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ABSTRACT

We demonstrate, via competitive bag-of-words first-stage retrieval
baselines for the MS MARCO document ranking task, seamless
replicability and interoperability between Elasticsearch and the
Pyserini IR toolkit, which are both built on the open-source Lucene
search library. This integration highlights the benefits of recent
efforts to promote the use of Lucene in information retrieval re-
search to better align the research and practice of building search
applications. Closer alignment between academia and industry is
mutually beneficial: Academic researchers gain a smoother path to
real-world impact because their contributions can be more easily
deployed in production applications. Industry practitioners gain an
easy way to benchmark their innovations in a rigorous and vendor-
neutral manner by exploiting evaluation resources and infrastruc-
ture built by the academic community. This two-way exchange
between academia and industry allows both parties to “have their
cakes and eat them too”.
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1 INTRODUCTION

In recent years, the academic community has seen efforts to better
align research in information retrieval with the practice of building
real-world search applications through greater adoption of the
open-source Lucene search library. Today, outside a handful of
web search engine companies that deploy custom infrastructure,
the Lucene search library and platforms that are built on top of it,
such as Elasticsearch and Solr, provide the preferred starting point
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for real-world production search applications. Examples include
large-scale deployments at Bloomberg, Disney, Instagram, Netflix,
Spotify, Twitter, Wikipedia, and Yelp.

Although early in its development Lucene was demonstrably in-
ferior in ranking effectiveness [15], recent benchmarks have shown
that for bag-of-words ranking, Lucene’s effectiveness is at least
on par, if not better, than academic search engines [2, 7]. Lucene
appears more than capable of filling the role of first-stage retrieval
based on inverted indexes in a multi-stage ranking architecture. In
terms of query efficiency, while Lucene still lags behind the best
research systems such as PISA [11], it nevertheless achieves compet-
itive performance and is faster than some academic search engines.
The recent addition of Block-Max WAND [4] has contributed to
further increases in performance. These observations raise the ques-
tion: Why wouldn’t academic researchers take greater advantage
of Lucene in their work? Adoption does not require compromises
to either effectiveness or efficiency, and furthermore grants access
to the benefits of a widely deployed, industrial-strength solution
with a large ecosystem.

Within this context, our work presents a case study illustrating
improved alignment between academia and industry via the adop-
tion of Lucene. We show that competitive bag-of-words first-stage
retrieval baselines for the popular MS MARCO document ranking
task can be easily reproduced in both the popular Elasticsearch
search engine as well as Pyserini [8], the Python interface to the
Anserini IR toolkit [16]. The former is a widely used, industrial-
strength search platform, while the latter is a research-oriented
toolkit that underlies much recent work on ranking models built us-
ing pretrained transformers. The interoperability is straightforward
because both Elasticsearch and Pyserini are built on the open-source
Lucene search library.

Why is this important? This demonstration of seamless interoper-
ability between Elasticsearch and Pyserini means that a two-way
exchange between industry and academia is possible in a manner
that hasn’t been practical until now. For academic researchers, in-
novations built on top of Pyserini can be migrated to Elasticsearch
to enable them to be deployed at scale. This provides a clear path
for research to achieve broader impact in industry applications.
For practitioners and builders of real-world search applications,
there is now an easy path to benchmark search effectiveness in
a rigorous and vendor-neutral manner, by leveraging evaluation
resources and infrastructure built by academic researchers. Moving
forward, we believe this alignment will yield mutually beneficial
relationships and create positive feedback loops. In other words,
there is no longer a trade-off between rigor in building effective
ranking models and the potential for broader impact in real-world
search applications. We hope that this case study can lead to further
collaborations between academia and industry.
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2 THE RIGHT TOOL FOR THE JOB

Modern search applications—both real-world production deploy-
ments as well as designs primarily for academic study—are domi-
nated by multi-stage ranking architectures, where an initial “first-
stage” retrieval system or module produces a list candidates that are
then reranked by subsequent modules (this process is also called
candidate generation). In some cases, a single reranking model is
used, but others have described intricate multi-module reranking
pipelines that progressively prune down and refine the list of can-
didates. Previously, these reranking modules exploited manually-
engineered features in a learning to rank framework [6, 10], but
more recently, pretrained transformers based, for example, on BERT,
have come to dominate the landscape [9]. Within multi-stage rank-
ing architectures, our focus is on first-stage retrieval, typically via
bag-of-words ranking using BM25.

