each node can run (since they are drawing from
the same resources). We had to be careful in budgeting physical memory, since performance would
significantly degrade if the processes started consuming swap. Once deciding the memory allocation,

Shttp://developer.yahoo.net /blogs /hadoop/2009/05 /hadoop _sorts_a_petabyte_in_162.html



we had to decide on specific settings inside the mapper and reducer (discussed in the previous section).
All of this required hand-tuning.

Finally, a word on the novelty of these two algorithms. The ideas behind both the IP and LP
algorithms are not new. IP is similar to sort-based index construction and LP is similar to merge-
based index construction [36, 6]: both are well-known in the information retrieval literature. Our
specific formulations in MapReduce, however, are novel, and we believe there is significant value in
understanding how existing indexing strategies must be adapted to the MapReduce framework. To
our knowledge, the IP algorithm is the first that addresses the scalability bottleneck in the baseline
MapReduce inverted indexing algorithm. It was first described in a previous publication [19], but
that paper lacked the rigorous evaluation we present here. The LP algorithm is similar to an algorithm
proposed by McCreadie et al. [23], in that mappers in both cases emitted partial postings lists. However,
details differ quite a bit, as McCreadie et al. build a separate (and independent) index partition in
each reducer. This limits the degree of parallelization that can be achieved—it may not be useful for
applications to have hundreds of partitions, but MapReduce jobs can routinely run hundreds and even
thousands of reducers. In contrast, our algorithm builds a single unified index, and is able to scale out
to an arbitrary number of reducers. In addition, the previous work only reported on collections that
were much smaller than the ones we explore here.

4 Indexing Performance

4.1 Experimental Setup

Experiments were run on a cluster owned by Google and managed by IBM, shared among a few
universities as part of NSF’s CLuE (Cluster Exploratory) Program and the Google/IBM Academic
Cloud Computing Initiative. The cluster used in our experiments contained 280 physical nodes; each
node has two single-core processors (2.8 GHz), 4 GB memory, and two 400 GB hard drives. The
entire software stack (down to the operating system) was virtualized; each physical node runs one
virtual machine hosting Linux. Experiments used Java 1.6 and Hadoop version 0.20.1. The cluster was
configured to run a maximum of three map tasks and two reduce tasks simultaneously. Although the
cluster is a shared resource, all experiments for which we report timing results were run during periods
when there were no other large jobs competing for capacity.

Since more detailed specifications of the cluster machines (e.g., exact processor model) were not
available to us, we decided to informally run our own performance benchmarks. An individual cluster
node obtained a composite score of 442 on NIST’s SciMark 2.0 benchmark,® averaged over 3 trials.
For comparison, a laptop with a 2.6 GHz Core 2 Duo (T7800, released 2007) processor and 2 GB of
RAM scored 494 on the same test (once again, averaged over three trials). SciMark consists of five
computational kernels: FFT, Gauss-Seidel relaxation, Sparse matrix-multiply, Monte Carlo integration,
and dense LU factorization. Note that this benchmark is primarily used to measure the performance of
scientific and engineering applications, so the focus is on processor speed (which is only one component
of overall performance). Nevertheless, we suspect that the cluster consists of previous-generation
machines. Performance figures presented below should be interpreted with this important caveat. The
280-node cluster contained 560 cores, which, with current dual-processor quad-core configurations,
could fit into 70 machines—a far more modest cluster with today’s technology, not to mention that
modern processors would be substantially faster.

We performed experiments on the ClueWeb09 collection, a best-first web crawl by CMU in early
2009. The collection contains one billion pages in ten languages totaling around 25 terabytes. Of those,
about 500 million pages are in English, divided into ten roughly equal-sized segments. Our indexing
experiments specifically focused on the first two English segments: the first contains 50.2m documents

Shttp://math.nist.gov/scimark2/
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’ Alg. ‘ Time Intermediate Pairs | Intermediate Size ‘

IP | 38.5 min 13 x 10 | 306 x 10° bytes
LP | 29.6 min 614 x 106 85 x 10? bytes

Table 1: Comparison of the IP and LP indexing algorithms on the first ClueWeb09 segment.

