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Abstract We consider a multi-stage retrieval architecture consisting of a fast, ‘‘cheap’’

candidate generation stage, a feature extraction stage, and a more ‘‘expensive’’ reranking

stage using machine-learned models. In this context, feature extraction can be accom-

plished using a document vector index, a mapping from document ids to document rep-

resentations. We consider alternative organizations of such a data structure for efficient

feature extraction: design choices include how document terms are organized, how com-

plex term proximity features are computed, and how these structures are compressed. In

particular, we propose a novel document-adaptive hashing scheme for compactly encoding

term ids. The impact of alternative designs on both feature extraction speed and memory

footprint is experimentally evaluated. Overall, results show that our architecture is com-

parable in speed to using a traditional positional inverted index but requires less memory

overall, and offers additional advantages in terms of flexibility.

Keywords Learning to rank � Compression � Document stores

1 Introduction

A common architecture in web retrieval breaks document ranking into three stages: can-

didate generation, feature extraction, and document reranking. There are two main reasons

for this multi-stage design: First, there is general consensus in the community that learning

to rank provides the best solution to document ranking. In particular, ensembles of tree-

based learners have proven effective, as documented in both the academic literature

(Ganjisaffar et al. 2011; Li 2011) and in production commercial search engines such as

Bing (Burges 2010). As it is difficult to apply learning-to-rank methods over the entire
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collection, in practice a candidate list of potentially-relevant documents serves as the input.

Thus, learning to rank is actually a reranking problem (hence the first and third stages).

Second, separating candidate generation from feature extraction has the advantage in

providing better control over cost/quality tradeoffs. For example, term proximity features

are significantly more costly to compute than unigram features; therefore, by decoupling

the first two stages, systems can take advantage of ‘‘cheap’’ features to generate candidates

quickly and only compute ‘‘expensive’’ term proximity features when necessary—thus

decreasing overall query evaluation latency.

This paper focuses on the feature extraction stage in this multi-stage architecture,

assuming standard techniques for candidate generation and an arbitrary machine-learned

model for the third reranking stage. Specifically, we explore index organizations where the

inverted index is decoupled from the document vector index (i.e., a forward index) and

experimentally evaluate the efficiency of different document vector index organizations in

terms of speed (latency) and memory usage. As is the norm in web-scale search, we

assume that all index structures are completely held in memory. A standard positional

inverted index (PII) provides the baseline.

Of features explored in our work, term proximity features are the most interesting:

previous studies have confirmed that they contribute significantly to effectiveness, yet it is

also well known that such features are expensive to compute. We evaluate two alternative

structures for storing document vectors, one as a mini-index of terms within the document,

and another as a flat array of terms. These give rise to two algorithms for computing term

proximity features: by intersecting postings of document term positions or by applying a

sliding window over a flat term array representation. Finally, different index organizations

are amenable to different integer compression techniques for compact encoding (both

existing techniques and a novel one we propose). These various dimensions define the

design space that we explore empirically.

There are two main contributions to this work. First, to our knowledge, this is the first

quantitative comparison of alternative document vector index organizations for fast feature

extraction. Our results show that a lightweight inverted index with an efficiently-organized

document vector index compares favorably to a monolithic PII in terms of speed, but

requires less memory overall and offers additional advantages in terms of flexibility.

Experiments additionally reveal interesting observations on the relationship between

processor and memory latency. Second, we propose a novel document-adaptive hash-based

compression technique for encoding integer term ids in document vectors that is more

compact than PForDelta (Yan et al. 2009; Zhang et al. 2008; Zukowski et al. 2006) (which

represents current best practices in index organization) but just as fast (in terms of

decoding speed).

2 Background and related work

The multi-stage retrieval architecture that provides the context for this work has been

documented in the literature by many (Broder et al. 2003; Ding and Suel 2011; Matveeva

et al. 2006; Tatikonda et al. 2011; Wang et al. 2011), although it remains relatively

obscure1—partially because the emphasis of previous work has been on retrieval

1 For example, a recent survey of web search architectures makes no mention of multi-stage retrieval
(Cambazoglu and Baeza-Yates 2011); Ding and Suel (Ding and Suel 2011) characterize this approach as
‘‘folklore’’.
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effectiveness and not architectural issues, so in general there has been a dearth of

implementation details. Nevertheless, the general idea is clear: multi-stage retrieval sys-

tems typically use a ‘‘cheap’’ (fast) algorithm and one or perhaps more ‘‘expensive’’

(slower) algorithms for ranking. The ‘‘cheap’’ algorithm is used to generate a candidate list

of potentially-relevant documents (the candidate generation phase): an example might be a

linear combination of BM25 and a query-independent score. Frequently, queries are pro-

cessed conjunctively, i.e., only documents that have all the query terms are considered. For

web-scale collections, this approach leads to higher early precision and faster query

evaluation (Broder et al. 2003). These candidate documents are then reranked by the

‘‘expensive’’ but higher quality (usually, machine-learned) models. Example implemen-

tations include gradient boosted regression trees (Burges 2010; Ganjisaffar et al. 2011),

additive ensembles (Cambazoglu et al. 2010), cascades of rankers (Matveeva et al. 2006;

Wang et al. 2011), just to name a few. The ‘‘expensive’’ algorithms typically consider

features too costly to compute in the first phase (e.g., term proximity scores, which require

decoding positions). Architecturally, we can view feature generation as a distinct stage

between the ‘‘cheap’’ and ‘‘expensive’’ ranking algorithms.