What is Lucene? At the core, Lucene is a search library. It provides all
the components needed for search: document processing pipelines,
inverted indexing capabilities, compression codecs, query execution
algorithms, as well as implementations of popular scoring functions
like BM25. However, it does not prescribe how one would assemble
these parts into a search application, or offer a way to index and
query the data via convenient interfaces (e.g., a REST API). For
this, many developers turn to a fully featured search engine such
as Elasticsearch.

When is Elasticsearch used? Elasticsearch was designed as a plat-
form for large-scale, high-performance search over large corpora
of structured and unstructured documents. Elasticsearch wraps
Lucene and adds the concept of a shard, which corresponds to a
single Lucene index. For scalability and performance, users typi-
cally create several shards spread over separate physical machines.
Elasticsearch manages these distributed shards through the concept
of a “cluster”. At index time, Elasticsearch distributes documents
across the cluster and ensures well-balanced shards. At search time,
Elasticsearch sends the query to each shard and collects the top-k
results from each one, then merges them together to find the global
top-k results. Scoring in Elasticsearch is flexible and can range from
Lucene’s standard BM25 implementation to custom scripts and
ranking functions (more below). To provide reliability and high
availability, each shard can be replicated, so that more than one
machine contains a copy of the data.

Given that Elasticsearch caters specifically to developers and sys-
tem builders deploying applications into production environments—
who may or may not have a background in information retrieval—
the design goals of Elasticsearch have been focused on this audience.
As an example, Elasticsearch uses a Query DSL instead of exposing
lower-level Lucene primitives. This allows Elasticsearch to broaden
its user base and to support use cases beyond the typical text search
scenario. For instance, Elasticsearch is commonly used as a datas-
tore for log and telemetry data from applications and servers.

Elasticsearch provides developers with a number of customiza-
tion options. Through scripting and a Java-based plugin architec-
ture, search application developers can customize first-stage re-
trieval beyond the standard Lucene query types and scoring func-
tions. It also supports reranking through either scripting or a plugin:
One popular example is a learning-to-rank plugin co-developed by
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Wikimedia and Open Source Connections.! In some architectures,
Elasticsearch results are fed into downstream components such as
QA readers [5] as part of an end-to-end application.

To summarize, Elasticsearch provides a convenient framework
for building and deploying production search applications at scale.

When is direct Lucene access preferable? In contrast to the devel-
opment of large-scale production search applications, academic
researchers typically have more focused goals. In systems-oriented
research, efforts are frequently focused on improving ranking mod-
els with respect to standard benchmark test collections, such as
those from TREC and large-scale datasets such as MS MARCO [1].
Frequently, work focuses on rerankers in a multi-stage ranking
pipeline, for example, based on pretrained transformers.

In this context, first-stage retrieval is usually fixed and not the
focus of innovation. Thus, researchers have different demands that
mean FElasticsearch is not necessarily the best solution. At the top
of the wish list is usually ease of use and support for rapid iteration
with standard IR test collections; that is, simplified access to corpora,
queries, evaluation tools, etc. These components are integral to
the “research lifecycle” of systems-oriented IR research. Another
important feature is reproducibility, since first-stage retrieval is
the foundation of complex reranking architectures. The first-stage
retrieval must be stable and provide consistent output so that it is
possible to compare downstream rerankers in a fair manner.

