
An Exploration of Postings List Contiguity
in Main-Memory Incremental Indexing

Nima Asadi1,2, Jimmy Lin3,2,1

1Dept. of Computer Science, 2Institute for Advanced Computer Studies, 3The iSchool
University of Maryland, College Park

ABSTRACT
For text retrieval systems, the assumption that all data
structures reside in main memory is increasingly common.
In this context, we present a novel incremental inverted in-
dexing algorithm for web-scale collections that directly con-
structs compressed postings lists in memory. Designing effi-
cient in-memory algorithms requires understanding modern
processor architectures: in this paper, we explore the issue
of postings list contiguity. Postings lists that occupy con-
tiguous memory regions are preferred for retrieval, but main-
taining contiguity is costly in terms of speed and complexity.
On the other hand, allowing discontiguous index segments
simplifies index construction but decreases retrieval perfor-
mance. Understanding this tradeoff is our main contribu-
tion: We show that co-locating small groups of inverted list
segments yields query evaluation performance that is statis-
tically indistinguishable from fully-contiguous postings lists.
In other words, we can achieve ideal performance with a
relatively small amount of effort.

1. INTRODUCTION
For text retrieval applications today, it is reasonable to

assume that all index structures fit in main memory. In this
context, we explore incremental (sometimes referred to as
“online”) inverted indexing algorithms in main memory for
modern web-scale collections. We describe a novel indexing
algorithm for incrementally building compressed postings
lists directly in memory. Of course, incremental indexing is
not a new research topic, but most previous work assumes
that the index will not fit in memory and must reside on
disk. Our assumption puts us in a different, underexplored
region of the design space.

Frequently, indexing algorithms encode a tradeoff between
indexing and retrieval performance. Our study specifically
examines the issue of postings list contiguity, which mani-
fests such a tradeoff. By contiguity we mean whether each
postings list occupies a single block of memory or is split into
multiple segment placed at different memory locations. Why
does contiguity matter? From the retrieval perspective, we
would expect an impact on query evaluation speed: travers-
ing postings lists that occupy a contiguous block of memory
takes advantage of cache locality and processor prefetch-
ing, whereas discontiguous postings lists suffer from cache
misses due to pointer chasing. However, from the index-
ing perspective, maintaining contiguous postings lists intro-

Copyright is held by the authors.
LSDS-IR’14, February 28, New York NY, USA.

duces substantial complexity, for example, requiring either
a two-pass approach, eager over-allocation of memory, or re-
peatedly copying postings when they grow beyond a certain
size. With each of these techniques we would expect index-
ing performance to suffer. Thus, a faster, simpler indexing
algorithm that does not attempt to maintain postings list
contiguity may result in slower query evaluation. It is this
tradeoff that we seek to understand in more detail.

This paper has two main contribution: First, we present a
novel in-memory incremental indexing algorithm with sev-
eral desirable features: it is fast, scales to modern web-scale
collections, and takes advantage of best practice index com-
pression techniques. Second, in the context of this indexing
algorithm, we explore the impact of postings list contiguity
on indexing and query evaluation performance (both con-
junctive and disjunctive). We find that small discontigu-
ous inverted list segments do indeed cause a drop in query
evaluation speed, but that co-locating small groups of in-
dex segments yields performance that is statistically indis-
tinguishable from fully-contiguous postings lists. In other
words, we can achieve ideal performance with a relatively
small amount of effort.

2. BACKGROUND AND RELATED WORK
Traditional disk-based indexing algorithms are tuned to

the performance characteristics of rotational magnetic disks.
Similarly, efficient in-memory indexing algorithms must take
into account the design of modern processor and memory
architectures. The biggest challenge we face is the so-called
“memory wall” [2]: for several decades now, increases in pro-
cessor speed have far outpaced improvements in memory
latency. This means that RAM is becoming slower rela-
tive to the CPU. In the 1980s, memory latencies were on
the order of a few clock cycles; today, it could be several
hundred clock cycles. In modern architectures, memory la-
tencies are hidden by hierarchical caches, but cache misses
remain expensive. Thus, it is imperative that developers
either carefully manage data locality or structure memory
access patterns to take advantage of prefetching. This sug-
gests that discontiguous postings lists will slow query eval-
uation considerably due to pointer chasing. However, there
is one nuance worth noting: Following best practice, we use
PForDelta [26, 24] for compressing postings lists. Since it is
a block-based technique, decompression yields memory ac-
cess patterns that differ from techniques which code one in-
teger at a time (e.g., variable-length integers, γ codes, etc.).
Our experiments show that this has the effect of partially
masking memory latencies.