It is widely recognized that term proximity features contribute to improvements in

retrieval effectiveness over term-based (i.e., unigram) features alone. In general, term

proximity features can be divided into two types: query terms occurring as a phrase (i.e.,

ordered sequence of consecutive terms) and query terms co-occurring within a fixed span

(usually without regard to ordering). The span width is typically a parameter either hand-

tuned or machine-learned. The positive benefits of term proximity features have been

observed to be statistically significant across many different test collections and is regarded

as a robust finding. Early studies date back to at least the 1980s (Fagan 1987), and there has

been no shortage of confirmatory evidence since (Büttcher et al. 2006; Clarke et al. 1995;

Croft et al. 1991; Hawking and Thistlewaite 1995; Tao and Zhai 2007).

Term proximity features, however, are ‘‘expensive’’, both in terms of time and space. In

order to support these features, we need to store positional information in the inverted

index, which substantially increases its size.2 Computing the features themselves requires

decoding term positions and additional comparisons to determine if the terms fall within

the specified window. By one estimate based on microbenchmarks, computing bigram

features is 20 times slower than computing unigram features (Wang et al. 2011). There-

fore, in a multi-stage architecture, it makes sense not to use term proximity features in the

initial candidate generation phase. This in turn implies that positional information does not

need to be stored in the inverted index. This is the route we have pursued: term proximity

features are computed in the second feature generation stage, using a document vector

index.

Of course, real-world search engines take advantage of caching (Baeza-Yates et al.

2007; Long and Suel 2005). In principle, expensive features in frequently-evaluated (e.g.,

high quality) documents might be cached to avoid recomputation. However, feature

caching is a non-trivial engineering problem, since the space of cache values is the query

space crossed with the document space. This challenge aside, we argue that caching is an

orthogonal issue to our work: caching strategies can also be applied on top of our proposed

techniques to further increase speed.

2 Alternatively, it is possible to index phrases directly (e.g., Broschart and Schenkel 2012; Williams et al.
2004). However, given that proximity features are usually parameterized in some manner (e.g., span width),
positional indexes are more flexible in being able to compute proximity features on the fly.
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Finally, it is worth mentioning two other families of techniques for fast query evalua-

tion: index pruning (Altingovde et al. 2012; Carmel et al. 2001; Ntoulas and Cho 2007),

and early termination during query evaluation (Strohman and Croft 2007; Turtle and Flood

1995). However, these techniques are not directly applicable to the index organizations we

explore in this paper since they are focused on increasing the efficiency of one-pass

retrieval.

3 Candidates and features

We begin with a more precise specification of the three-stage architecture we consider in

this paper, illustrated in Fig. 1. The input to the candidate generation stage is a query Q and

the output is a list of k document ids {d1, d2, …, dk}. In principle, this can be considered a

sorted list, but that detail is unimportant here. These document ids serve as input to the

feature extraction stage, which returns a list of k feature vectors {f1, f2, …, fk}, each

corresponding to a candidate document. These serve as input to the third document

reranking stage, which returns a final ranking of document ids.

Our work primarily focuses on the feature extraction stage (input: list of document ids,

output: list of feature vectors). We explore different organizations of document vector

indexes and evaluate their impact on efficiency, in terms of speed (more precisely, latency)

and memory usage. Throughout this paper, we assume that all data structures necessary for

all three stages are held completely in main memory. This is a requirement given real-

world operational constraints, and is indeed how modern web search engines work. For

example, Jeff Dean has on several occasions publicly disclosed that Google serves indexes

from memory. Even in the academic sphere, the capabilities of modern commodity servers

suggest that working with standard IR collections in memory is not an unreasonable

assumption.

Features for ranking fall into two categories: query independent and query dependent.

Examples of query independent features include hyperlink-based scores [PageRank (Page

et al. 1999), SALSA (Lempel and Moran 2000), HITS (Kleinberg 1999), etc.,] charac-

teristics of the page (page length, amount of JavaScript, number of particular HTML tags,

etc.), and the output of content classifiers (spam score (Cormack et al. 2010), presence of

adult content, editorial ‘‘quality’’, etc.). In practice, all query-independent features are

computed offline, and so feature extraction is simply a matter of in-memory lookup based

on document id.