From this perspective, Elasticsearch offers little support, e.g.,
parsers and ingesters for standard document formats such as TREC’s
SGML markup, support for query input and batch run output for-
mats, integration with evaluation tools such as trec_eval. While
such support could be built into Elasticsearch, a more fundamen-
tal issue is that its REST-focused API adds friction for researchers
only interested in batch evaluations. For example, querying in Elas-
ticsearch requires issuing REST calls using its DSL, and for most
research scenarios where the document collection can comfort-
ably reside on a single machine (the same machine the researcher
is querying from), many of the features offered by Elasticsearch
aren’t necessary—and in fact, add additional overhead. These in-
clude, for example, the cognitive overhead of needing to start an
Elasticsearch instance prior to any experiments distinct from the
“driver” program issuing the queries, or the performance overhead
of sending and receiving REST requests from the same machine.

Furthermore, researchers often require access to lower-level
primitives that Elasticsearch has chosen not to expose. For example,
there is sometimes the need for researchers to manually traverse
postings lists and manipulate raw document vectors, which is not
straightforward to accomplish with the Elasticsearch API. For these
reasons, researchers desire direct access to Lucene.

When should Anserini or Pyserini be used? This is where Anserini
comes in: the toolkit provides exactly those features that are miss-
ing in the Lucene search library to support the “research lifecycle”.
These include ingestion support for standard corpora, parsers for
different query formats, utilities for orchestrating standard batch
runs, etc. In addition, Anserini provides a suite of rigorous regres-
sion tests that cover dozens of IR test collections, such that repro-
ducing a standard “bag of words” baseline using, say, BM25 with
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RM3 query expansion, is as simple as copying and pasting a few
commands from Anserini’s online documentation into a shell.

Given that Lucene is implemented in Java, these Anserini fea-
tures are implemented in Java as well. However, Python has emerged
as the language of choice for researchers today, driven in part by
the dominance of toolkits for deep learning such as PyTorch, which
has adopted Python as its front-end language. As a response to this
demand, we have developed Pyserini [8], which provides Python
bindings to Anserini, allowing access to its features from directly
within Python. This makes it much easier, for example, to integrate
first-stage retrieval with rerankers built on cross-encoder models
based on BERT and other transformers.

3 EXPERIMENTAL RESULTS

To illustrate how the research and practice of building search ap-
plications can be brought into closer alignment, we present a case
study with the MS MARCO document ranking task [1]. Over the
past couple of years, the MS MARCO datasets have been instrumen-
tal in helping researchers explore ad hoc retrieval in the “large-data
regime”, particularly in the context of data-hungry neural network
models [3]. These are among the most widely used resources today
for IR as well as NLP tasks, with competitive leaderboards that
attract participation from many teams around the world, both from
academia as well as industry.

Here, we focus on the MS MARCO document ranking task, which
is a standard ad hoc retrieval task that uses a corpus of 3.2M web
pages. Each document is comprised of three fields (URL, title, and
body text) and averages around 1130 tokens of content (median, 580
tokens). The dataset contains a training set with 367K queries and
a development set with 5193 queries, with exactly one relevance
judgment per query. There are 5793 test queries whose relevance
judgments are not publicly available; scores on these test queries
can only be obtained by a submission to the leaderboard.

The official metric for the task is mean reciprocal rank at a cutoff
of 100 (MRR@100). To evaluate a particular ranking model for first-
stage retrieval, it is helpful to measure recall, since that provides
the upper bound of effectiveness for any reranking architecture.
Thus, recall at a cutoff of 1000 is typically reported on the develop-
ment set to accompany MRR scores—and arguably, recall is more
important than MRR in the context of multi-stage architectures.
Since relevance judgments are not publicly available for the test
set, recall on the test set is not available.

In Table 1, we present results on the MS MARCO document
ranking task, showing the effectiveness of three different sets of
runs: those in rows (1la—f) denote runs with Pyserini, those in rows
(2a-b) denote runs with Elasticsearch, and row (3a) denotes an
Elasticsearch run replicated with Pyserini.