Inverted indexing for text retrieval has been thoroughly
studied by researchers, and a comprehensive review is be-
yond the scope of this work; we refer the reader to a survey
for more details [25]. Most previous work on incremental in-
dexing assumes that postings lists do not fit in memory and
ultimately must be organized on disk. Tomasic et al. [21]
was among the first to explore the design space of indexing
strategies in this scenario: options they explored included
writing discontiguous index segments to disk and different
ways of “reserving” extra space on disk to accommodate fu-
ture postings list growth. Elaborations and variations of the
same basic ideas have been explored by others [4, 17, 8, 18].

We compare our indexing approach to that of Lester et
al. [12, 13], which begins with in-memory inversion within a
buffer [11]. The authors present three options for what to do
once memory is exhausted: rebuild the index on disk from
scratch (not very practical), modify postings in place on disk
(practical only for small updates), or to selectively merge in-
memory and on-disk segments and rewrite to another region
on disk. In particular, they explored a geometric partition-
ing and hierarchical merging strategy that limits the number
of outstanding partitions, thereby controlling query costs.
The same basic idea was described at around the same time
by Büttcher et al. [6], who called their approach “logarith-
mic merge”. Both approaches were subsequently generalized
and extended [10, 15]

Our work is most similar to Fontoura et al. [9], who ex-
amined term-at-a-time and document-at-a-time approaches
for query evaluation using in-memory indexes. Their work,
however, assumes contiguous postings (with an unspecified
compression technique) and focuses on query optimization,
whereas we adopt baseline query evaluation algorithms but
explore the memory fragmentation and indexing speed is-
sues. Prior to that, Strohman and Croft [19] also studied
query evaluation strategies in main memory. Another point
of comparison is Earlybird [5], Twitter’s in-memory real-
time search engine. The system takes advantage of tweet-
specific features and adopts a federated architecture con-
sisting of small in-memory index segments—representing a
different point in the design space.

3. APPROACH

3.1 Basic Incremental Indexing Algorithm
Our indexer consists of three main components, depicted

in Figure 1: the dictionary, buffer maps, and the segment
pool. The basic indexing approach is to accumulate postings
in the buffer maps in an uncompressed form until the buffers
fill up, and then to “flush” the contents to the segment pool,
where the final compressed postings lists reside. Note that in
this approach the inverted lists are discontiguous; we return
to address this issue in Section 3.2.

The dictionary is implemented as a hash table with a bit-
wise hash function [16] and the move-to-front technique [23],
mapping terms (strings) to integers term ids. The dictionary
additionally holds the document frequency (df) for each
term, as well as a head and tail pointer into the segment
pool (more details below). In our implementation, term ids
are assigned sequentially as we encounter new terms.

A buffer map is a one-to-one mapping from term ids to ar-
rays of integers (the buffers). Since term ids increase mono-
tonically, a buffer map can be implemented as an array of
pointers, where each index position corresponds to a term id,

A

docid:508

A B A C A B
B D ...

1

2

3

496 498 501 508 ...

506 508 ...

505 507 ...508

docid buffer map

1

2

3

1 2 2 3 ...

2 3 ...

1 2 ...1

tf

1

2

3

10 3 2 4 12

1 4 142

25 12 43

term positions buffer map

1 2 2

buffer map

segment pool

B

docid:509

D E A A C F
B A ...

docid:510

B B C A K E
B D A F

A B

B

C

dictionary

term id head
pointer

A 1
B

C

2

3

tail
pointer

Figure 1: A snapshot of our indexing algorithm. In
the middle we have buffer maps for storing docids,
tfs, and term positions: the gray areas show ele-
ments inserted for document 508. Once the buffer
for a term fills up, an inverted list segment is as-
sembled and added to the end of the segment pool
and linked to the previous segment via addressing
pointers. The dictionary maps from terms to term
ids and holds pointers to the heads and tails of the
inverted list segments in the segment pool.

