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Scene: ���
Internet company in Silicon Valley (circa 2010)	



Standard data science task: ���
What have people been clicking on?	





Simple!	



raw = load '/logs/' using LogLoader(); 
 
a = filter raw by action == 'click'; 
b = group a by target; 
c = foreach b generate COUNT(a), group; 
 
store c into 'counts/'; 

val input = TypedTsv[(String, String)]("/logs”) 
val raw = TypedPipe.from(input) 
 
raw.groupBy { case (target, action) => target } 
  .size 
  .write(TypedTsv("counts")) 

Write some Pig…	



Or some Scalding (more recently)…	





Standard data science task: ���
What have people been clicking on?	



Now try: ���
What have people been clicking on right now?	



*grumble*	



Two major pain points (circa 2010):	


1. Lack of a standardized online processing framework	



2. Having to write everything twice	



Simple!	



*ugh*	

 *hrmmm*	





State of the industry (circa 2013):	


Good handle on batch processing at scale	



Increasing convergence on online processing frameworks	



Spout 

Bolt 

memcached 

Bolt Bolt 

Bolt Bolt 

Storm	





Two major pain points:	


1. Lack of a standardized online processing framework	



2. Having to write everything twice	



✓Widespread adoption of Storm at Twitter	



The point of this work…	





A domain-specific language (in Scala) designed	


to integrate batch and online MapReduce computations	



Summingbird	



Idea #1: Algebraic structures provide the basis for ���
seamless integration of batch and online processing	



Probabilistic data structures as monoids	


Idea #2: For many tasks, close enough is good enough	





Summingbird	



Primary goal is developer productivity	


Optimizations can come later…	



counting etc. (min, max, mean, moments…)	



Scope: “the easy problems”	



set membership	


histograms	





“map”	



flatMap[T, U](fn: T => List[U]): List[U] 

map[T, U](fn: T => U): List[U] 

filter[T](fn: T => Boolean): List[T] 

sumByKey 

Batch and Online MapReduce 	



“reduce”	





Semigroup = ( M , ⊕ )	


⊕ : M × M → M, s.t., ∀m1, m2, m3 ∋ M	



Idea #1: Algebraic structures provide the basis for ���
seamless integration of batch and online processing	



(m1 ⊕ m2) ⊕ m3 = m1 ⊕ (m2 ⊕ m3) 	



Monoid = Semigroup + identity	



Commutative Monoid = Monoid + commutativity	



ε s.t., ε ⊕ m = m ⊕ ε = m, ∀m ∋ M	



∀m1, m2 ∋ M, m1 ⊕ m2 = m2 ⊕ m1	



Simplest example:  integers with + (addition)	





( a ⊕ b ⊕ c ⊕ d ⊕ e ⊕ f )	



You can put the parentheses anywhere!	



Batch = Hadoop	



Mini-batches	


Online = Storm	



 Summingbird values must be at least semigroups���
(most are commutative monoids in practice)	



((((( a ⊕ b ) ⊕ c ) ⊕ d ) ⊕ e ) ⊕ f )	


(( a ⊕ b ⊕ c ) ⊕ ( d ⊕ e ⊕ f ))	



Idea #1: Algebraic structures provide the basis for ���
seamless integration of batch and online processing	



Power of associativity =	



Results are exactly the same!	





def wordCount[P <: Platform[P]] 
  (source: Producer[P, String], 
   store: P#Store[String, Long]) = 
   source.flatMap { sentence => 
      toWords(sentence).map(_ -> 1L) 
    }.sumByKey(store) 

Scalding.run { 
  wordCount[Scalding]( 
    Scalding.source[Tweet]("source_data"), 
    Scalding.store[String, Long]("count_out") 
  ) 
} 

Storm.run { 
  wordCount[Storm]( 
    new TweetSpout(), 
    new MemcacheStore[String, Long] 
  ) 
} 

Summingbird Word Count	



Run on Scalding (Cascading/Hadoop)	



Run on Storm	



where data comes from	


where data goes	



“map”	



“reduce”	



read from HDFS	



write to HDFS	



read from message queue	



write to KV store	





Map Map Map 

Input Input Input 

Reduce Reduce 

Output Output 

Spout 

Bolt 

memcached 

Bolt Bolt 

Bolt Bolt 



“Boring” monoids	



addition, multiplication, max, min	


moments (mean, variance, etc.)	



sets	



hashmaps with monoid values	



More interesting monoids?	



tuples of monoids	





Idea #2: For many tasks, close enough is good enough!	