Query-dependent features, by their very nature, cannot be pre-computed (leaving aside

caching, which as we argued in Sect. 2 is an orthogonal issue). Figure 2 provides a

summary of the query-dependent features used in our work, which is similar to those used
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Fig. 1 Illustration of a multi-stage retrieval architecture with distinct candidate generation, feature
extraction, and document reranking stages
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in many previous studies (Bendersky et al. 2010; Metzler 2007) (dating back to the original

INQUERY query language). We use two families of scoring functions, based on the

Dirichlet score from language modeling and BM25. Each family consists of a unigram

feature fT, a bigram proximity feature fO that takes term order into account (parameterized

with a window S 2 f1; 2; 4; 8; 16g), and a bigram feature score for unordered terms fU
(parameterized with a window S0 2 f2; 4; 8; 16; 32g). In total, there are 22 features.

Of all the features discussed above, term proximity features are the most interesting.

They are clearly important for high-quality document ranking, yet are costly to compute

(as compared to unigram features). This contrast provides rich opportunities to optimize

feature extraction speed. Unigram features are less interesting, since computing them boils

down to a sequence of floating point operations. Query-independent features are even less

interesting, since it is difficult to optimize simple memory lookups. For this reason, we

ignore query-independent features in our document vector representations.3

We of course recognize that real-world search engines take advantage of many more

features (100s, even 1,000s), but for the reasons given above, this simplified experimental

setup retains the important characteristics of the problem we wish to tackle and does not

detract from the generalizability of our findings.

As a baseline, we consider the standard PII, using which an algorithm can simulta-

neously perform candidate generation and feature extraction (input: query, output: list of

feature vectors). In more detail, we assume a standard organization of postings lists into

blocks, where each block is schematically illustrated as follows:

Fig. 2 Definition of features used in our model. tfðe;DÞ is the count of concept e in D; dfðeÞ is the
document frequency of concept e; cfðeÞ is the collection frequency of concept e, where e is defined as
follows: q is a query term; ODðS; qj; qjþ1Þ is an ordered phrase, span of S (S 2 f0; 2; 4; 8; 16g);
UWðS0; qj; qjþ1Þ is an unordered phrase, span of S0 (S0 2 f2; 4; 8; 16; 32g). N is the number of documents in

the collection; |D| is the length of document D; |D|0 is the average document length in the collection; |C| is
the total length of the collection; for Dirichlet features, l is a smoothing parameter; for BM25,

K ¼ k1½ð1� bÞ � b � ðjDj=jDj0Þ�, and k1, b are free parameters

3 Admittedly, it might be possible to mask the memory latencies of looking up query-independent features
by interleaving memory dispatches with other computations, but we leave such optimizations aside for now.
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d1; d2; d3; . . .½ � tf1; tf2; tf3; . . .½ �
p

1;1
; p

1;2
; p

1;3
; . . .; p

2;1
; p

2;2
; p

2;3
; . . .

� �

Each block contains n document ids (corresponding to documents containing the term),

followed by n term frequencies, followed by the term positions of all the term occurrences.

Following best practice, PForDelta (Yan et al. 2009; Zhang et al. 2008; Zukowski et al.

2006) is used for integer coding using 128 (32-bit integers) as the block size (i.e.,

n = 128). The document ids are converted into gaps (i.e., differences between successive

values); term frequencies cannot be gap-encoded, and therefore left as is. Term positions

are also gap-encoded, relative to the first term position in each document. For example, if

in d1 the term was found at positions [1, 5, 9] and in d2 the term was found at positions

[3, 16], we would code [1, 4, 4, 3, 13]. The term positions can be unambiguously

reconstructed from the term frequencies, which provide offsets into the array of term

positions. Since the term positions array is likely longer than 128, it is compressed in

multiple blocks. Note that this design and associated ‘‘bookkeeping’’ overhead is necessary

to take advantage of PForDelta, which is a block-based scheme. During decoding, term

positions are only materialized on demand to keep a small cache footprint.

During postings traversal over a PII, it is possible to directly compute all term and term

proximity features. Query-independent features would be stored in an in-memory map,

keyed by document id, making those features easily accessible. Thus, a single pass suffices

to generate candidate documents and extract features.

We compare this single-pass approach, illustrated in Fig. 3a, with an architecture that

has distinct candidate generation and feature extraction stages, each using separate data

structures. Figure 3b depicts this decoupled approach. In the candidate generation stage, it

is possible to use a non-positional index, which is far more compact. In the feature

extraction stage, we can rely on a document vector index: a mapping from document ids to

document vectors (i.e., a forward index). Of course, this leaves open the question of how

the document vectors are compressed and stored, and how features are computed. Alter-

native designs will be described in the following two sections.

4 Encoding document vectors

The document vector index is the main data structure used for feature generation in our

decoupled architecture (see Fig. 3b). It provides low-latency random access to documents

vectors by document id, which means that the data structure must be held in memory

(in our current implementation, in a large hash table); on disk storage is not feasible. This

section describes two approaches to representing the document vectors.