and the pointer points to the associated buffer. The array
of pointers is dynamically expanded to accommodate more
terms as needed. To construct a positional index, we build
three buffer maps: the document id (docid) map, the term
frequency (tf) map, and the term positions map. As the
names suggest, the docid map accumulates the document
ids of arriving documents, the tf map holds term frequen-
cies, and the term positions map holds term positions. There
is a one-to-one correspondence between entries in the docid
map and entries in the tf map (for each term that occurs in
a document, there is exactly one term frequency), but a one-
to-many correspondence between entries in the docid map
and entries in the term positions map (there are as many
term positions in each document as the term frequency).

In the indexing loop, the algorithm receives an input doc-
ument (sequentially numbered), parses it to gather all term
frequencies and term positions (relative to the current doc-
ument, starting from one) for all unique terms, and then
iterates over these terms, inserting the relevant information
into each buffer map. Whenever we encounter a new term,
the algorithm initializes an empty buffer in each buffer map
for the corresponding term id. Initially, the buffer size is set
to the block size b that will eventually be used to compressed
the data (leaving aside an optimization we introduce below
to control the vocabulary size). Following best practices
today, we use PForDelta [26, 24], with the recommended
block size of b = 128. The term positions map expands one
block at a time when it fills up to accommodate more posi-
tions. When the docid buffer for a term fills up, we “flush”
all buffers associated with the term, compressing the docids,
term frequencies, and term positions into what we call an
inverted list segment, described below:

Each inverted list segment begins with a run of docids,
gap-compressed using PForDelta; call this D. By design, the
docids occupy exactly one PForDelta block. Next, we com-
press the term frequencies using PFor; call this F . Note that
term frequencies cannot be gap-compressed, so they are left
unmodified. Finally, we process the term positions, which
are also gap-encoded, relative to the first term position in
each document. For example, if in d1 the term was found at
positions (1, 5, 9) and in d2 the term was found at positions
(3, 16), we would code (1, 4, 4, 3, 13). The term positions can

be unambiguously reconstructed from the term frequencies,
which provide offsets into the array of term positions. Since
the term positions array is likely longer than b, the compres-
sion block size, the term positions occupy multiple blocks.
Call the blocks of term positions P1 . . . Pm.

Finally, all the data are packed together in a contiguous
block of memory as follows:

[|D|, D, |F |, F, {|Pi|, Pi}0≤i<m]

where the | · | operator returns the length of its argument.
Since all the data are tightly packed in an otherwise unde-
limited array, we need to explicitly store the lengths of each
block to properly decode the data during retrieval.

Each inverted list segment is written at the end of the
segment pool, which is where the compressed inverted index
ultimately resides. Conceptually, the segment pool is an
bounded array with a pointer that keeps track of the current
“end”, but in practice the pool is allocated in large blocks
and dynamically expanded as necessary. In order to traverse
a term’s postings during query evaluation, we need to “link”
together the discontiguous segments. The first time we write
a segment for a term id, we add its address (byte offset in the
segment pool) to the dictionary, which serves as the “head”
pointer (the entry point to postings traversal). In addition,
we prepend to each segment the address (byte offset position
in the segment pool) of the next segment in the chain. This
means that every time we insert a new segment for a term,
we have to go back and correct the “next pointer” for the
last segment. We leave the next pointer blank for a newly-
inserted segment to mark the end of the postings list for
a term; this location is stored in the “tail pointer” in the
dictionary. Once the indexer has processed all documents,
the remaining contents of the buffer maps are flushed to the
segment pool in the same manner. By default, we build full
positional indexes, but our implementation has an option to
disable the term position buffers if desired. In this case, the
inverted list segments will be smaller, but other aspects of
the algorithm remain exactly the same.

Note that we currently do not handle document updates
or deletes, but we envision relatively straightforward strate-
gies that could be implemented in the future. It is possible
to store document deletes in a separate data structure and
ensure that deleted documents are not returned at query
time (this is sometimes called the “tombstone” approach).
Updates can be treated as deletes followed by additions. Pe-
riodically, the postings list can be rewritten with the deletes
“merged” back in—this might happen when the indexes are
persisted to durable storage for fault tolerance.

