
Summingbird: ���
A Framework for Integrating Batch and Online
MapReduce Computations	

Oscar Boykin, Sam Ritchie, ���
Ian O'Connell, and Jimmy Lin	

	

VLDB 2014	

Thursday, September 4, 2014	

Scene: ���
Internet company in Silicon Valley (circa 2010)	

Standard data science task: ���
What have people been clicking on?	

Simple!	

raw = load '/logs/' using LogLoader();

a = filter raw by action == 'click';
b = group a by target;
c = foreach b generate COUNT(a), group;

store c into 'counts/';

val input = TypedTsv[(String, String)]("/logs”)
val raw = TypedPipe.from(input)

raw.groupBy { case (target, action) => target }
 .size
 .write(TypedTsv("counts"))

Write some Pig…	

Or some Scalding (more recently)…	

Standard data science task: ���
What have people been clicking on?	

Now try: ���
What have people been clicking on right now?	

grumble	

Two major pain points (circa 2010):	

1. Lack of a standardized online processing framework	

2. Having to write everything twice	

Simple!	

ugh	

 hrmmm	

State of the industry (circa 2013):	

Good handle on batch processing at scale	

Increasing convergence on online processing frameworks	

Spout

Bolt

memcached

Bolt Bolt

Bolt Bolt

Storm	

Two major pain points:	

1. Lack of a standardized online processing framework	

2. Having to write everything twice	

✓Widespread adoption of Storm at Twitter	

The point of this work…	

A domain-specific language (in Scala) designed	

to integrate batch and online MapReduce computations	

Summingbird	

Idea #1: Algebraic structures provide the basis for ���
seamless integration of batch and online processing	

Probabilistic data structures as monoids	

Idea #2: For many tasks, close enough is good enough	

Summingbird	

Primary goal is developer productivity	

Optimizations can come later…	

counting etc. (min, max, mean, moments…)	

Scope: “the easy problems”	

set membership	

histograms	

“map”	

flatMap[T, U](fn: T => List[U]): List[U]

map[T, U](fn: T => U): List[U]

filter[T](fn: T => Boolean): List[T]

sumByKey

Batch and Online MapReduce 	

“reduce”	

Semigroup = (M , ⊕)	

⊕ : M × M → M, s.t., ∀m1, m2, m3 ∋ M	

Idea #1: Algebraic structures provide the basis for ���
seamless integration of batch and online processing	

(m1 ⊕ m2) ⊕ m3 = m1 ⊕ (m2 ⊕ m3) 	

Monoid = Semigroup + identity	

Commutative Monoid = Monoid + commutativity	

ε s.t., ε ⊕ m = m ⊕ ε = m, ∀m ∋ M	

∀m1, m2 ∋ M, m1 ⊕ m2 = m2 ⊕ m1	

Simplest example: integers with + (addition)	

(a ⊕ b ⊕ c ⊕ d ⊕ e ⊕ f)	

You can put the parentheses anywhere!	

Batch = Hadoop	

Mini-batches	

Online = Storm	

 Summingbird values must be at least semigroups���
(most are commutative monoids in practice)	

(((((a ⊕ b) ⊕ c) ⊕ d) ⊕ e) ⊕ f)	

((a ⊕ b ⊕ c) ⊕ (d ⊕ e ⊕ f))	

Idea #1: Algebraic structures provide the basis for ���
seamless integration of batch and online processing	

Power of associativity =	

Results are exactly the same!	

def wordCount[P <: Platform[P]]
 (source: Producer[P, String],
 store: P#Store[String, Long]) =
 source.flatMap { sentence =>
 toWords(sentence).map(_ -> 1L)
 }.sumByKey(store)

Scalding.run {
 wordCount[Scalding](
 Scalding.source[Tweet]("source_data"),
 Scalding.store[String, Long]("count_out")
)
}

Storm.run {
 wordCount[Storm](
 new TweetSpout(),
 new MemcacheStore[String, Long]
)
}