(a) (b)

Fig. 3 Two architectures for candidate generation and feature extraction: a single-pass approach with a
positional inverted index and a two-stage decoupled approach using a non-positional index and a document
vector index. a Single-pass architecture, b two-stage architecture

752 Inf Retrieval (2013) 16:747–768

123



To begin, we construct a mapping between terms (strings) and term ids: we make the

assumption that the vocabulary has been pre-processed so that term ids are assigned in

increasing order of frequency, i.e., more frequent terms receive smaller ids. The first

document vector representation is simply a flat array of term ids. Alternatively, we can

group the terms by term id and store an indexed document vector representation—

essentially a small inverted index for each document. As a working example, Fig. 4

contains a sample document as well as the dictionary that provides term to term id

mappings (ties in frequency are broken by first occurrence within the document). Below,

we detail both the flat array and the indexed document vector representations

Note that both representations can be extended to store an arbitrary number of query-

independent scores. However, these are relatively uninteresting since ‘‘feature generation’’

simply involves a value lookup—i.e., constant-time operations independent of the orga-

nization of the document vector. Therefore, to simplify our experiments, we ignore query-

independent scores in the document vector. Taking those into account would be equivalent

to adding a constant factor in all our experiments, which would not alter the conclusions.

4.1 Flat array of term ids

In the flat array document vector representation, a document D is represented as a list of

terms ftp1
; tp2

; tp3
; . . .g such that tpi is the term at position pi where 1 B pi B |D|. For

example, the sample document in Fig. 4 would be represented as follows:

½3; 4; 5; 6; 1; 2; 7; 8; 9; 2; 10; 1; 11; 2; 12; 1; 13; 14; 15�

This representation leaves open the question of how the term ids are compressed. Note that

gap-compression is not appropriate in this case since there is no guarantee that term ids are

in ascending order, so we must work with the unmodified term ids. We experimented with

three different integer coding techniques: variable-byte coding (VByte) (Scholer et al.

2002), PFor (Zukowski et al. 2006), and our novel document-adaptive hash-based coding

scheme. The first two are straightforward, and work reasonably. For VByte, because fre-

quent terms have small term ids, they require fewer bytes to encode. For PFor, most of the

term ids are small, so there are relatively few bit overflow exceptions (corresponding to

rare terms). Below, we describe our novel document-adaptive hashing scheme for com-

pactly encoding document vectors.

We begin with the observation that although the vocabulary size can be arbitrarily large,

in practice each individual document will only have a trivial fraction of terms. Therefore,

we can define a document-adaptive hash function H that maps the set of terms in a

document to a smaller set of ids which take less space to encode. One candidate for H we

considered is the family of minimal perfect hash functions (MPH) (Botelho and Ziviani

(a)

(b)

Fig. 4 A sample document
along with the dictionary that
provides the term to term id
mapping. a Sample document,
b dictionary
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2007), i.e., one per document. However, MPH functions require additional space in order

to store the hash table, which may not offset the space savings of using MPH to begin with.

We assume that the vocabulary has been pre-processed so that more frequent terms are

assigned smaller term ids. This implies that within a particular document, there will be

relatively few terms with large term ids. This yields the interesting consequence that lower

order bits in the binary representation of term ids play a more important role than the

higher order bits in distinguishing between term ids; a similar idea underlies a related

technique known as b-bit Minwise Hashing (Li and König 2010). In more detail, we break

our algorithm down into a few specific cases:

Case 1: On a per-document basis, we can search for a bit window starting from the least

significant bit (lsb) that is shorter than the original 32-bit integer representation and yields

zero collisions (i.e., no two unique term ids in that document will have the same value looking

through this window). This window, which in practice is a mask, can be defined by its length

(1 B xm B 32). Once such xm is found, the algorithm computes the masked values of all term

ids, T 0 ¼ ft0i ¼ Maskðti; xmÞ j ti 2 Dg, where Maskðx;wÞ ¼ Andðx; 2w � 1Þ.
If the length of the mask xm, is less than or equal to a threshold hx, the algorithm terminates

and returns D0 ¼ ½t0pi
¼ Maskðtpi

; xmÞ j 1� pi� jDj� as the new representation of the docu-

ment (in other words, we replace term ids with their w low order bits). Alongside the new

transformed term ids, we store xm as the hash configuration; this fits easily in a byte (and can

be viewed as overhead).

Case 2: However, if the mask is not small enough, we search for a window size xh \xm

and a function f such that f : T 0 ! R ¼ fh 2 N j 0\h� 2xh � 1g is an injection (i.e., an

injective function). To simplify the problem and to reduce the space required to store the

function f, we fix f to a simple integer hash function Hint (the same for all documents) and

find the smallest xh \xm such that Hint : T 0 ! R is:

(a) An injection: we return ½Hintðt0pi
Þ j 1� pi� jD0j� as the new document representation.