For document retrieval, the obvious baseline is to consider each
document as the unit of indexing. These results are shown in rows
(1a) and (1b), with default BM25 parameters and after optimizing
for recall@100 using grid search on a subset of the dev queries.

An alternative configuration is to first segment each document
into multiple passages and consider each as a separate unit of index-
ing (i.e., treat each passage as a separate “document”). At retrieval
time, a document ranking is constructed by retaining only the top-
scoring passage from each document. There are a couple of reasons
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MS MARCO Document
Development Test

Method MRR@100 R@1k MRR@100

Anserini/Pyserini

(1a) Original text (doc) 0.230 0.886 0.201
BM25, default (k1 = 0.9,b = 0.4)

(1b)  Original text (doc) 0.277 0.936 -
BM25, tuned (k1 = 4.46,b = 0.82)

(1c) Original text (passage) 0.268 0.918 -
BM25, default (k1 = 0.9,b = 0.4)

(1d) Original text (passage) 0.275 0.931 0.246
BM25, tuned (k1 = 2.16,b = 0.61)

(1e) doc2query-T5 (doc) 0.327 0.955 0.291
BM25, tuned (k1 = 4.68, b = 0.87)

(1f)  doc2query-T5 (passage) 0.321 0.953 0.290
BM25, tuned (k1 = 2.56, b = 0.59)

Elasticsearch

(2a) Original text (doc) 0.308 - 0.268
Optimized disjunction max

(2b)  doc2query-T5 (doc) 0.344 - 0.300
Optimized boolean

Elasticsearch/Pyserini Integration

(3a) Original text (doc) 0.307 - -

Optimized disjunction max

Table 1: Results on the MS MARCO document ranking task.

for this design: First, it reduces the amount of text that is passed
to downstream rerankers that may be computationally expensive.
Second, it provides a fair comparison to dense retrieval techniques,
which are today limited in the length of text that they can encode.
Rows (1c) and (1d) show the results of this approach with default
BM25 parameters and after parameter tuning (same procedure as
above), respectively. With default parameters, we observe a large
effectiveness gap between (1a) and (1c), the per-document vs. per-
passage approaches. However, with tuned parameters, (1b) vs. (1d),
both conditions exhibit comparable effectiveness.

Rows (1e) and (1f) show document expansion results using our
doc2query method [13], specifically with the T5 model [14] as
described in Nogueira and Lin [12]. In both cases, the expansions
are appended to the unit of indexing (document or passage). Results
show that doc2query increases effectiveness without incurring costs
associated with neural inference at query time.

Rows (2a)—(2b) show per-document retrieval with Elasticsearch,
using multiple fields and optimizing the score contribution of each
field along with other available query parameters. When consid-
ering how to index MS MARCO documents in Elasticsearch, one
would typically keep fields separate for two reasons: (1) to allow the
document score to incorporate matches in different fields separately,
and (2) to be able to search on any one of the fields or combinations
thereof. A key insight in these experiments is that document struc-
ture can provide valuable ranking signals. Instead of collapsing each
document’s title, body, and URL fields into a single piece of text, we
preserve the document structure in the index and take advantage
of it in scoring. This is possible thanks to Lucene’s design, which
allows dedicated configurations and search strategies per document
field. Elasticsearch provides built-in support for searching across
multiple fields through its Query DSL; contributions from each field
can be combined via weights, called ‘boosts’.
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For MS MARCO, our hypothesis was that using Elasticsearch’s
support for multi-field scoring would give us an edge over the
existing Anserini BM25 baseline. We have three fields: URL, title,
and body. The task of selecting appropriate weights can be framed
as a black-box optimization problem. With several techniques and
open-source libraries available, we chose Bayesian optimization and
skopt as a well-known approach. Using a sample (1,000 documents)
from the MS MARCO training dataset, we were able to choose
optimal field boosts.

