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ABSTRACT
We demonstrate, via competitive bag-of-words first-stage retrieval

baselines for the MS MARCO document ranking task, seamless

replicability and interoperability between Elasticsearch and the

Pyserini IR toolkit, which are both built on the open-source Lucene

search library. This integration highlights the benefits of recent

efforts to promote the use of Lucene in information retrieval re-

search to better align the research and practice of building search

applications. Closer alignment between academia and industry is

mutually beneficial: Academic researchers gain a smoother path to

real-world impact because their contributions can be more easily

deployed in production applications. Industry practitioners gain an

easy way to benchmark their innovations in a rigorous and vendor-

neutral manner by exploiting evaluation resources and infrastruc-

ture built by the academic community. This two-way exchange

between academia and industry allows both parties to “have their

cakes and eat them too”.

CCS CONCEPTS
• Information systems → Retrieval models and ranking.
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1 INTRODUCTION
In recent years, the academic community has seen efforts to better

align research in information retrieval with the practice of building

real-world search applications through greater adoption of the

open-source Lucene search library. Today, outside a handful of

web search engine companies that deploy custom infrastructure,

the Lucene search library and platforms that are built on top of it,

such as Elasticsearch and Solr, provide the preferred starting point

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WSDM ’22, February 21–25, 2022, Tempe, AZ, USA.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9132-0/22/02. . . $15.00

https://doi.org/10.1145/3488560.3502186

for real-world production search applications. Examples include

large-scale deployments at Bloomberg, Disney, Instagram, Netflix,

Spotify, Twitter, Wikipedia, and Yelp.

Although early in its development Lucene was demonstrably in-

ferior in ranking effectiveness [15], recent benchmarks have shown

that for bag-of-words ranking, Lucene’s effectiveness is at least

on par, if not better, than academic search engines [2, 7]. Lucene

appears more than capable of filling the role of first-stage retrieval

based on inverted indexes in a multi-stage ranking architecture. In

terms of query efficiency, while Lucene still lags behind the best

research systems such as PISA [11], it nevertheless achieves compet-

itive performance and is faster than some academic search engines.

The recent addition of Block-Max Wand [4] has contributed to

further increases in performance. These observations raise the ques-

tion: Why wouldn’t academic researchers take greater advantage

of Lucene in their work? Adoption does not require compromises

to either effectiveness or efficiency, and furthermore grants access

to the benefits of a widely deployed, industrial-strength solution

with a large ecosystem.

Within this context, our work presents a case study illustrating

improved alignment between academia and industry via the adop-

tion of Lucene. We show that competitive bag-of-words first-stage

retrieval baselines for the popular MS MARCO document ranking

task can be easily reproduced in both the popular Elasticsearch

search engine as well as Pyserini [8], the Python interface to the

Anserini IR toolkit [16]. The former is a widely used, industrial-

strength search platform, while the latter is a research-oriented

toolkit that underlies much recent work on ranking models built us-

ing pretrained transformers. The interoperability is straightforward

because both Elasticsearch and Pyserini are built on the open-source

Lucene search library.

Why is this important? This demonstration of seamless interoper-

ability between Elasticsearch and Pyserini means that a two-way

exchange between industry and academia is possible in a manner

that hasn’t been practical until now. For academic researchers, in-

novations built on top of Pyserini can be migrated to Elasticsearch

to enable them to be deployed at scale. This provides a clear path

for research to achieve broader impact in industry applications.