That is, after the hash transformation, the xh lowest order bits are unique for all terms

in the document. We also store the value of xm and xh as the hash configuration.

(b) Not an injection but the number of collisions is\scollisions: Let C be the smallest set

of elements in T0 such that Hint : T 0 � C ! R is an injective function. Assuming

S ¼ fHintðt0i; xhÞ j t0i 2 T 0; t0i 62 Cg; we build a manual hash table for elements in

C such that each c 2 C is mapped to a unique h where h 2 R and h 62 S. The manual

table for e 2 C together with the function Hint for e 62 C form an injective function

which can be used to construct the new representation of the document D0. That is, if

t0pi
62 C then use Hint to compute its new value. Otherwise, use the manual table to

look up its new value. The hash configuration consists of xm, xh, as well as the

manual hash table which can be compressed and stored efficiently.

Case 3: If no such xh \xm exists, we simply return D0 as the new document and xm as

the hash configuration. This means that in the worst case, all 32 bits are necessary to

distinguish the terms ids in a particular document.

In all the above cases, we use PFor to further compress data where appropriate (e.g.,

transformed term ids are then encoded using PFor). After preliminary experiments, we set

hx and scollisions to 8 and 20 respectively. Also, the integer hash function used in this work

is a simple hash value modulo the length of the range (i.e., 2x if x is the size of the

window):
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Hintðx; xÞ ¼ hashðx; xÞ mod 2x

where

hashðx; xÞ ¼ ðx [ [ xÞ^ðx & ð2x � 1ÞÞ:

To process a document given a query, we transform query terms using the hash function

stored along with the document vector, performing operations corresponding to the

appropriate case above. Once the query terms are in the same space as the transformed

document term ids, we can proceed with feature extraction. If the hash configuration has a

stored value for xm but not xh, then we know the algorithm is either in case 1 or case 3; in

both cases, the original term ids are masked with xm bits and the algorithm terminates.

Otherwise, if the collision set is empty, the algorithm computes the hash values for the

masked terms using the same integer hash function Hint as the one used in the document

transformation phase and the variable xh. If the collision set is not empty, on the other

hand, hash values are retrieved from the manual table if a query term exists in the collision

set. Otherwise, the integer hash function Hint is used to transform the query term id. Note

that in this approach, we transform query term ids into the new document term id space,

and since queries are usually short, the overhead of this transformation is minimal.

Finally, a few words comparing our document-adaptive hashing scheme to other

approaches: although it shares superficial similarities with PFor and PDict (Zukowski et al.

2006), there are a few substantial differences. Our general approach is to replace term ids

(or hashed versions thereof) directly with some number of their low order bits—no attempt

is made to patch the high order bits (as in PFor). Our goal is not to represent the original

term ids directly, but to construct a new term id space that requires fewer bits to store, even

with the additional overhead of storing information about the transform itself—for

example, if the b lowest order bits of all terms in the document are unique, we only need to

store the value b (case 1 and case 3). If the low order bits are not unique, we apply an

integer hash and try again (case 2a). Finally, case 2b deals with collisions even after

hashing (multiple terms with the same low order bits). We handle these by storing explicit

mappings (in essence, a dictionary), but our overall approach cannot be described as

dictionary-based, and hence is different from PDict.

4.2 Indexed document vector

In the alternative representation of document vectors, term occurrences are grouped by

term id: this is equivalent to storing a ‘‘mini-index’’ of terms where the postings contain

term positions. As an example, for the sample document in Fig. 4, we wish to capture the

following information:

1! 3½5; 12; 16�
2! 3½6; 10; 14�
3! 1½1�
4! 1½2�
� � �

Each line above holds the term id, the term frequency within the document and the term

positions where that term is found. Note that we sort term ids in ascending order, so more

common terms in the document appear earlier. However, to take advantage of integer

compression techniques, the above information is reorganized in the following manner:
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t1; t2; t3; . . .½ � tf1; tf2; tf3; . . .½ �
p

1;1
; p

1;2
; p

1;3
; . . .p

2;1
; p

2;2
; p

2;3
; . . .

� �

Each document vector begins with an enumeration of terms found in the document (term

ids), followed by an array holding term frequencies, followed by the term positions. This

structure is exactly the same as the PII, except that we are storing all terms occurrences in a

document. These integer sequences are then compressed with PFor (n = 128) with gap-

based encoding when possible (i.e., ‘‘Delta’’). Since term ids are sorted in ascending order

we can store differences between successive ids. Term frequencies are left unmodified, but

term positions are easy to gap-encode, relative to the first occurrence of each term—we

encode all positional information from all terms together and use the term frequencies to

keep track of where term positions for one term ends and another begins. Putting every-

thing together, the sample document is represented as follows:

1; 1; 1; 1; . . .½ �
3; 3; 1; 1; . . .½ �
5; 7; 4j6; 4; 4j1j2; . . .½ �

First comes the term ids, gap-encoded; next comes the term frequencies; finally, the term

positions, also gap-encoded. Note that the boundaries between positions for each term (the

vertical bars) are not explicitly stored, since we can reconstruct them from the term frequencies.