Summingbird Word Count	

Run on Scalding (Cascading/Hadoop)	

Run on Storm	

where data comes from	

where data goes	

“map”	

“reduce”	

read from HDFS	

write to HDFS	

read from message queue	

write to KV store	

Map Map Map

Input Input Input

Reduce Reduce

Output Output

Spout

Bolt

memcached

Bolt Bolt

Bolt Bolt

“Boring” monoids	

addition, multiplication, max, min	

moments (mean, variance, etc.)	

sets	

hashmaps with monoid values	

More interesting monoids?	

tuples of monoids	

Idea #2: For many tasks, close enough is good enough!	

“Interesting” monoids	

Bloom filters (set membership)	

HyperLogLog counters (cardinality estimation)	

Count-min sketches (event counts)	

1. Variations on hashing	

2. Bounded error	

Common features	

Cheat sheet	

Set membership	

Set cardinality	

Frequency count	

set	

set	

hashmap	

Bloom filter	

hyperloglog counter 	

count-min sketches	

Exact	

 Approximate	

def wordCount[P <: Platform[P]]
 (source: Producer[P, Query],
 store: P#Store[Long, Map[String, Long]]) =
 source.flatMap { query =>
 (query.getHour, Map(query.getQuery -> 1L))
 }.sumByKey(store)

def wordCount[P <: Platform[P]]
 (source: Producer[P, Query],
 store: P#Store[Long, SketchMap[String, Long]])
 (implicit countMonoid: SketchMapMonoid[String, Long]) =
 source.flatMap { query =>
 (query.getHour,
 countMonoid.create((query.getQuery, 1L)))
 }.sumByKey(store)

Exact with hashmaps	

Task: count queries by hour	

Approximate with CMS	

(Left) Joins	

def urlCount[P <: Platform[P]]
 (tweets: Producer[P, Tweet],
 urlExpander: P#Service[String, String],
 store: P#Store[String, Long]) =
 source.flatMap { tweet =>
 extractUrls(tweet.getText)
 }.map { url => (url, 1L) }
 .leftJoin(urlExpander)
 .map {
 case (shortUrl, (count, optResolvedUrl)) =>
 (optResolvedUrl.getOrElse("unknown"), count)
 }.sumByKey(store)

Task: count expanded URLs	

Hybrid Online/Batch Processing	

online results
key-value store

batch results
key-value store

client
Summingbird

program

Message
Queue

Hadoop job

Storm topology

store1 source2 source3 … store2 store3 … source1

read write

ingest

HDFS

read write

query

query

online

batch

cl
ie

nt
 li

br
ar

y

Example: count historical clicks and clicks in real time	

Multiple generation of systems for “real-time counting”	

A few dozen jobs, account for ~half of online analytics	

Began late 2012	

First production usage early 2013	

Open-sourced Sept 2013	

Powers dashboards, signals for products	

Deployment Status	

(lots of experience on use cases)	

Currently:	

Related work	

Lots of work on dataflow languages: ���
Pig, Scaling, DryadLINQ, Spark, etc.	

Lots of work on online MapReduce: ���
HOP, DEDUCE, MapUpdate, etc.	

Lots of work on stream processing: ���
Aurora, S4, Samza, BlockMon, Spark Streaming, MillWheel, Photon, etc.	

Lots of work on incremental batch processing: ���
CBP, Incoop, Hourglass, etc.	

Lots of work on pub-sub: ���
Kafka, RabbitMQ, SQS, etc.	

Some work on category theory and big data: ���
monad comprehensions, monoids for ML, CRDT	

More target execution frameworks, e.g., Spark	

Automatic tuning of mini-batches for Storm	

Future Work	

Optimizations:	

Standard “bag of tricks”	

Integrating batch and online MapReduce	

Summingbird	

Idea #1: Algebraic structures provide the basis for ���
seamless integration of batch and online processing	

Probabilistic data structures as monoids	

Idea #2: For many task, close enough is good enough	

Questions?	