Row (2a) shows the outcome of this experiment. We used the
multi_match query type from Elasticsearch 7.10. The run uses a
popular option called best fields, which scores each field through
BM25 and takes the maximum as the overall query score. In row
(2b) we added a separate field for doc2query—T5 expansions, bigram
fields for each original field, and per-field BM25 parameter tuning.
These submissions provide evidence that multi-field retrieval and
scoring is useful in first-stage retrieval.

Row (3a) shows the same experiment as in (2a) but performed
in Anserini using the field boosts found through the optimization
process in (2a). To achieve this, we extended Anserini to support
configurable multi-field scoring. As mentioned above, Elasticsearch
provides a built-in approach to multi-field scoring that takes the
maximum field score as the overall query score. Under the hood,
the implementation is powered by Lucene’s disjunction max query.
Since Anserini also delegates core scoring to Lucene, we were able
to port Elasticsearch’s approach simply by ‘plugging in’ new Lucene
classes and exposing their configurations. Because of the shared
foundation, we could also replicate the tokenization strategy from
experiment (2a) entirely through Lucene configuration options.

Illustrating this alignment between Elasticsearch and Pyserini,
it is possible for researchers to reproduce these experimental runs
quite easily. For example, a single command yields run (1b):
$ python -m pyserini.search --topics msmarco-doc-dev \

--index msmarco-doc --output run.msmarco-doc.doc.txt \
--output-format msmarco --hits 100 --bm25

Internally, Pyserini already “knows about” the MS MARCO doc-
ument dataset: By specifying the msmarco-doc index, the toolkit
will automatically download (and cache locally) the appropriate
pre-built inverted index from a known network location. Similarly,
msmarco-doc-dev corresponds to an internally known symbol: Py-
serini will retrieve (and locally cache) queries and relevance judg-
ments from a known location. We can evaluate the effectiveness
of the run with another simple command (not shown) to obtain an
MRR@10 score that corresponds to the entry in Table 1.
Similarly, run (3a) can be reproduced using an easy-to-follow

guide that we have prepared? with the following command:
$ python -m pyserini.search --topics msmarco-doc-dev \

--index indexes/msmarco-doc/lucene-index-msmarco/ \

--output runs/run.msmarco-doc.leaderboard-dev.elastic.txt \

--output-format msmarco \

--hits 100 --bm25 --k1 1.2 --b 0.75 \

--fields contents=10.0 title=8.63280262513067 url=0.0 \

--dismax --dismax.tiebreaker ©.3936135232328522 \

--stopwords docs/elastic-msmarco-stopwords.txt
In other words, what can be done in Elasticsearch can be easily
done in Pyserini as well!

Zhttps://github.com/castorini/pyserini/blob/master/docs/experiments-elastic.md
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4 RESEARCH TO PRODUCTION AND BACK

The development of this demonstration illustrates the potential
benefits of better aligning the research and practice of build search
applications. Chronologically, baseline runs on the MS MARCO
document ranking task were first developed in Pyserini/Anserini;
these are rows (1la—f) in Table 1. As a way to rigorously benchmark
the effectiveness of Elasticsearch and its features, the first author
(from Elastic NV) demonstrated how the platform can be easily
adapted for the ranking task, and even incorporated a research
innovation (document expansion) in a submission; these are rows
(2a) and (2b) in Table 1.3

In this collaboration, we further showed that Elasticsearch re-
trieval models can be ported back to Pyserini given their shared
reliance on Lucene. This makes the Elasticsearch experiments into
a foundation that researchers can subsequently build on. In sum-
mary, this case study illustrates innovations from research to a
production-ready application and back. With the closer alignment
between academia and industry advocated here, we expect such
examples to become increasingly common. This yields mutually
beneficial and virtuous cycles of engagement, in short, allowing us
to “have our cake and eat it too”.
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