For practitioners and builders of real-world search applications,

there is now an easy path to benchmark search effectiveness in

a rigorous and vendor-neutral manner, by leveraging evaluation

resources and infrastructure built by academic researchers. Moving

forward, we believe this alignment will yield mutually beneficial

relationships and create positive feedback loops. In other words,

there is no longer a trade-off between rigor in building effective

ranking models and the potential for broader impact in real-world

search applications. We hope that this case study can lead to further

collaborations between academia and industry.
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2 THE RIGHT TOOL FOR THE JOB
Modern search applications—both real-world production deploy-

ments as well as designs primarily for academic study—are domi-

nated by multi-stage ranking architectures, where an initial “first-

stage” retrieval system or module produces a list candidates that are

then reranked by subsequent modules (this process is also called

candidate generation). In some cases, a single reranking model is

used, but others have described intricate multi-module reranking

pipelines that progressively prune down and refine the list of can-

didates. Previously, these reranking modules exploited manually-

engineered features in a learning to rank framework [6, 10], but

more recently, pretrained transformers based, for example, on BERT,

have come to dominate the landscape [9]. Within multi-stage rank-

ing architectures, our focus is on first-stage retrieval, typically via

bag-of-words ranking using BM25.

What is Lucene?At the core, Lucene is a search library. It provides all
the components needed for search: document processing pipelines,

inverted indexing capabilities, compression codecs, query execution

algorithms, as well as implementations of popular scoring functions

like BM25. However, it does not prescribe how one would assemble

these parts into a search application, or offer a way to index and

query the data via convenient interfaces (e.g., a REST API). For

this, many developers turn to a fully featured search engine such

as Elasticsearch.

When is Elasticsearch used? Elasticsearch was designed as a plat-

form for large-scale, high-performance search over large corpora

of structured and unstructured documents. Elasticsearch wraps

Lucene and adds the concept of a shard, which corresponds to a

single Lucene index. For scalability and performance, users typi-

cally create several shards spread over separate physical machines.

Elasticsearch manages these distributed shards through the concept

of a “cluster”. At index time, Elasticsearch distributes documents

across the cluster and ensures well-balanced shards. At search time,

Elasticsearch sends the query to each shard and collects the top-𝑘

results from each one, then merges them together to find the global

top-𝑘 results. Scoring in Elasticsearch is flexible and can range from

Lucene’s standard BM25 implementation to custom scripts and

ranking functions (more below). To provide reliability and high

availability, each shard can be replicated, so that more than one

machine contains a copy of the data.

Given that Elasticsearch caters specifically to developers and sys-

tem builders deploying applications into production environments—

who may or may not have a background in information retrieval—

the design goals of Elasticsearch have been focused on this audience.

As an example, Elasticsearch uses a Query DSL instead of exposing

lower-level Lucene primitives. This allows Elasticsearch to broaden

its user base and to support use cases beyond the typical text search

scenario. For instance, Elasticsearch is commonly used as a datas-

tore for log and telemetry data from applications and servers.

Elasticsearch provides developers with a number of customiza-

tion options. Through scripting and a Java-based plugin architec-

ture, search application developers can customize first-stage re-

trieval beyond the standard Lucene query types and scoring func-

tions. It also supports reranking through either scripting or a plugin:

One popular example is a learning-to-rank plugin co-developed by

Wikimedia and Open Source Connections.
1
In some architectures,

Elasticsearch results are fed into downstream components such as

QA readers [5] as part of an end-to-end application.

To summarize, Elasticsearch provides a convenient framework

for building and deploying production search applications at scale.

When is direct Lucene access preferable? In contrast to the devel-

opment of large-scale production search applications, academic

researchers typically have more focused goals. In systems-oriented

research, efforts are frequently focused on improving ranking mod-

els with respect to standard benchmark test collections, such as

those from TREC and large-scale datasets such as MS MARCO [1].

Frequently, work focuses on rerankers in a multi-stage ranking

pipeline, for example, based on pretrained transformers.

In this context, first-stage retrieval is usually fixed and not the

focus of innovation. Thus, researchers have different demands that

mean Elasticsearch is not necessarily the best solution. At the top

of the wish list is usually ease of use and support for rapid iteration

with standard IR test collections; that is, simplified access to corpora,

queries, evaluation tools, etc. These components are integral to

the “research lifecycle” of systems-oriented IR research. Another

important feature is reproducibility, since first-stage retrieval is

the foundation of complex reranking architectures. The first-stage

retrieval must be stable and provide consistent output so that it is

possible to compare downstream rerankers in a fair manner.

