Summingbird:
A Framework for Integrating Batch and Online
MapReduce Computations

Oscar Boykin, Sam Ritchie,
lan O'Connell, and Jimmy Lin

VLDB 2014
Thursday, September 4, 2014

Scene:
Internet company in Silicon Valley (circa 2010)

Standard data science task:
What have people been clicking on?

Simple!
Write some Pig...

raw = load '/logs/' using Logloader();

a = filter raw by action == 'click';
b = group a by target;
c = foreach b generate COUNT(a), group;

store ¢ into 'counts/':

Or some Scalding (more recently)...

val input = TypedTsv[(String, String)]l("/logs”)
val raw = TypedPipe.from(input)

raw.groupBy { case (target, action) => target }
.Size
write(TypedTsv("counts"))

Standard data science task:

What have people been clicking on? |
GHNP\e*

Now try:
What have people been clicking on right now?

¥
STUmbjes ygh* *hrmmpm

Two major pain points (circa 2010):
|. Lack of a standardized online processing framework
2. Having to write everything twice

State of the industry (circa 201 3):
Good handle on batch processing at scale
Increasing convergence on online processing frameworks

memcached

Two major pain points:
|. Lack of a standardized online processing framework
Widespread adoption of Storm at Twitter

2. Having to write everything twice
The point of this work...

Summingbird

A domain-specific language (in Scala) designed
to integrate batch and online MapReduce computations

Idea #1:Algebraic structures provide the basis for
seamless integration of batch and online processing

|dea #2: For many tasks, close enough is good enough
Probabilistic data structures as monoids

Summingbird

Primary goal is developer productivity
Optimizations can come later...

Scope:“the easy problems”

counting etc. (min, max, mean, moments...)
set membership
histograms

Batch and Online MapReduce

€¢ ’»

n1ap>
flatMap[T, U]l (fn: T => List[U]): List[U]
map[T, U]l (fn: T => U): List[U]

filter[T]1(fn: T => Boolean): List[T]

“reduce”

sumByKey

|dea #1:Algebraic structures provide the basis for
seamless integration of batch and online processing

Semigroup = (M, o)
®@MxXM—->Mst,Vm,m,ymSM
(M) ® my) ®mz=m,; & (m; & m;)

Monoid = Semigroup + identity
ESL,LEDM=MO®E=mM Vm>2M

Commutative Monoid = Monoid + commutativity
Vm,m, 3 Mm &m,=m, ® m,

Simplest example: integers with + (addition)

|dea #1:Algebraic structures provide the basis for
seamless integration of batch and online processing

Summingbird values must be at least semigroups
(most are commutative monoids in practice)

Power of associativity =
You can put the parentheses anywhere!

(aobdcodoedf) Batch = Hadoop
(((a®b)@®c)odd)de)®df) Online =Storm

(a®db@®c)®(d®edf)) Mini-batches

Summingbird Word Count

def wordCount[P <: Platform[P]]

(source: Producer[P, Stringl, /where data goes
store: P#Store[String, Long])™= .

source.flatMap { sentence => é/////////‘lﬂap

toWords (sentence) .map(_ -> 1L)
}.sumByKey (store) <« reduce

where data comes from

Run on Scalding (Cascading/Hadoop)

Scalding.run { read from HDFS
wordCount[Scalding] (
Scalding.source[Tweet] ("source_data"),
Scalding.store[String, Long] ("count out")

)
} T write to HDFS

Run on Storm

Storm.run { read from message queue
wordCount[Storm] (

new TweetSpout(),
new MemcacheStore[String, Long]

)
}

write to KV store

Reduce Reduce

memcached

Output Output

“Boring” monoids

addition, multiplication, max, min
moments (mean, variance, etc.)
sets
tuples of monoids
hashmaps with monoid values

. 1e?
More interesting monoid

|dea #2: For many tasks, close enough is good enough!

“Interesting” monoids

Bloom filters (set membership)
HyperLoglog counters (cardinality estimation)
Count-min sketches (event counts)

Common features
| .Variations on hashing
2. Bounded error

Cheat sheet

Exact Approximate
Set membership set Bloom filter
Set cardinality set hyperloglog counter

Frequency count hashmap count-min sketches

Task: count queries by hour

Exact with hashmaps

def wordCount[P <: Platform[P]]
(source: Producer [P, Query],
store: P#Store[Long, Map[String, Longl]) =
source.flatMap { query =>
(query.getHour, Map(query.getQuery -> 1L))
}.sumByKey (store)

Approximate with CMS

def wordCount[P <: Platform[P]]
(source: Producer [P, Query],
store: P#Store[Long, SketchMap[String, Longl])
(implicit countMonoid: SketchMapMonoid[String, Long]) =
source.flatMap { query =>
(query.getHour,
countMonoid.create((query.getQuery, 1L)))
}.sumByKey (store)

(Left) Joins
Task: count expanded URLs

def urlCount[P <: Platform[P]]
(tweets: Producer [P, Tweet],
urlExpander: P#Service[String, String],
store: P#Store[String, Long]) =
source.flatMap { tweet =>
extractUrls(tweet.getText)
y.map { url => (url, 1L) }
.leftJoin(urlExpander)
.map {
case (shortUrl, (count, optResolvedUrl)) =>

(optResolvedUrl.getOrElse("unknown"), count)
}.sumByKey (store)

Hybrid Online/Batch Processing

Example: count historical clicks and clicks in real time

Message online results
key-value store

Storm topology

Queue
query

>
. ©
________ © 2"29_ Summingbird N 5 o
batch program E
©
query
Hadoop job batch results
key-value store
] \ // f ingest
HDFS

read write
A

source, @ source,

Deployment Status

Multiple generation of systems for “real-time counting”
(lots of experience on use cases)

Began late 2012
First production usage early 2013
Open-sourced Sept 2013

Currently:
A few dozen jobs, account for ~half of online analytics
Powers dashboards, signals for products

Related work

Lots of work on dataflow languages:
Pig, Scaling, DryadLINQ, Spark, etc.

Lots of work on online MapReduce:
HOP, DEDUCE, MapUpdate, etc.

Lots of work on incremental batch processing:
CBP, Incoop, Hourglass, etc.

Lots of work on stream processing:
Aurora, 54, Samza, BlockMon, Spark Streaming, MillWheel, Photon, etc.

Lots of work on pub-sub:
Kafka, RabbitMQ, SQS, etc.

Some work on category theory and big data:
monad comprehensions, monoids for ML, CRDT

Future Work

More target execution frameworks, e.g., Spark

Optimizations:
Standard “bag of tricks”
Automatic tuning of mini-batches for Storm

Summingbird
Integrating batch and online MapReduce

|ldea #1:Algebraic structures provide the basis for
seamless integration of batch and online processing

|dea #2: For many task, close enough is good enough
Probabilistic data structures as monoids

Questions?