What are the implications of our index design? On the
positive side, all data in the segment pool are“tightly packed”
for maximum efficiency in memory utilization. During in-
dexing we guarantee that there is no heap fragmentation,
which may be a possibility if we simply used malloc to al-
locate space for each inverted list segment. On the nega-
tive side, postings traversal becomes an exercise in pointer
chasing across the heap, without any predictable access pat-
terns that will aid in processor prefetching across segment
boundaries. Thus, as a query evaluation algorithm consumes
postings, it is likely to encounter a cache miss whenever it
reaches the end of a segment, since it has to follow a pointer.

One final optimization detail: we control the size of the
term space by discarding terms that occur fewer than ten
times (an adjustable document frequency threshold). This

is accomplished as follows: instead of creating a buffer of
length b when we first encounter a new term, we first allocate
a small buffer equal to the df threshold. We buffer postings
for new terms until the threshold is reached, after which we
know that the term will make it into the final dictionary, and
so we reallocate a buffer of length b. This two-step process
reduces memory usage substantially since there are many
rare terms in web collections.

3.2 Segment Contiguity
It is clear that our baseline indexing algorithm generates

discontiguous inverted list segments. In order to create con-
tiguous inverted lists, we would need an algorithm to rear-
range the segments once they are written to the segment
pool. Before going down this path, however, we first exam-
ined the extent to which contiguous segments would improve
retrieval efficiency, from better reference locality, prefetch
cues provided to the processor, etc. Let us assume we have
an oracle that tells us exactly how long each inverted list is
going to be, so that we can lay out the segments end-to-end,
without any wasted memory. We simulate this oracle con-
dition by building the inverted index as normal, and then
performing in-memory post-processing to lay out all the in-
verted lists contiguously. The oracle allows us to establish
an upper bound on query evaluation speed.

We propose a simple yet effective approach to achieving
increasingly better approximations of contiguous postings
lists. Instead of moving compressed segments around after
they have been added to the segment pool, we change the
memory allocation policy for the buffer maps. Whenever the
docid buffer for a term becomes full (and thus compressed
and flushed to the segment pool), we expand that term’s
docid and tf buffers by a factor of two (still allowing the term
positions buffer to grow as long as necessary). This means
that after the first segment of a term is flushed, new docid
and tf buffers of length 2b replace the old ones; after the
second flush, the buffer size increases to 4b, and then 8b, and
so on. When a buffer of size 2mb becomes full, the buffer is
broken down into 2m segments, each segment is compressed
as described earlier, and all 2m segments are written at the
end of the segment pool contiguously—this strategy allows
long postings to become increasingly contiguous, without
wasting space on large buffers for rare terms.

To prevent buffers from growing indefinitely, we set a cap
on the length of docid and tf buffers. That is, if the cap is
set to 2mb, then when the buffer size for a term reaches that
limit, it is no longer expanded. This means that the maxi-
mum number of contiguous segments allowed in the segment
pool is 2m. We experimentally examine the effect of m on
query evaluation speed.

4. EXPERIMENTAL SETUP
Our experiments used the first English segment of the

ClueWeb09 web crawl by Carnegie Mellon University (∼50
million documents, 247GB compressed). For evaluation, we
used two sets of queries: the TREC 2005 terabyte track “ef-
ficiency” queries, which consist of 50,000 queries total, and
a set of 100,000 queries sampled randomly from the AOL
query log. Experiments were performed on a server running
Red Hat Linux, with dual Intel Xeon “Westmere” quad-core
processors (E5620 2.4GHz) and 128GB RAM.

Our indexer, called Zambezi, is implemented in C, com-
piled using gcc with -O3 optimizations; it is currently single-

Query 1b 2b 4b 8b 16b 32b 64b 128b Contiguous

Terabyte 49.7 (±0.2) 47.1 (±0.1) 45.9 (±0.4) 44.4 (±0.5) 42.9 (±0.4) 42.0 (±0.3) 41.6 (±0.1) 41.6 (±0.4) 41.3 (±0.1)
AOL 87.5 (±1.6) 83.2 (±0.5) 80.7 (±0.3) 75.5 (±0.5) 75.7 (±0.8) 75.8 (±0.3) 75.2 (±0.2) 75.0 (±0.6) 75.3 (±1.2)

Table 1: Average query latency (in milliseconds) for postings intersection using SvS with different buffer
length settings. Results are averaged across 5 trials, reported with 95% confidence intervals.

threaded. To support the reproducibility of experiments re-
ported in this paper, the system is released under an open-
source license.1 Since we focus on indexing, we wished to
separate document parsing from index construction. There-
fore, we assumed that documents have already been parsed,
stemmed, with stopwords removed. Our reports of indexing
speed do not include document pre-processing time.