(totaling 1.53 TB uncompressed, 247 GB compressed) and the second contains 51.6m documents (to-
taling 1.44 TB uncompressed, 225 GB compressed).

4.2 Preprocessing

Prior to indexing, we first preprocessed the collection. This consisted of three major stages, all conceived
as MapReduce jobs implemented in Java. In the first stage, all documents were parsed into document
vectors (with stemming and stopword removal), represented as associative arrays from terms to term
frequencies. At the same time we built a table of document lengths, necessary for retrieval later. In
the second stage, we constructed a mapping from terms to integers (term ids), sorted by ascending
document frequency, i.e., term 1 was the term with the highest df, term 2 was the term with the
second highest df, etc. In this process, we discarded all terms that occurred ten or fewer times in the
collection, since these rare terms are mostly misspelled words and are unlikely to be part of real-world
user queries. The resulting dictionary was then compressed with front-coding [34]. Finally, in the third
stage a new set of document vectors were generated in which terms were replaced with the integer
term ids. Furthermore, within each document the terms were sorted in increasing term id, so that we
were able to encode gap differences (using v codes). The final result is a compact representation of the
original document collection. The first and third stages are parallel operations with mappers and no
reducers; the second stage uses a single reducer to build the term id mapping.

There were three primary reasons for building and separately storing this compressed representation
of the document collection. First, for evaluating indexing performance, we wished to factor out the
time taken to process the documents: parsing, tokenization, stemming, etc. Second, materializing
the document vectors is necessary if the retrieval model performs relevance feedback. Third, this
representation serves as the input to the brute force query-evaluation algorithm we describe in Section 6.

For the first English segment of ClueWeb09, the entire preprocessing pipeline took 54.3 minutes
(averaged over two trials): 19.6 minutes for the first stage, 8.0 minutes for the second stage, and 26.7
minutes for the third. The parsed document vectors were 115 GB; replacing terms with term ids and
gap compression reduced the size down to 64 GB.

4.3 Efficiency Results

We have implemented both the IP and LP indexing algorithms in Java. Starting from the compact
representation of the collection, the running times of the IP and LP algorithms on the first English
segment of ClueWeb09 are shown in Table 1, each averaged over three trials (cf. Figure 5). The third
and fourth columns of the table show the number of intermediate key-value pairs and the total size
of the intermediate data generated by the two approaches. The final size of postings lists is 64 GB,
containing full positional information. Both algorithms construct a single, monolithic index (i.e., the
document collection is not partitioned). We can see that the LP algorithm is relatively space efficient,
generating only about a third more intermediate data than the final size of the postings, whereas the
IP algorithm generates nearly five times more intermediate data.

For both algorithms, the MapReduce job decomposed into 2901 map tasks and 200 reduce tasks,
each utilizing an allocated maximum heap size of 2 GB. Note that in the reduce phase we do not take
advantage of all available cluster capacity. For the LP algorithm, mappers were set to flush postings
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Figure 5: Running time of the LP and IP algorithms on the first two English segments of ClueWeb09.

as soon as memory was 90% full, or when the mapper had processed 50k documents; on the reducer
end, the memory threshold was set to 90% as well. The correctness of the constructed indexes was
verified using the 50 queries from the TREC 2009 web track. We had previously participated in the
evaluation, reporting competitive results, which we were able to replicate.

