
Information Retrieval Meets Scalable Text Analytics:
Solr Integration with Spark

Ryan Clancy, Jaejun Lee, Zeynep Akkalyoncu Yilmaz, and Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

ABSTRACT
Despite the broad adoption of both Apache Spark and Apache Solr,
there is little integration between these two platforms to support
scalable, end-to-end text analytics. We believe this is a missed op-
portunity, as there is substantial synergy in building analytical
pipelines where the results of potentially complex faceted queries
feed downstream text processing components. This demonstration
explores exactly such an integration: we evaluate performance un-
der different analytical scenarios and present three simple case
studies that illustrate the range of possible analyses enabled by
seamlessly connecting Spark to Solr.
ACM Reference Format:
Ryan Clancy, Jaejun Lee, Zeynep Akkalyoncu Yilmaz, and Jimmy Lin. 2019.
Information Retrieval Meets Scalable Text Analytics: Solr Integration with
Spark. In 42nd Int’l ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’19), July 21–25, 2019, Paris, France. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3331184.3331395

1 INTRODUCTION
In the realm of data science, Apache Spark has emerged as the de
facto platform for analytical processing, with broad adoption in
both industry and academia. While not originally designed for scal-
able text analytics, it can nevertheless be applied to process large
document collections in a scalable, distributed fashion. However,
using Spark for text processing is hampered by the lack of integra-
tion with full-text indexes, particularly useful in applications where
the data scientist wishes to analyze only a subset of the collection.
By default, the only approach for selecting a collection subset is a
brute-force scan over every document with a filter transformation
to retain only the desired documents. For selective queries that only
match a small number of documents, this is obviously inefficient.

In the realm of search, Apache Solr has emerged as the de facto
platform for building production applications. Other than a handful
of commercial web search engines that deploy custom infrastruc-
ture to achieve the necessary scale, most organizations today take
advantage of Solr, including Best Buy, Bloomberg, Comcast, Dis-
ney, eHarmony, Netflix, Reddit, and Wikipedia. Although Solr is
designed to be scalable via a distributed, partitioned architecture,
the platform is primarily engineered around providing low-latency

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’19, July 21–25, 2019, Paris, France
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6172-9/19/07. . . $15.00
https://doi.org/10.1145/3331184.3331395

user-facing search. As such, it does not provide any analytics capa-
bilities per se.

The current state of the broader ecosystem sees little overlap be-
tween Spark for general-purpose analytical processing on the one
hand and Solr for production search applications on the other. This
is a missed opportunity in creating tremendous synergies for text
analytics, which combines elements of search as well as analytical
processing. As a simple example, the output of a (potentially com-
plex, faceted) query can serve as the input to an analytical pipeline
for machine learning. Spark, by default, cannot take advantage of
index structures to support efficient end-to-end execution of such
pipelines. Lin et al. [9] previously described using Lucene indexes to
support predicate pushdown optimizations in the Pig scripting lan-
guage, but the approach never gained widespread adoption and Pig
has generally given way to more modern analytics platforms such
as Spark. Terrier-Spark [10] represents a recent effort to integrate
Spark with an IR engine, but the project has a slightly different
focus on building experimental IR pipelines as opposed to general-
purpose text analytics. Nevertheless, we draw inspiration from
Terrier-Spark, particularly its integration with Jupyter notebooks
to support interactive explorations.

The contribution of this demonstration is an exploration of how
Solr and Spark can be integrated to support scalable text analytics.
We investigate the performance characteristics of using Solr as a
document store, taking advantage of its powerful search function-
ality as a pushdown predicate to select documents for downstream
processing. This is compared against an alternative where the raw
documents are stored in theHadoopDistributed File System (HDFS),
requiring brute-force scans over the entire collection to select sub-
sets of interest. As expected, our results confirm that significant per-
formance improvements are realized when Spark leverages Solr’s
querying capabilities, especially for queries that match few docu-
ments. With the addition of simulated per-document processing
workloads, Solr is unequivocally faster—even over large fractions
of the entire collection—since processing costs mask I/O costs.

With Solr/Spark integration, we present three case studies that
illustrate the range of interesting analyses enabled by end-to-end
text processing pipelines. These examples include kernel density
estimation to study the temporal distribution of tweets, named-
entity recognition to visualize document content, and link analysis
to explore hyperlink neighborhoods.

2 SOLR/SPARK INTEGRATION
To integrate Solr with Spark, we adopt the most obvious architec-
ture where Solr serves as the document store. We assume that a
document collection has already been ingested [2].