We examined three aspects of performance: memory us-
age, indexing speed, and query evaluation latency. The first
two are straightforward, but we elaborate on the third. For
each indexer configuration, we measured query evaluation
speed in terms of query latency for two retrieval strategies:
conjunctive retrieval using the SvS algorithm, demonstrated
by Culpepper and Moffat [7] to be the best approach to
postings intersection, and disjunctive query processing us-
ing the Wand algorithm [3], which represents a strong base-
line for top k retrieval (with BM25). Our implementations
follow the two cited references, except for two substantive
differences: the search procedures for finding docids were
adapted to our discontiguous postings, and to probe a par-
ticular posting, the entire block is decompressed. Note that
we did not implement the query evaluation optimizations of
Fontoura et al. [9] and our indexes contained no auxiliary
structures such as skip-lists. For both conjunctive and dis-
junctive retrieval we first indexed the entire collection, and
then performed query evaluation at the end.

Since our focus is not on query evaluation, we believe that
experiments with SvS and Wand are sufficient to illustrate
the tradeoffs of our indexing algorithm. We do not consider
any learning to rank [14] because it represents an orthogonal
issue. In a modern multi-stage web search architecture [1,
22], an initial retrieval stage (e.g., using SvS or Wand) gen-
erates candidate documents that are then reranked by a
machine-learned ranking model.

We compared our indexer against two open-source en-
gines: Zettair (v0.9.3), which implements the geometric par-
titioning approach [13] and Indri (v5.1) [20]. To ensure a
fair comparison, we disabled document parsing and used
the already-parsed documents as input. As with our sys-
tem, reports of indexing speed do not include time spent on
document pre-processing.

5. RESULTS

5.1 Query Latency
Table 1 summarizes query latency for conjunctive query

processing (postings intersection with SvS). The average la-
tency per query is reported in milliseconds across five trials
along with 95% confidence intervals. Each column shows
a different indexing condition: 1b is the baseline algorithm
presented in Section 3.1 (discontiguous postings). Each of
{2, 4, 8 . . . 128}b represents a different upper bound in the
buffer map growing strategy described in Section 3.2. The
final column marked “contiguous” denotes the oracle condi-
tion in which all postings are contiguous.

1
http://zambezi.cc/

 0

 50

 100

 150

 200

1 2 3 4 5 6 7 8 9+

Ti
m

e
(m

s)

Query Length

ClueWeb09
Contiguous
1b
32b

Figure 2: Query latency using SvS on AOL queries,
by query length for different buffer length settings.

Query 1b 32b Contiguous

Terabyte 150.0 (±0.5) 141.1 (±0.6) 141.1 (±0.2)
AOL 455.7 (±5.1) 434.3 (±5.8) 432.6 (±4.9)

Table 2: Average query latency (in milliseconds) to
retrieve the top 1000 hits in terms of BM25 using
WAND (5 trials, with 95% confidence intervals).

From these results, we see that, as expected, discontigu-
ous postings lists (1b) yield slower query evaluation. As b
increases, we allow the buffer maps to increase in length, low-
ering query latencies. At 32b, query evaluation performance
is statistically indistinguishable from the performance upper
bound (i.e., confidence intervals overlap). That is, we only
need to arrange inverted list segments in relatively small
groups of 32 to achieve ideal performance.

Figure 2 illustrates query latency by query length for the
AOL query set under different conditions. Not surprising,
the latency gap between contiguous and the 1b condition
widens for longer queries. On the other hand, the difference
between a contiguous index and the 32b condition is indis-
tinguishable across all query lengths—the lines practically
overlap in the figure.