From this perspective, Elasticsearch offers little support, e.g.,

parsers and ingesters for standard document formats such as TREC’s

SGML markup, support for query input and batch run output for-

mats, integration with evaluation tools such as trec_eval. While

such support could be built into Elasticsearch, a more fundamen-

tal issue is that its REST-focused API adds friction for researchers

only interested in batch evaluations. For example, querying in Elas-

ticsearch requires issuing REST calls using its DSL, and for most

research scenarios where the document collection can comfort-

ably reside on a single machine (the same machine the researcher

is querying from), many of the features offered by Elasticsearch

aren’t necessary—and in fact, add additional overhead. These in-

clude, for example, the cognitive overhead of needing to start an

Elasticsearch instance prior to any experiments distinct from the

“driver” program issuing the queries, or the performance overhead

of sending and receiving REST requests from the same machine.

Furthermore, researchers often require access to lower-level

primitives that Elasticsearch has chosen not to expose. For example,

there is sometimes the need for researchers to manually traverse

postings lists and manipulate raw document vectors, which is not

straightforward to accomplish with the Elasticsearch API. For these

reasons, researchers desire direct access to Lucene.

When should Anserini or Pyserini be used? This is where Anserini
comes in: the toolkit provides exactly those features that are miss-

ing in the Lucene search library to support the “research lifecycle”.

These include ingestion support for standard corpora, parsers for

different query formats, utilities for orchestrating standard batch

runs, etc. In addition, Anserini provides a suite of rigorous regres-

sion tests that cover dozens of IR test collections, such that repro-

ducing a standard “bag of words” baseline using, say, BM25 with

1
https://diff.wikimedia.org/2017/10/17/elasticsearch-learning-to-rank-plugin/
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RM3 query expansion, is as simple as copying and pasting a few

commands from Anserini’s online documentation into a shell.

Given that Lucene is implemented in Java, these Anserini fea-

tures are implemented in Java aswell. However, Python has emerged

as the language of choice for researchers today, driven in part by

the dominance of toolkits for deep learning such as PyTorch, which

has adopted Python as its front-end language. As a response to this

demand, we have developed Pyserini [8], which provides Python

bindings to Anserini, allowing access to its features from directly

within Python. This makes it much easier, for example, to integrate

first-stage retrieval with rerankers built on cross-encoder models

based on BERT and other transformers.

3 EXPERIMENTAL RESULTS
To illustrate how the research and practice of building search ap-

plications can be brought into closer alignment, we present a case

study with the MS MARCO document ranking task [1]. Over the

past couple of years, the MS MARCO datasets have been instrumen-

tal in helping researchers explore ad hoc retrieval in the “large-data

regime”, particularly in the context of data-hungry neural network

models [3]. These are among the most widely used resources today

for IR as well as NLP tasks, with competitive leaderboards that

attract participation from many teams around the world, both from

academia as well as industry.

Here, we focus on theMSMARCO document ranking task, which

is a standard ad hoc retrieval task that uses a corpus of 3.2M web

pages. Each document is comprised of three fields (URL, title, and

body text) and averages around 1130 tokens of content (median, 580

tokens). The dataset contains a training set with 367K queries and

a development set with 5193 queries, with exactly one relevance

judgment per query. There are 5793 test queries whose relevance

judgments are not publicly available; scores on these test queries

can only be obtained by a submission to the leaderboard.

The official metric for the task is mean reciprocal rank at a cutoff

of 100 (MRR@100). To evaluate a particular ranking model for first-

stage retrieval, it is helpful to measure recall, since that provides

the upper bound of effectiveness for any reranking architecture.

Thus, recall at a cutoff of 1000 is typically reported on the develop-

ment set to accompany MRR scores—and arguably, recall is more

important than MRR in the context of multi-stage architectures.

Since relevance judgments are not publicly available for the test

set, recall on the test set is not available.