“Interesting” monoids	


Bloom filters (set membership)	



HyperLogLog counters (cardinality estimation)	


Count-min sketches (event counts)	



1. Variations on hashing	


2. Bounded error	



Common features	





Cheat sheet	



Set membership	



Set cardinality	



Frequency count	



set	



set	



hashmap	



Bloom filter	



hyperloglog counter 	



count-min sketches	



Exact	

 Approximate	





def wordCount[P <: Platform[P]] 
  (source: Producer[P, Query], 
   store: P#Store[Long, Map[String, Long]]) = 
   source.flatMap { query => 
      (query.getHour, Map(query.getQuery -> 1L)) 
    }.sumByKey(store) 

def wordCount[P <: Platform[P]] 
  (source: Producer[P, Query], 
   store: P#Store[Long, SketchMap[String, Long]]) 
  (implicit countMonoid: SketchMapMonoid[String, Long]) = 
   source.flatMap { query => 
      (query.getHour, 
       countMonoid.create((query.getQuery, 1L))) 
    }.sumByKey(store) 

Exact with hashmaps	



Task: count queries by hour	



Approximate with CMS	





(Left) Joins	



def urlCount[P <: Platform[P]] 
  (tweets: Producer[P, Tweet], 
   urlExpander: P#Service[String, String], 
   store: P#Store[String, Long]) = 
   source.flatMap { tweet => 
      extractUrls(tweet.getText) 
    }.map { url => (url, 1L) } 
     .leftJoin(urlExpander) 
     .map { 
      case (shortUrl, (count, optResolvedUrl)) => 
        (optResolvedUrl.getOrElse("unknown"), count) 
    }.sumByKey(store) 

Task: count expanded URLs	





Hybrid Online/Batch Processing	



online results  
key-value store 

batch results  
key-value store 

client 
Summingbird 

program 

Message 
Queue 

Hadoop job 

Storm topology 

store1 source2 source3 … store2 store3 … source1 

read write 

ingest 

HDFS 

read write 

query 

query 

online 

batch 

cl
ie
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 li
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Example: count historical clicks and clicks in real time	





Multiple generation of systems for “real-time counting”	



A few dozen jobs, account for ~half of online analytics	



Began late 2012	


First production usage early 2013	


Open-sourced Sept 2013	



Powers dashboards, signals for products	



Deployment Status	



(lots of experience on use cases)	



Currently:	





Related work	


Lots of work on dataflow languages: ���
Pig, Scaling, DryadLINQ, Spark, etc.	



Lots of work on online MapReduce: ���
HOP, DEDUCE, MapUpdate, etc.	



Lots of work on stream processing: ���
Aurora, S4, Samza, BlockMon, Spark Streaming, MillWheel, Photon, etc.	



Lots of work on incremental batch processing: ���
CBP, Incoop, Hourglass, etc.	



Lots of work on pub-sub: ���
Kafka, RabbitMQ, SQS, etc.	



Some work on category theory and big data: ���
monad comprehensions, monoids for ML, CRDT	





More target execution frameworks, e.g., Spark	



Automatic tuning of mini-batches for Storm	



Future Work	



Optimizations:	


Standard “bag of tricks”	





Integrating batch and online MapReduce	


Summingbird	



Idea #1: Algebraic structures provide the basis for ���
seamless integration of batch and online processing	



Probabilistic data structures as monoids	


Idea #2: For many task, close enough is good enough	



Questions?	