For disjunctive query processing, we used Wand to re-
trieve the top 1000 documents using BM25. Table 2 summa-
rizes these results. For space considerations, we only report
results for select buffer length configurations. These num-
bers are consistent with the conjunctive processing case. A
maximum buffer size of 32b yields query latencies that are
statistically indistinguishable from a contiguous index. Note
that the performance difference between contiguous post-
ings lists and 1b discontiguous postings lists is less than 7%.
In other words, there is much less performance degradation
than in the SvS case.

The major finding of these experiments is that a relatively
modest amount of postings contiguity suffices to yield per-
formance that is indistinguishable from contiguous postings.
From the processor architecture perspective, there are two
interacting phenomena that contribute to this result: First,
the memory latencies associated with pointer chasing in the
linked lists appear to be partially masked by PForDelta de-

 0

 5

 10

 15

 20

 25

 30

512M
B

1G
B

2G
B

4G
B

20M
B

128M
B

256M
B

512M
B

1G
B

2G
B

4G
B

1b 2b 4b 8b 16b
32b
64b
128b

Ti
m

e
(k

ilo
se

co
nd

s)
ClueWeb09

Buffer sizeMemory limit

Indri
Zettair

Zambezi

Figure 3: Indexing speed for Indri and Zettair with
different memory limits, and Zambezi (our indexer)
with different contiguity conditions. Error bars
show 95% conf. intervals across 3 trials.

compression. With contiguous postings lists, predictable
striding allows prefetching to hide memory latencies, but
postings are traversed in “bursts” since after reading each
segment the algorithm must decode the blocks. Thus, de-
compression can hide some of the effects of cache misses for
discontiguous postings: while the processor is decompress-
ing one segment, it can dispatch memory requests for the
next (since the instructions are independent). Second, query
evaluation is more complex than a simple linear scan of post-
ings lists: SvS performs galloping search for intersection and
Wand uses pivoting to skip around in the postings lists.
This behavior creates unpredictability in memory access pat-
terns and reduces opportunities for the prefetchers to detect
striding patterns. To illustrate this, consider the difference
between ideal performance and the 1b baseline condition:
the performance gap is much smaller for Wand than for
SvS. This makes sense, since at each stage, SvS intersects
the current postings list with the working set: this implies
greater cache locality, so we obtain a bigger performance
boost with contiguous postings lists. On the other hand,
Wand pivots from term to term and at each step may ad-
vance the current pointer by an unpredictable amount; even
if the postings lists are contiguous, the processor may en-
counter cache misses. Thus, it makes less difference whether
postings lists are contiguous to begin with.

5.2 Indexing Speed
Figure 3 shows indexing times for our indexer, Zettair,

and Indri. For Zettair and Indri, we varied the amount of
memory provided to the system. Note that we were not able
to provide Zettair with more than 4GB memory due to its
implementation. In C, the maximum size of an individual
array is 232 and circumventing this restriction would have
required substantial refactoring of the code, which we did
not undertake. For our indexer, we report results with dif-
ferent postings list contiguity conditions. Error bars show
95% confidence intervals across 3 trials. In all conditions we
do not include document pre-processing time.

Indexing time with Indri appears to be relatively insen-
sitive to the amount of memory provided, but it is overall
slower than both Zettair and our indexer. With Zettair, the
maximum size of the memory buffer does have a significant
impact on indexing time. Surprisingly, giving Zettair more
memory actually slows down indexing speed! We explain
this counter-intuitive result as follows: smaller in-memory
segments are more cache-friendly; for example, our system

 0

 0.5

 1

 1.5

 2

 2.5

1b 2b 4b 8b 16b

32b

64b

128b

M
em

or
y

us
ag

e

Maximum buffer length

ClueWeb09
Docid
Tf
Position

22
.1

 G
B

Figure 4: Memory required for all buffer maps with
different buffer lengths, normalized to the 1b setting.

has a 12MB L3 cache, so in the 20MB condition, more than
half of the segment will reside in cache. On the other hand,
smaller segments require more merging. Overall, it seems
that the first factor is more important: indexing is fastest
with 20MB buffers.