In Table 1, we present results on the MS MARCO document

ranking task, showing the effectiveness of three different sets of

runs: those in rows (1a–f) denote runs with Pyserini, those in rows

(2a–b) denote runs with Elasticsearch, and row (3a) denotes an

Elasticsearch run replicated with Pyserini.

For document retrieval, the obvious baseline is to consider each

document as the unit of indexing. These results are shown in rows

(1a) and (1b), with default BM25 parameters and after optimizing

for recall@100 using grid search on a subset of the dev queries.

An alternative configuration is to first segment each document

into multiple passages and consider each as a separate unit of index-

ing (i.e., treat each passage as a separate “document”). At retrieval

time, a document ranking is constructed by retaining only the top-

scoring passage from each document. There are a couple of reasons

MS MARCO Document

Development Test

Method MRR@100 R@1k MRR@100

Anserini/Pyserini

(1a) Original text (doc) 0.230 0.886 0.201

BM25, default (𝑘1 = 0.9, 𝑏 = 0.4)

(1b) Original text (doc) 0.277 0.936 -

BM25, tuned (𝑘1 = 4.46, 𝑏 = 0.82)

(1c) Original text (passage) 0.268 0.918 -

BM25, default (𝑘1 = 0.9, 𝑏 = 0.4)

(1d) Original text (passage) 0.275 0.931 0.246

BM25, tuned (𝑘1 = 2.16, 𝑏 = 0.61)

(1e) doc2query–T5 (doc) 0.327 0.955 0.291

BM25, tuned (𝑘1 = 4.68, 𝑏 = 0.87)

(1f) doc2query–T5 (passage) 0.321 0.953 0.290

BM25, tuned (𝑘1 = 2.56, 𝑏 = 0.59)

Elasticsearch

(2a) Original text (doc) 0.308 - 0.268

Optimized disjunction max

(2b) doc2query–T5 (doc) 0.344 - 0.300

Optimized boolean

Elasticsearch/Pyserini Integration

(3a) Original text (doc) 0.307 - -

Optimized disjunction max

Table 1: Results on the MS MARCO document ranking task.

for this design: First, it reduces the amount of text that is passed

to downstream rerankers that may be computationally expensive.

Second, it provides a fair comparison to dense retrieval techniques,

which are today limited in the length of text that they can encode.

Rows (1c) and (1d) show the results of this approach with default

BM25 parameters and after parameter tuning (same procedure as

above), respectively. With default parameters, we observe a large

effectiveness gap between (1a) and (1c), the per-document vs. per-

passage approaches. However, with tuned parameters, (1b) vs. (1d),

both conditions exhibit comparable effectiveness.

Rows (1e) and (1f) show document expansion results using our

doc2query method [13], specifically with the T5 model [14] as

described in Nogueira and Lin [12]. In both cases, the expansions

are appended to the unit of indexing (document or passage). Results

show that doc2query increases effectiveness without incurring costs

associated with neural inference at query time.

Rows (2a)–(2b) show per-document retrieval with Elasticsearch,

using multiple fields and optimizing the score contribution of each

field along with other available query parameters. When consid-

ering how to index MS MARCO documents in Elasticsearch, one

would typically keep fields separate for two reasons: (1) to allow the

document score to incorporate matches in different fields separately,

and (2) to be able to search on any one of the fields or combinations

thereof. A key insight in these experiments is that document struc-

ture can provide valuable ranking signals. Instead of collapsing each

document’s title, body, and URL fields into a single piece of text, we

preserve the document structure in the index and take advantage

of it in scoring. This is possible thanks to Lucene’s design, which

allows dedicated configurations and search strategies per document

field. Elasticsearch provides built-in support for searching across

multiple fields through its Query DSL; contributions from each field

can be combined via weights, called ‘boosts’.
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For MS MARCO, our hypothesis was that using Elasticsearch’s

support for multi-field scoring would give us an edge over the

existing Anserini BM25 baseline. We have three fields: URL, title,

and body. The task of selecting appropriate weights can be framed

as a black-box optimization problem. With several techniques and

open-source libraries available, we chose Bayesian optimization and

skopt as a well-known approach. Using a sample (1,000 documents)

from the MS MARCO training dataset, we were able to choose

optimal field boosts.