Each of the sequences above (i.e., each line) is compressed using PFor. Of course, the vertical

bars and brackets are not part of the representation, and only exist to aid in presentation.

The indexed document vector representation manifests different tradeoffs compared to

the flat array representation. First, we can take advantage of gap-based compression,

already detailed above. Second, the amount of decompression required to compute features

depends on the query terms: as we decompress the term ids block by block, we need to

decompress the term frequencies and the term positions only if we find matching query

terms. For queries involving common terms (smaller term ids), this serves as an effective

early termination mechanism since term ids are stored in ascending order—we can avoid

having to decode the entire document vector. In contrast, for flat arrays the entire document

vector needs to be uncompressed, regardless of the query. However, other issues come into

play, such as the compression ratio we are able to achieve using either technique and the

characteristics of the queries, so it remains an empirical question which approach is more

efficient, space- and time-wise.

5 Feature extraction

As previously discussed, we ignore query-independent features in our experiments since

they can be modeled as constant factors. Here, we describe how query-dependent features

(e.g., those in Fig. 2) are computed. We assume that global term statistics (document

length and collection frequency) are available in memory (e.g., stored in the dictionary or a

separate lookup table). Depending on the organization of the document vector index, there

are two possible algorithms for feature generation:

5.1 Sliding window

In the flat array representation of document vectors, we have a list of terms tpi
at positions

1 to |D|, where |D| is the length of document D. From this, generating term or proximity
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features can be accomplished using a sliding window that makes a single pass over the

document. The sliding window starts at position pi for every 1 B pi B |D| and spans over

the terms at positions pi B p \ pi ? W, where W is the width of the window. At each

position, statistics required to compute the feature are collected (e.g., term frequency). At

the end of the pass, the feature value can be computed. Term (unigram) features are simply

computed using a sliding window of width one. For ODðS; qj; qjþ1Þ, we set W to S ? 2,

while for UWðS0; qj; qjþ1Þ;W ¼ S0. In this approach, each feature requires a separate pass.

5.2 Term postings intersection

For the indexed document vector representation Sect. 4.2, unigram features are simple to

compute—it is simply a matter of a few floating point operations based on term statistics.

Computation of proximity features can be treated as a postings intersection problem. We

use a variant of the small adaptive algorithm (Barbay et al. 2006; Demaine et al. 2001). In

this approach, the feature extractors are provided with pairs that consist of a query term qi

and a list of positions Pi at which that term appears in the document. Let us illustrate with

bigram features for two terms, qj and qj?1: to compute term frequencies for proximity

features, we traverse the positions list associated with the first query term (i.e., Pj) and

count the number of positions in Pj?1 that (relative to the current position from Pj) meet the

criteria of a feature’s definition fn. For example, if the current position from Pj is pk, then

we find positions p0k 2 Pjþ1 where

• p0k � pk � Sþ 1; p0k [ pk; to extract ordered window proximity features of the form

ODðS; qj; qjþ1Þ; based on the definition in Metzler and Croft (2004),

• p0k � pk þ 1� S0; p0k [ pk

pk � p0k þ 1� S0; pk�1\p0k\pk

�
, to extract unordered window proximity features

UWðS0; qj; qjþ1Þ (Metzler and Croft 2004).

This can be generalized to phrases with more than two query terms.

Note that this term postings intersection algorithm can be directly applied to the indexed

document vector representation. Alternatively, we can apply this technique to the flat array

representation, provided we construct the term positions index ‘‘on the fly’’ (for only the

query terms). As it turns out, this approach has some attractive properties, as we describe

later.

6 Experimental setup

We performed experiments on the ClueWeb09 collection, which is a best-first web crawl

completed by Carnegie Mellon University in 2009. It has been used in several recent

TREC evaluations and is available to researchers. The collection contains approximately

1 billion web pages in 10 languages. Of those, 500 million are in English and are divided

into 10 roughly equally sized segments. Our experiments focus on the first segment of the

English portion of the ClueWeb09 collection (also known as ‘‘category B’’ in the litera-

ture). In total, the collection contains 50.2 million pages (1.53 TB uncompressed, 247 GB

compressed).4 For evaluation, we used two different sets of queries: first, the web track

queries from TREC 2009–2011 (150 queries total). In addition, we used a randomly-

4 For clarity, sizes are reported in base 10 units.

Inf Retrieval (2013) 16:747–768 757

123



sampled subset of 5,000 queries from the ‘‘efficiency topics’’ of the TREC 2005 terabyte

track5 which contains 50,000 queries overall. We maintained the same length distribution

of queries in the smaller sample as the original queries. Figure 5 shows the length dis-

tribution of the queries in both test sets.