Scaling characteristics of both indexing algorithms are presented in Figure 5; in addition to plot-
ting the above results, we also show running times for half of the first ClueWeb09 segment (25.1m
documents), the first and half of the second segment (76.0m documents), and the first two segments
(101.8m documents). We emphasize that in all cases we are constructing a single monolithic (i.e., non-
partitioned) index. The figure shows three trials each for the IP and LP algorithms. The graph also
shows linear regressions through the running times: very high R? values demonstrate that both algo-
rithms scale linearly with collection size, which is a very desirable property. We did not examine even
larger collections because real-world retrieval engines adopt a document-partitioned architecture [2, 36],
such that the bottleneck is in building the index for a single partition—building multiple partitions
is parallelizable. Partition sizes, of course, are collection specific, but we find it unrealistic that one
would in reality want to build even larger partitions (since query evaluation time would be dominated
by traversal of the longest posting).

5 To Seek or Not To Seek?

Having indexed the document collection, researchers can proceed to focus on the central problem in IR:
ranking documents in response to a user’s query based on a particular retrieval model. An empirical
discipline built around test collections is at the core of our field. The basic experimental cycle consists
of developing or modifying the retrieval model, running a batch of ad hoc queries, and evaluating the
quality of results based on some standard metric such as mean average precision. Traditionally, batch
evaluation is performed sequentially, one query at a time, and the evaluation of each query consists of
fetching postings that correspond to the query terms and traversing the postings to compute query—
document scores.

How long does a retrieval experiment take? We started with an index of the first ClueWeb(09 segment
(50.2 million documents), copied it out of Hadoop’s distributed file system (HDFS) onto the local disk
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’ Queries ‘ Seek ‘ PScan ‘ DScan ‘
Web09 332s [04] | 246s [09] | 499s [028]
Robust04 825s [22] | 280s [72] | 604s [025]
Efficiency500 - | 393s [48] | 2061s [083]
Efficiency1000 - | 764s [57] | 3350s [331]
Efficiency1500 - | 1018s [79] | 4939s [930]

Table 2: Total running time (in seconds) of different queries on the first segment of ClueWeb09 (stan-
dard deviation in brackets).

of one cluster node, and timed some retrieval experiments using a single thread. This additional step
of copying the index has the effect of consolidating all data onto the local disk of a single node; recall
that files stored in HDF'S are spread across many nodes in the cluster. Random access to HDFS data,
therefore, incurs multiple roundtrip network latencies (first to contact the master for metadata and
block location and then to contact the actual datanode) as well as overhead associated with streaming
data across the network. HDFS was not designed with low-latency random access in mind, which is
exactly the dominant data access pattern for query evaluation. Prior to retrieval, we constructed a
postings forward index to store the file location and byte offset position of each postings list. This
allowed us to, given a query term, seek to its postings.

We used 50 queries from the TREC 2009 web track and 100 queries from the TREC 2004 ro-
bust track. Documents were ranked with BM25 [29]. Running times (not including startup costs of
the retrieval engine) for retrieving 1000 hits are presented in Table 2, under the column “Seek”. Our
retrieval engine implements a document-at-a-time query evaluation strategy with a max_score optimiza-
tion [33]. We would characterize this as a reasonable, but certainly not spectacular, implementation—
comparisons with published figures support this assertion (recall that we are searching a single index).
However, these results provide a baseline for comparison.

Time required for retrieval places an upper bound on how quickly one can explore the solution
space in search of better retrieval models. That is, research is limited by the speed in which one can
perform batch retrieval and evaluate the results. For large collections and sophisticated models that
require non-trivial amounts of training [21], the experimental turnaround times are significant.