Solr is best described as a REST-centric platform, whereas Spark
programs define sequences of data-parallel transformations (e.g.,

Demonstration Papers 2: Evaluation & Entities SIGIR ’19, July 21–25, 2019, Paris, France

1313

https://doi.org/10.1145/3331184.3331395
https://doi.org/10.1145/3331184.3331395

filter, map, etc.) over a data abstraction called Resilient Distributed
Datasets (RDDs). The crux of the integration effort thus involves
bridging Solr output (i.e., the result of search queries) with RDDs.
To this end, we take advantage of an open-source library called
spark-solr,1 which constructs RDDs from Solr search results (not
surprisingly, called SolrRDDs). This library leverages appropriate
Solr indexes and exploits data locality by fetching documents from
the Solr shard that is co-located with the same node as the Spark
worker requesting the documents.

As part of initial explorations, we compared the performance
of SolrRDD to a much simpler approach of mapping over an RDD
of docids (that is, strings) and using the direct Solr APIs to fetch
the documents to create the initial RDD for Spark processing. This
seemed like a reasonable experiment since there is evidence that
with modern networks and the trend toward storage disaggrega-
tion [5], data locality is no longer a serious concern [1]. Never-
theless, we found that SolrRDD was substantially faster than our
“parallel document fetch” implementation, and thus we focused our
efforts building on SolrRDD.

From a performance perspective, the baseline for comparing
Solr/Spark integration is Spark processing over documents stored
on HDFS. In this setup, all document manipulations require scan-
ning the entire collection. Previous studies have found that such
brute-force operations are not as inefficient as one might think
at first glance; for example, researchers have explored document
ranking using this architecture [4, 6]. Such designs lead to simple
implementations that enjoy excellent data locality and can take
advantage of high disk throughput.

Intuitively, we can characterize the performance tradeoffs be-
tween the two alternatives as follows: Suppose a data scientist
wishes to process the entire collection. Fetching documents from
Solr will likely be slower than simply scanning the entire collection
on HDFS sequentially, since Solr index structures come with asso-
ciated overheads. At the other end of the spectrum, suppose a data
scientist is only interested in analyzing a single document. In this
case, Solr would be obviously much faster than scanning the entire
collection. Thus, the selectivity of the document subset, in addition
to other considerations such as hardware configurations and the
processing workload, will determine the relative performance of
the two approaches. The balance of these various factors, however,
is an empirical question.

3 PERFORMANCE EVALUATION
We set out to empirically characterize the performance tradeoffs
between the designs discussed in the previous section, principally
examining two characteristics: selectivity and workload.

3.1 Experimental Setup
Our experiments were conducted on a cluster with ten nodes. Each
node has 2× Intel E5-2670 @ 2.60GHz (8 cores, 16 threads) CPUs,
256GB RAM, 6×600GB 10k RPMHDDs, 10GbE networking, running
Ubuntu 14.04 with Java 1.8. One node is responsible for running the
master services (YARN ResourceManager, HDFS NameNode) while
the remaining nine nodes each hosts an HDFS DataNode, a Solr
shard, and are available for Spark executor allocation (via YARN).
1https://github.com/lucidworks/spark-solr

Note that our processors are of the Sandy Bridge architecture, which
was introduced in 2012 and discontinued in 2015, and thus we
can characterize these computing resources as both “modest” and
“dated”. Similar amounts of compute power could be found on a
single high-end server today.

We examined the following document collections:

• TheNewYork TimesAnnotated Corpus, a collection of 1.8million
news article, used in the TREC 2017 Common Core Track.

• Tweets2013, a collection of 243 million tweets gathered over Feb-
ruary and March of 2013, used in the TREC Microblog Tracks [8].

• ClueWeb09b, a web crawl comprising 50.2 million pages gathered
by CMU in 2009, used in several TREC Web Tracks.

All collections were ingested into Solr using Anserini [2, 13, 14].
For comparison, all collections were also loaded into HDFS. In both
cases, the same document processing (e.g., tokenization, stopword
removal, etc.) was applied using Lucene Analyzers.

Our performance evaluation focused on two characteristics of
large-scale text analytics: the number of documents to process
(selectivity) and the per-document processing time (workload). In
order to understand the first factor, we randomly selected terms
according to document frequency, ranging from 10% to 60%. These
terms were then issued as queries whose results were fed into Spark.
For “processing”, we simulated three different workloads by simply
sleeping for 0ms, 3ms, or 30ms (per document).

While running experiments, we used the master node as the
driver while running Spark jobs in client mode. Each job used
9 executors with 16 cores and was allocated 48GB of RAM per
executor. This allowed us to take full advantage of the available
cluster resources and exploit data locality as Spark workers were
co-located on the same nodes as HDFS DataNodes and Solr shards.