For candidate generation, we selected the top 10,000 hits that contain all query terms,

sorted by a query-independent score. This corresponds to conjunctive query processing

(Broder et al. 2003; Matveeva et al. 2006; Tatikonda et al. 2011), which has previously

been demonstrated to yield higher early precision (which is important in web retrieval). We

made use of the Waterloo spam scores6 for our query-independent score. These spam

scores have been computed for every document in the English portion of the ClueWeb09

collection by Cormack et al. (Cormack et al. 2010) using a simple classifier. These (%)

scores range from 0 to 99, and documents with higher scores are estimated to have higher

quality content.

We adapted the small adaptive algorithm proposed by Demaine et al. (2001) to intersect

postings lists. This algorithm works as follows: an eliminator e is set to the first document

id of the first postings list. It then cycles through the postings lists, searching for the current

eliminator (using a one-sided binary search, also known as ‘‘galloping’’ search). If e exists

in all postings lists the algorithm adds e to the candidate list and repeats the process for the

next eliminator. If a list L does not contain e, the algorithm picks the smallest document id

in L that is larger than e as the new eliminator and continues the process. The algorithm

terminates when a postings list has no more elements.

There is one more optimization to increase the speed of candidate generation: Since we

are only interested in the top k = 10,000 candidates, we sort the documents within a

postings list by the query-independent score. Thus, the small adaptive algorithm early

terminates when we accumulate k document ids in the candidate set or when a postings list

has no unobserved elements. In addition, we do not actually need to keep track of the

document-independent score. Both factors serve to increase postings list intersection speed.

However, because document ids are no longer guaranteed to be sorted in each postings list,

we cannot use gap-based compression techniques for index compression. To resolve this

problem, we reassign document ids based on the query-independent score, breaking ties

arbitrarily. Smaller ids are assigned to documents with higher scores, and thus sorting

documents based on their scores also maintains the increasing document id order needed

Fig. 5 Query length distribution
for the 150 TREC web track
queries and a subset of 5,000
queries from the TREC terabyte
track

5 http://www-nlpir.nist.gov/projects/terabyte/.
6 http://plg.uwaterloo.ca/gvcormac/clueweb09spam/.
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for gap compression (cf. Silvestri 2007). The upshot of all these optimizations is that our

candidate generation algorithm is fast and uses a very compact index (no need to store

payloads such as term frequencies). This approach for candidate generation is similar to

other setups reported in the literature (e.g., Tatikonda et al. 2011) and provides a good set

of working document for downstream processing.

For our baseline comparison using PIIs, we use the same query evaluation algorithm

(small adaptive postings intersection to return feature vectors for the top 10,000 hits sorted

by spam score). In addition, all the same optimizations are applied: document id reas-

signment, early-termination, etc. This ensures a fair comparison.

Our implementation of the algorithms presented in this paper is in 100 % pure Java,

built on top of the open-source Ivory7 toolkit. We used LinkedIn’s PForDelta imple-

mentation provided in the open source Kamikaze package.8 The choice of Java puts us at a

disadvantage compared to, say, implementations in C or C??. This is especially true when

measuring short query latencies, since fundamental aspects of Java such as object overhead

become a non-trivial fraction of the total running time. Thus, our efficiency numbers

should be interpreted with this caveat in mind. Since our task is an intermediate step in an

end-to-end retrieval pipeline, the ability to easily integrate our software as a component

within a larger system is important. For this goal, Java holds a number of advantages in

today’s software ecosystem. To provide evidence for these assertions, we point out that

Twitter’s Earlybird real-time search engine (Busch et al. 2012), which serves over 2 billion

queries a day, is written completely in Java. Other organizations such as LinkedIn have

also adopted a Java platform for search. Regardless, since all implementations in our

experiments are in the same language, the comparison remains fair—were we to reim-

plement everything in C/C??, the relative results would likely remain the same.

Experiments were performed on a server running Red Hat Linux, with dual Intel Xeon

‘‘Westmere’’ quad-core processors (E5620 2.4 GHz) and 128 GB RAM. This particular

architecture has a 64 KB L1 cache per core, split between data and instructions; a 256 KB

L2 cache per core; and a 12 MB L3 cache shared by all cores (of a single processor). As

previously mentioned, all index structures are held in memory.

7 Results

Since our experiments explored many points in the design space, we begin with a brief

description of our notation. The baseline PII. The indexed document vector representation

is denoted IDV. The flat array document vector representation is denoted FA, but with two

additional suffixes: the first denotes the approach to feature computation (W for sliding

window, I for ‘‘on-the-fly’’ indexing); the second refers to the compression technique (H

for our novel hashing technique, PFor for PFor, and VB for variable-byte encoding). As an

example, an experimental condition might be labeled FA–W(PFor), which refers to sliding

window approach on a flat array representation, with PFor compression.