These results show that our in-memory indexing algo-
rithm is not substantially faster than an on-disk algorithm.
Why might this be so? First, on-disk indexing algorithms
have been studied for decades, and so it is no surprise that
state-of-the-art techniques are well-tuned to the character-
istics of disks. Second, cache locality effects and mem-
ory latencies slow down in-memory algorithms as the mem-
ory footprint increases—this is confirmed by the Zettair re-
sults, where, in general, giving the indexer more memory
reduces performance. How does this happen? A larger
in-memory footprint means that we are accumulating more
documents in the buffer, and hence managing a larger vocab-
ulary space. This causes more“cache churn”, since whenever
we encounter a rare term, its associated data (e.g., recently-
inserted postings) are fetched into cache, displacing another
term’s. Since the rare term is unlikely to appear in another
document soon, it is wasting valuable space in the cache. In
contrast, the merging operations for the on-disk algorithms
access data in a very predictable pattern, thus creating op-
portunities for the prefetchers to mask memory latencies.

Finally, we note that end-to-end system comparisons con-
flate several components of indexers that may have nothing
to do with the algorithms being studied—for example, we
use PForDelta compression, whereas Zettair does not. Thus,
Zettair may be fast for reasons that are independent of the
on-disk vs. in-memory distinction.

5.3 Memory Usage
All inverted indexing algorithms require transient working

memory to hold intermediate data structures. For on-disk
incremental indexing algorithms, previous work has assumed
that this working memory is small. In our case, there is no
hard limit on the amount of space we can devote to work-
ing memory, but space allocated for holding intermediate
data takes away from space that can be used to store the
final compressed postings lists, which limits the size of the
collection that we can index for a fixed server configuration.

At minimum, our buffer maps must hold the most recent b
docids, term frequencies, and associated term positions. In
our case, we set b = 128 to match best practices PForDelta
block size. Figure 4 shows the maximum size of the buffer
maps for different contiguity configurations (as we increase

the buffer lengths), broken down by space devoted to docids,
term frequencies, and term positions. The reported values
were computed analytically from the necessary term statis-
tics, making the assumption that all terms reach their maxi-
mum buffer sizes at the same time, which makes these upper
bounds on memory usage. Since we primarily care about
relative memory usage, we normalized the values to the 1b
condition; in absolute terms, the total buffer map size is
22.1GB. It is no surprise that as the maximum buffer length
increases, the total memory requirement grows as well. At
128b the algorithm requires 95% more space (compared to
the 1b condition). At 32b, which from our previous results
achieves query evaluation performance that is statistically
indistinguishable from contiguous postings lists, we require
70% more memory. As a reference, the total size of the seg-
ment pool (i.e., size of the final index) is 62GB. This means
that setting the maximum buffer length to 1b, 32b and 128b
results in a buffer map that is approximately 32%, 54%,
and 63% of the size of the segment pool, respectively. These
statistics quantify the space overhead of our in-memory in-
dexing algorithm.

Note that most of the working memory is taken up by
term positions; the requirements for buffering docids and
term frequencies are modest. The present implementation
uses 32-bit integers in all cases, including term positions. We
could easily cut the memory requirements for those in half
by switching to 16-bit integers, although this would require
us to either discard or truncate long documents.

The total number of unique terms is 79M in ClueWeb09.
Since the collection consists of web pages, most of the terms
are unique and correspond to JavaScript fragments that
our parser inadvertently included and other HTML idiosyn-
crasies; such issues are prevalent in web search and HTML
cleanup is beyond the scope of this paper. Our indexer dis-
cards terms that occur fewer than 10 times, which results in
a vocabulary size of 6.9M words.

The average size of each inverted list segment for terms
with a buffer length of 1b is about 300 bytes; for terms that
require a buffer of length of 2b, the average length is around
600 bytes. For terms with a buffer of length > 2b, this value
is about 800 bytes. These statistics make sense since 1b
terms may have a document frequency of less than 128, and
in general, rarer terms have smaller term frequencies, and
hence fewer term positions.

6. CONCLUSION
The finding in this paper that postings list contiguity

matters only to a certain extent contributes to our under-
standing of main memory algorithms for text retrieval in the
context of modern processor architectures. We believe that
more work is needed to better understand the performance
of query evaluation optimizations that may introduce differ-
ent memory access patterns. One thing is clear though: the
design tradeoffs for retrieval engines become very different
once disk is removed from the picture.