3.2 Experimental Results
Figure 1 summarizes the results of our experiments on ClueWeb09b,
varying input selectivity and processing workload. We report aver-
ages over five runs (where each run is based on a different randomly-
selected term at the specified selectivity) and include 95% confidence
intervals. Results on the other collections yield similar findings and
hence are omitted.

The left bar graph in Figure 1 simulates no per-document pro-
cessing and captures the raw I/O capacity of both architectures. As
expected, total execution time does not vary much with selectivity
when brute-force scanning the collection on HDFS, since the entire
document collection needs to be read regardless. Also as expected,
the performance of using Solr as a pushdown predicate to select
subsets of the collection depends on the size of the results set. For
small subsets, Solr is more efficient since it exploits index structures
to avoid needless scans of the collection. Execution time for Solr
grows as more and more documents are requested, and beyond a
certain point, Solr is actually slower than a scan over the entire
collection due to the overhead of traversing index structures. This
crossover point occurs at around half the collection—that is, if an
analytical query yields more results, a brute-force scan over the
entire collection will be faster.

The above results assume that no time is spent processing each
document, which is obviously unrealistic. In the middle and right

Demonstration Papers 2: Evaluation & Entities SIGIR ’19, July 21–25, 2019, Paris, France

1314

Figure 1: Average total execution time (over five trials) on ClueWeb09b with simulated per-document workloads of 0ms (left),
3ms (middle), and 30ms (right). Error bars denote 95% confidence intervals.

bar graphs in Figure 1, we simulate per-document processing laten-
cies of 3ms and 30ms. The takeaway from these results is that Solr
is always faster than a brute-force scan over the entire collection on
HDFS. As the per-document workload increases, processing time
occupies a growing fraction of the overall execution time and masks
latencies associated with fetching a large number of documents
from Solr. Thus, from these experiments we can conclude that, ex-
cept in the most extreme case where text analytics is dominated by
I/O, predicate pushdown via Solr is beneficial.

4 CASE STUDIES
We present three case studies that illustrate the range of analyses
enabled by our Solr/Spark integration, taking advantage of existing
open-source tools. While these analyses are certainly possible with-
out our platform, they would require more steps: issuing queries
to Solr, extracting the result documents from the collection, and
importing them into downstream processing tools. In practice, this
would likely be accomplished using one-off scripts with limited
generality and reusability. In contrast, we demonstrate end-to-end
text analytics with seamless integration of Spark and Solr, with a
Jupyter notebook frontend.

4.1 Temporal Analysis
Kernel density estimation (KDE), which has been applied to extract
temporal signals for ranking tweets [3], can be used to explore the
distribution of tweets over time. In this case study, we investigated
the creation time of tweets that contain certain keywords from the
Tweets2013 collection (243 million tweets) [8].

The top graph in Figure 2 shows results for four keywords, aggre-
gated by hour of day (normalized to the local time zone): “coffee”,
“breakfast”, “lunch”, and “dinner”. The bottom graph shows results
for the following keywords, aggregated by day of week: “school”,
“party”, and “church”. In all cases, we began with a query to Solr,
aggregated the creation time of the retrieved tweets, and then used
Spark’s MLlib2 to compute the KDE.

The results show diurnal and weekly cycles of activity. Peaks for
the three daily meals occur where we’d expect, although Twitter
users appear to eat breakfast (or at least tweet about it) relatively
late. Coffee is mentioned consistently throughout the waking hours
2https://spark.apache.org/mllib/

Figure 2: Results of Kernel Density Estimation on creation
time of tweets to capture diurnal and weekly activity cycles.

of the day. In terms of weekly cycles, unsurprisingly, “church” peaks
on Sunday, “party” peaks on Saturday, and mentions of school drop
off on weekends. The core of this analysis is around 15 lines of code,
highlighting the expressivity of Solr/Spark integration.

4.2 Entity Analysis
We can take advantage of named-entity recognition (NER) to pro-
vide a broad overview of a corpus, corresponding to what digital
humanities scholars call “distant reading” [12]. For example, what
musical artists are prominently discussed in the New York Times?
The answer is shown in Figure 3 as a word cloud, which was cre-
ated by taking all documents that have the term “music” (154k
documents), feeding the text into Stanford CoreNLP [11] to extract
named entities, and then piping the results to an off-the-shelf tool.3
We performed minor post-processing to remove entities that are
single words, so common names such as “John” do not dominate.
3https://github.com/amueller/word_cloud

Demonstration Papers 2: Evaluation & Entities SIGIR ’19, July 21–25, 2019, Paris, France

1315

https://spark.apache.org/mllib/
https://github.com/amueller/word_cloud

Figure 3: Word cloud for “music” from the New York Times

The people mentioned are, perhaps unsurprisingly, famous musi-
cians such as Bob Dylan, Frank Sinatra, and Michael Jackson, but
the results do reveal the musical tastes of New York Times writers.
All of this can be accomplished in around 20 lines of code.