5.1 Parallel Postings Scan

Can we better exploit resources in a cluster-based environment to improve turnaround time for batch
retrieval experiments? The fundamental problem with the sequential approach is that we are bound by
disk seek latencies on a single node. However, with MapReduce, we can easily harness the aggregate
throughput of all disks by scanning the postings in parallel. This can be implemented as follows: we
map over all postings lists, with terms as keys and postings lists as values. The mapper loads all queries
at once. When processing a (term, postings list) input key-value pair, if the term is not found in any
of the queries, no action is performed. Otherwise, the postings list is emitted as an intermediate value,
keyed by the query id of the query that contains the term (multiple intermediate key-value pairs are
emitted if the query term exists in multiple queries). In the reducer, all postings corresponding to all
query terms are brought together, and query evaluation proceeds as usual. In effect, we replace random
postings lookup with a parallel scan of all postings. The shuffle and sort mechanism in MapReduce
copies the necessary postings across the network and makes sure all postings with the same query id
are gathered together. This allows us to maximally parallelize query evaluation: we can have as many
reducers as there are queries. Lin [18] described a similar approach which involves the shuffling of
accumulators containing partial scores, but the downside of computing scores in the mapper is the
inability to apply any early-termination heuristics (e.g., max_score).
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’ Queries ‘ PScan ‘ DScan ‘

Web09 1.74 x 10° | 0.91 x 10°
Robust04 3.66 x 10° | 2.57 x 10°
Efficiency500 | 29.35 x 107 | 12.97 x 10°
Efficiency1000 | 62.62 x 10% | 26.80 x 10°
Efficiency1500 | 92.98 x 109 | 41.37 x 10°

Table 3: The amount of intermediate data (bytes) in the PScan and DScan algorithms.

6000

PScan o
DScan ¢
5000 + -
y = 3.049x + 369.69
& R?=0.953
g 4000 |- 4
(8]
o)
o,
)
£ 3000 - .
=
E . .
S | WPindexing | | ________ | __~T |l ____________
Q
g [ ipindeding > ]
x
y = 0.5408x + 199.35
2
R =0.959
1000 [%
o]
0 | | | | | | |

0 200 400 600 800 1000 1200 1400
Number of Queries

Figure 6: Running times of the PScan and DScan retrieval algorithms, with indexing times shown for
reference.

We have implemented exactly this parallel query evaluation algorithm (which we call parallel post-
ings scan, or PScan for short). Running times (in seconds) for the same conditions as before are shown
in Table 2, under the column “PScan”. We report averages over three trials on the cluster described
in Section 4.2, with standard deviation of the running times shown in square brackets. The query
evaluation algorithm in the reducer is the same as the algorithm in the single-threaded version, making
the comparison fair. For all experiments, we ran a reducer per query (50 for Web09, 100 for Robust04),
retrieving the top 1000 hits with BM25. On average, we observed a 26% reduction in running time
for Web09 queries, compared to sequential query evaluation (“Seek” column), and a 66% reduction
in running time for Robust04 queries. Although copying postings across the network may seem like a
waste, these results show that the ability to evaluate all queries in parallel (and thereby making more
effective use of resources) more than makes up for the additional network traffic. Note that although
we can evaluate queries in parallel, there are still non-trivial startup costs associated with initializing
each reducer. In particular, our current algorithm requires that all document lengths be read into
memory (the reducers load this in as “side data”). Table 3 shows the amount of intermediate data
that is shuffled from the mappers to the reducers (i.e., the size of all postings corresponding to query
terms).

To further explore the scalability of this algorithm, we created three different sets of queries from
the TREC 2006 efficiency task consisting of the first 500, 1000, 1500 queries. Running times of the
PScan retrieval algorithm are shown in the last three rows of Table 2 (three trials, 1000 hits per query,
BM25). In Figure 6, we plot the running times of the PScan algorithm (squares) vs. the number of
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queries for all of our testsets. Although the query sets are slightly different in nature (Robust04 queries
were from newswire topics; the rest were web queries), the results nevertheless give us an idea of how
the algorithm scales. As expected, running time increases linearly with number of queries, and we
obtain a very good R? fit. For reference, running times of the LP and IP indexing algorithms are
shown in dotted lines.

5.2 Discussion

How does the PScan algorithm compare with alternative strategies that might make better use of
cluster resources? Of course, we could simply run r retrieval engines in parallel, where r is the number
of nodes in our cluster (r = 280). However, this would require copying the index to local disks, which
in our case would have taken a non-trivial amount of time. Furthermore, we would create complex data
management issues with multiple versions of indexes that need to be kept in sync and up to date. As
an alternative, we might copy the index onto network-attached storage (e.g., an NFS mount), shared
by query engines running on all the cluster nodes. We expect that this would require a high-end filer
in order to cope with the load (which we do not have access to).” While both approaches are certainly
feasible, they are more complex than our PScan algorithm.