7. ACKNOWLEDGMENTS
This work has been supported by NSF under awards IIS-
0916043, IIS-1144034, and IIS-1218043. Any opinions, find-
ings, conclusions, or recommendations expressed are the au-
thors’ and do not necessarily reflect those of the sponsor.
The first author’s deepest gratitude goes to Katherine, for

her invaluable encouragement and wholehearted support.
The second author is grateful to Esther and Kiri for their
loving support and dedicates this work to Joshua and Jacob.

8. REFERENCES
[1] N. Asadi and J. Lin. Document vector representations for

feature extraction in multi-stage document ranking.
Information Retrieval, 16(6):747–768, 2013.

[2] P. Boncz, M. Kersten, and S. Manegold. Breaking the
memory wall in MonetDB. CACM, 51(12):77–85, 2008.

[3] A. Broder, D. Carmel, M. Herscovici, A. Soffer, and
J. Zien. Efficient query evaluation using a two-level
retrieval process. CIKM, 2003.

[4] E. Brown, J. Callan, and W. Croft. Fast incremental
indexing for full-text information retrieval. VLDB, 1994.

[5] M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and
J. Lin. Earlybird: Real-time search at Twitter. ICDE, 2012.

[6] S. Büttcher, C. Clarke, and B. Lushman. Hybrid index
maintenance for growing text collections. SIGIR, 2006.

[7] J. Culpepper and A. Moffat. Efficient set intersection for
inverted indexing. ACM TOIS, 29(1):1, 2010.

[8] D. Cutting and J. Pedersen. Optimization for dynamic
inverted index maintenance. SIGIR, 1990.

[9] M. Fontoura, V. Josifovski, J. Liu, S. Venkatesan, X. Zhu,
and J. Zien. Evaluation strategies for top-k queries over
memory-resident inverted indexes. VLDB, 2011.

[10] R. Guo, X. Cheng, H. Xu, and B. Wang. Efficient on-line
index maintenance for dynamic text collections by using
dynamic balancing tree. CIKM, 2007.

[11] S. Heinz and J. Zobel. Efficient single-pass index
construction for text databases. JASIST, 54(8):713–728,
2003.

[12] N. Lester, A. Moffat, and J. Zobel. Fast on-line index
construction by geometric partitioning. CIKM, 2005.

[13] N. Lester, A. Moffat, and J. Zobel. Efficient online index
construction for text databases. ACM TODS, 33(3):19,
2008.

[14] H. Li. Learning to Rank for Information Retrieval and
Natural Language Processing. Morgan & Claypool
Publishers, 2011.

[15] G. Margaritis and S. V. Anastasiadis. Low-cost
management of inverted files for online full-text search.
CIKM, 2009.

[16] M. Ramakrishna and J. Zobel. Performance in practice of
string hashing functions. DASFAA, 1997.

[17] W.-Y. Shieh and C.-P. Chung. A statistics-based approach
to incrementally update inverted files. IP&M,
41(2):275–288, 2005.

[18] K. Shoens, A. Tomasic, and H. Garćıa-Molina. Synthetic
workload performance analysis of incremental updates.
SIGIR, 1994.

[19] T. Strohman and W. Croft. Efficient document retrieval in
main memory. SIGIR, 2007.

[20] T. Strohman and W. Croft. Low latency index
maintenance in Indri. OSIR Workshop, 2006.

[21] A. Tomasic, H. Garćıa-Molina, and K. Shoens. Incremental
updates of inverted lists for text document retrieval.
SIGMOD, 1994.

[22] N. Tonellotto, C. Macdonald, and I. Ounis. Efficient and
effective retrieval using selective pruning. WSDM, 2013.

[23] H. Williams, J. Zobel, and S. Heinz. Self-adjusting trees in
practice for large text collections. Software–Practice &
Experience, 31(10):925–939, 2001.

[24] H. Yan, S. Ding, and T. Suel. Inverted index compression
and query processing with optimized document ordering.
WWW, 2009.

[25] J. Zobel and A. Moffat. Inverted files for text search
engines. ACM Computing Surveys, 38(6):1–56, 2006.

[26] M. Zukowski, S. Heman, N. Nes, and P. Boncz.
Super-scalar RAM-CPU cache compression. ICDE, 2006.