4.3 Webgraph Analysis
Network visualizations facilitate qualitative assessment by reveal-
ing relationships between entities. In this case study, we extracted
links referenced by websites in the ClueWeb09b collection that
contain the polysemous term “jaguar” (among many referents, a
car manufacturer and an animal), which could reveal interesting
clusters corresponding to different meanings. In order to produce
a sensible visualization, we began by randomly sampling 1% of
the documents that contain the term. Next, we extracted all outgo-
ing links from these sources with the Jsoup HTML parser before
aggregating by domain. Finally, we selected the top three most
frequently-occurring links from each source node to reduce clutter.
All of this can be accomplished in around 30 lines of code.

By feeding the edge list to Gephi,4 we ended up with the network
visualization in Figure 4 using a Multilevel Layout [7]. For better
clarity in the visualization, we pruned nodes with small degrees.
Unsurprisingly, the visualization features a large cluster centered
around google.com, and multiple smaller clusters corresponding to
websites associated with different meanings of the term.

5 CONCLUSIONS
In this work we have demonstrated the integration of Solr and
Spark to support end-to-end text analytics in a seamless and effi-
cient manner. Our three usage scenarios only scratch the surface
of what’s possible, since we now have access to the rich ecosystem
that has sprung up around Spark. With PySpark, which provides

4https://gephi.org

Figure 4: Network visualization for “jaguar”.

Python bindings for Spark, we gain further integration opportuni-
ties with PyTorch, TensorFlow, and other deep learning frameworks,
enabling access to state-of-the-art models for many text processing
tasks, all in a single unified platform.
Acknowledgments. This work was supported in part by the Natu-
ral Sciences and Engineering Research Council (NSERC) of Canada,
the Canada Foundation for Innovation Leaders Fund, and the On-
tario Research Fund.

REFERENCES
[1] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. 2011. Disk-Locality

in Datacenter Computing Considered Irrelevant. In HotOS.
[2] R. Clancy, T. Eskildsen, N. Ruest, and J. Lin. 2019. Solr Integration in the Anserini

Information Retrieval Toolkit. In SIGIR.
[3] M. Efron, J. Lin, J. He, and A. de Vries. 2014. Temporal Feedback for Tweet Search

with Non-Parametric Density Estimation. In SIGIR. 33–42.
[4] T. Elsayed, F. Ture, and J. Lin. 2010. Brute-Force Approaches to Batch Retrieval:

Scalable Indexing with MapReduce, or Why Bother? Technical Report HCIL-2010-
23. University of Maryland, College Park, Maryland.

[5] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. Arpaci-Dusseau,
and R. Arpaci-Dusseau. 2016. Serverless Computation with OpenLambda. In
HotCloud.

[6] D. Hiemstra and C. Hauff. 2010. MapReduce for Information Retrieval Evaluation:
“Let’s Quickly Test This on 12 TB of Data”. In CLEF. 64–69.

[7] Y. Hu. 2005. Efficient, High-Quality Force-Directed Graph Drawing. Mathematica
Journal 10, 1 (2005), 37–71.

[8] J. Lin and M. Efron. 2013. Overview of the TREC-2013 Microblog Track. In TREC.
[9] J. Lin, D. Ryaboy, and K. Weil. 2011. Full-Text Indexing for Optimizing Selection

Operations in Large-Scale Data Analytics. In MAPREDUCE. 59–66.
[10] C. Macdonald. 2018. Combining Terrier with Apache Spark to Create Agile

Experimental Information Retrieval Pipelines. In SIGIR. 1309–1312.
[11] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky. 2014.

The Stanford CoreNLP Natural Language Processing Toolkit. In ACL Demos.
55–60.

[12] F. Moretti. 2013. Distant Reading.
[13] P. Yang, H. Fang, and J. Lin. 2017. Anserini: Enabling the Use of Lucene for

Information Retrieval Research. In SIGIR. 1253–1256.
[14] P. Yang, H. Fang, and J. Lin. 2018. Anserini: Reproducible Ranking Baselines

Using Lucene. JDIQ 10, 4 (2018), Article 16.

Demonstration Papers 2: Evaluation & Entities SIGIR ’19, July 21–25, 2019, Paris, France

1316

https://gephi.org

	Abstract
	1 Introduction
	2 Solr/Spark Integration
	3 Performance Evaluation
	3.1 Experimental Setup
	3.2 Experimental Results

	4 Case Studies
	4.1 Temporal Analysis
	4.2 Entity Analysis
	4.3 Webgraph Analysis

	5 Conclusions
	References