How does our PScan algorithm compare with current models of distributed retrieval? The standard
solution is a broker-mediated, document-partitioned architecture [2, 36], where the document collection
is divided into a number of independent and separately-indexed partitions.® A server is responsible
for searching each partition, the results of which are merged by the broker. There are a few issues we
see with this approach. To make maximal use of our cluster would require 280 partitions; while we
can imagine modifying our inverted indexing algorithm to generate all partition indexes in parallel, we
cannot avoid having to copy 280 separate indexes out of HDFS onto the local disks of the respective
machines. Furthermore, with 280 partition servers, the query broker will need to contend with a
non-trivial amount of network traffic. Finally, document-partitioned indexes require some mechanism
for coordinating global term statistics across multiple partitions, which adds yet another layer of
complexity. We believe that our algorithm is much simpler, both conceptually and architecturally.

One might object that given the amount of hardware resources we had access to, the performance
gains are not particularly impressive. However, recall that in our experiments we only ran one reducer
per query, and each reducer had substantial startup costs associated with loading “side data”. The
reducer startup cost could be amortized by running fewer reducers (each evaluating more queries),
which means that one would expect to observe substantial performance gains even for modest clusters.
Since the query evaluation algorithm is the same, we are only trading time to scan all postings (bound
by disk bandwidth) and to copy them across the network with the ability to parallelize query evaluation.
We further note that our approach takes full advantage of today’s multi-core processors. Normally,
parallel postings seeks (by threads on multiple cores) would be contending for disk (if the postings
are not already in memory or cached), since there are generally more cores than disks. In the PScan
algorithm, the postings are guaranteed to be already in memory by the time they arrive at the reducer,
so we are no longer disk bound. Overall, we do not see a convincing downside to the PScan approach
for batch query evaluation.

"As an alternative, we have been experimenting with reading postings directly from HDFS, which is a potential
solution to this problem [19]. However, not enough is known about HDFS latency in this usage scenario so we set aside
the possibility in this work.

8We leave aside term partitioning, since previous work has shown document partitioning to be superior [25].
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6 Why Bother Indexing?

The performance of the PScan query evaluation algorithm illustrates the power of brute force scan-
based approaches that take advantage of the aggregate throughput of many disks. Taking this to the
logical end, could we dispense completely with inverted indexing and run batch ad hoc retrieval directly
on the documents?

6.1 Parallel Document Scan

We implemented and evaluated a brute force algorithm that operates directly over the compressed doc-
ument vectors created as part of preprocessing for inverted indexing (see Section 4.2). This approach,
which we call DScan, is very simple. We map over all document vectors, and inside each mapper we
load all queries into memory at once. For each document, we compute its score with respect to every
query; the top m hits for every query are maintained in a set of priority queues in the mapper. Once
each mapper has finished processing its assigned block of documents, the contents of the priority queues
are emitted as key-value pairs, keyed by the query id. After shuffling and sorting, the reducer receives
the top m hits emitted by every mapper for each query id, dumps those results in another priority
queue, and then extracts the top k final results (which are written to disk). In our implementation
k = m, which is conservative, since the final results are unlikely to draw deeply from the partial results
of each mapper. This brute-force DScan algorithm is not novel: we are aware of at least one TREC
2009 team that adopted the same approach [9] (cf. [31]). However, Craswell et al. [9] did not provide
a thorough comparison with alternative batch retrieval strategies as we have in this work.