Row (2a) shows the outcome of this experiment. We used the

multi_match query type from Elasticsearch 7.10. The run uses a

popular option called best fields, which scores each field through

BM25 and takes the maximum as the overall query score. In row

(2b) we added a separate field for doc2query–T5 expansions, bigram

fields for each original field, and per-field BM25 parameter tuning.

These submissions provide evidence that multi-field retrieval and

scoring is useful in first-stage retrieval.

Row (3a) shows the same experiment as in (2a) but performed

in Anserini using the field boosts found through the optimization

process in (2a). To achieve this, we extended Anserini to support

configurable multi-field scoring. As mentioned above, Elasticsearch

provides a built-in approach to multi-field scoring that takes the

maximum field score as the overall query score. Under the hood,

the implementation is powered by Lucene’s disjunction max query.
Since Anserini also delegates core scoring to Lucene, we were able

to port Elasticsearch’s approach simply by ‘plugging in’ new Lucene

classes and exposing their configurations. Because of the shared

foundation, we could also replicate the tokenization strategy from

experiment (2a) entirely through Lucene configuration options.

Illustrating this alignment between Elasticsearch and Pyserini,

it is possible for researchers to reproduce these experimental runs

quite easily. For example, a single command yields run (1b):

$ python -m pyserini.search --topics msmarco-doc-dev \
--index msmarco-doc --output run.msmarco-doc.doc.txt \
--output-format msmarco --hits 100 --bm25

Internally, Pyserini already “knows about” the MS MARCO doc-

ument dataset: By specifying the msmarco-doc index, the toolkit
will automatically download (and cache locally) the appropriate

pre-built inverted index from a known network location. Similarly,

msmarco-doc-dev corresponds to an internally known symbol: Py-

serini will retrieve (and locally cache) queries and relevance judg-

ments from a known location. We can evaluate the effectiveness

of the run with another simple command (not shown) to obtain an

MRR@10 score that corresponds to the entry in Table 1.

Similarly, run (3a) can be reproduced using an easy-to-follow

guide that we have prepared
2
with the following command:

$ python -m pyserini.search --topics msmarco-doc-dev \
--index indexes/msmarco-doc/lucene-index-msmarco/ \
--output runs/run.msmarco-doc.leaderboard-dev.elastic.txt \
--output-format msmarco \
--hits 100 --bm25 --k1 1.2 --b 0.75 \
--fields contents=10.0 title=8.63280262513067 url=0.0 \
--dismax --dismax.tiebreaker 0.3936135232328522 \
--stopwords docs/elastic-msmarco-stopwords.txt

In other words, what can be done in Elasticsearch can be easily

done in Pyserini as well!

2
https://github.com/castorini/pyserini/blob/master/docs/experiments-elastic.md

4 RESEARCH TO PRODUCTION AND BACK
The development of this demonstration illustrates the potential

benefits of better aligning the research and practice of build search

applications. Chronologically, baseline runs on the MS MARCO

document ranking task were first developed in Pyserini/Anserini;

these are rows (1a–f) in Table 1. As a way to rigorously benchmark

the effectiveness of Elasticsearch and its features, the first author

(from Elastic NV) demonstrated how the platform can be easily

adapted for the ranking task, and even incorporated a research

innovation (document expansion) in a submission; these are rows

(2a) and (2b) in Table 1.
3

In this collaboration, we further showed that Elasticsearch re-

trieval models can be ported back to Pyserini given their shared

reliance on Lucene. This makes the Elasticsearch experiments into

a foundation that researchers can subsequently build on. In sum-

mary, this case study illustrates innovations from research to a

production-ready application and back. With the closer alignment

between academia and industry advocated here, we expect such

examples to become increasingly common. This yields mutually

beneficial and virtuous cycles of engagement, in short, allowing us

to “have our cake and eat it too”.
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