Results of the DScan algorithm on the cluster described in Section 4.2 are presented in Table 2,
under the column “DScan”. Running times (in seconds) averaged over three trials are shown, along
with the standard deviations in square brackets (same queries as before). Table 3 shows the amount
of intermediate data that is shuffled from the mappers to the reducers. Running times vs. number of
queries is also plotted in Figure 6. Although significant variance was observed in the different trials
due to cluster idiosyncrasies, a linear regression nevertheless models the scaling characteristics of the
algorithm quite well. The DScan algorithm is always slower than the PScan algorithm, but faster than
the sequential query evaluation algorithm on RobustO4. However, recall that the DScan algorithm
operates directly over raw document vectors: by the time it takes to index the collection, we could have
already completed a batch ad hoc retrieval run on 500 queries. This is illustrated in Figure 7, which
shows the total running time of ad hoc retrieval using both PScan (including the time taken by the LP
indexing algorithm) and DScan, ignoring the common preprocessing time.

6.2 Discussion

We were surprised at how competitive the DScan algorithm was, particularly for smaller testsets. For
larger testsets, it might not make sense because indexing time can be amortized across many batch
runs. However, we believe that the DScan algorithm can be more competitive than our results suggest.
The algorithm is not bound by disk bandwidth, but rather processor floating-point performance. This
conclusion was reached by a simple experiment: we ran a MapReduce job over the document vectors
of the first ClueWeb09 English segment that did not do anything other than decoding the vectors (no
output, no reducers). This took less than four minutes, which quantifies the overhead of scanning
the compressed collection representation. Most of the rest of the time, we infer, is spent on actually
computing scores. As our previous benchmarks have shown, the raw performance of each processor
in the cluster is comparable to that of a three year old commodity laptop. This suggests that with
current-generation hardware, DScan running times may be reduced substantially. While the DScan
algorithm is not novel, we are not aware of any previous studies comparing different retrieval approaches
(and factoring in indexing costs) in the way that we have.
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Figure 7: Total running times (ignoring preprocessing) of ad hoc retrieval using the PScan and DScan
algorithms. Notice that PScan requires the indexing step.

Although DScan is slower than PScan, it has one substantial advantage that we should point out:
modern retrieval algorithms, especially machine-learned models [21], take into account a multitude of
document features beyond simple tfs and dfs—features such as PageRank, HITS, document quality
scores, etc. At ranking time, the retrieval algorithm needs access to these features—this is a challenge
since features do not generally fit into memory, necessitating some type of distributed low-latency key-
value store (and most researchers do not have access to such infrastructure). This problem does not
exist for the DScan algorithm, since these additional features can be stored as part of the compressed
document vectors and readily accessible by the ranking function. This means that as researchers are
developing new learning-to-rank algorithms, they can focus on the features themselves, as opposed to
how to make them available.

7 Conclusions

To summarize, we see three major contributions of our work: First, we describe and evaluate the per-
formance of two alternative MapReduce inverted indexing algorithms. Our results show that inverted
indexing fits well in the MapReduce framework and that our algorithms scale linearly, at least in the
collection sizes we examined (up to 102m documents, 3 TB). These results are not surprising, but
we are not aware of any other work that has presented similarly detailed evaluations of alternative
MapReduce indexing algorithms at this scale. In qualitative terms, we found that these two algorithms
are instructive in teaching us about tradeoffs in designing scalable MapReduce algorithms.

Second, we reexamine aspects of the standard IR research workflow and demonstrate alternative
approaches to batch ad hoc query evaluation that involve brute force sequential scans: over postings
(PScan) and over document vectors (DScan). There are compelling merits to both, which provide
interesting models for future IR research. These results, coupled with results from the indexing exper-
iments, provide an accurate estimate on the time cost of running IR experiments from end to end. Of
course, neither of the approaches are applicable to interactive retrieval, but even when online search is
the end goal, batch runs still form an important part of the development process.

Finally, implementations of algorithms in this paper are part of Ivory, an open-source toolkit for
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web-scale retrieval, that we are excited to share with the community.® We hope that this contributes
a small step in moving the field forward.
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