7.1 Speed

Table 1 shows the average query latency for candidate generation and feature extraction,

reported in seconds (averaged across 5 trials, with 95 % confidence intervals), for the two

7 http://ivory.cc.
8 http://sna-projects.com/kamikaze/.
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different sets of queries (web and terabyte tracks). To be precise, query latency is defined

as the elapsed time between the arrival of a query until all 22 features described in Sect. 3

are extracted for the set of 10,000 candidate documents. Note that for the PII, both

candidate generation and feature extraction are performed together, while in all of the other

experimental conditions, the two stages are distinct. Further note that all experimental

conditions except for PII share the exact same candidate generation phase. The latency of

this phase for the web track queries is 47 ms per query, and for terabyte track queries,

75 ms per query. Feature extraction latency increases linearly with the number of candi-

date documents and can be tuned in production systems to achieve a desired end-to-end

latency. Realistically, we doubt that 10,000 candidates are actually needed to generate a

good top 10 ranking for web search; however, a larger candidate pool makes our timings

more accurate by reducing variance.

Although absolute values differ due to different compositions of queries in the two

different test sets, the results are consistent. Considering end-to-end latency, PII, IDV, and

FA–I(H) are about the same speed. For the terabyte queries, the difference between PII and

FA–I(H) is not statistically significant (their 95 % confidence intervals overlap), and IDV is

slightly slower (albeit significant statistically). For the web track queries, latency between

the three conditions are significantly different, but the magnitude of the differences are

relatively small. These results show that an architecture in which candidate generation and

feature extraction are decoupled does not appear to be slower. It is interesting that IDV

(storing indexed document vectors) is not any faster than FA–I(H), which performs

indexing on-the-fly (obviously, more ‘‘work’’). The explanation will become clear below.

Overall, we see that the sliding window approach is consistently slower than the on-the-fly

indexing approach. For both, it appears that PFor and our document-adaptive hashing

technique are comparable in speed, but VByte encoding is substantially slower.

Figure 6 shows the average end-to-end query latency and feature extraction time broken

by query length for the two sets of queries. To simplify presentation, we only show the

three best techniques: PII, IDV, and FA–I(H). In terms of end-to-end query latencies, IDV

and FA–I(H) behave similarly, but PII exhibits different characteristics. PII is about equal

in speed with the others for three term queries, but faster on shorter queries and slower on

longer queries. This behavior makes sense given the difference between the approaches.

Consider single term queries: the query evaluation algorithm for PII simply traverses a

single postings list for up to 10,000 postings and terminates (all the data required to

compute features are stored in the postings); whereas the other two approaches require

traversing two separate data structures and materializing the candidate list of documents.

For queries with more terms, however, PII is slower because the index is larger, and hence

Table 1 Average time per query
in seconds to generate 10,000
candidate documents and extract
features for the TREC web and
terabyte queries (across 5 trials,
with 95 % confidence intervals)

Web Terabyte

PII 0.194 (±0.001) 0.198 (±0.005)

IDV 0.173 (±0.001) 0.210 (±0.003)

FA–I(H) 0.180 (±0.001) 0.204 (±0.002)

FA–I(PFor) 0.184 (±0.002) 0.208 (±0.001)

FA–I(VB) 0.539 (±0.003) 0.539 (±0.001)

FA–W(H) 0.953 (±0.001) 0.964 (±0.002)

FA–W(PFor) 0.962 (±0.002) 0.961 (±0.001)

FA–W(VB) 1.324 (±0.017) 1.292 (±0.002)
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there is less cache coherence. Since modern architectures fetch entire cache lines at once,

compact index structures have an advantage, because fetching a posting very likely means

that the next posting is immediately ready for processing. This, however, is less likely to be

the case for PII since individual postings are much larger (due to positional information)

and may span cache lines. Although it is true that modern processors also perform pre-

fetching, this is dependent on predictable memory access patterns, and with shorter

postings (multi-term queries are more likely to have rare terms) there are fewer predictable

access patterns for the prefetchers to observe.

In Table 2, we remove the latency from the candidate generation process and compute

per-document feature extraction latency (in ls, with 95 % confidence intervals, averaged

across 5 trials). To be precise, we first compute the per-document latency for each topic,

and then average across all the topics—this is an important detail because not all topics

return 10,000 candidate documents (since we are processing queries conjunctively).

For the most part, the per-document feature extraction latencies are consistent with the

end-to-end results: the sliding window approach is much slower than the on-the-fly

indexing approach. Similarly, our document-adaptive hashing technique is about as fast as

PFor, and both are significantly faster than VByte. However, we make an interesting

observation: whereas IDV and FA–I(H) are roughly comparable in speed on the web track

queries, IDV is much slower for the terabyte queries. Why might this be so?

We believe the answer can be found in Fig. 7, which compares per document feature

extraction time for IDV and FA–I(H), broken down in terms of query length. Although

both approaches become slower with longer queries, feature extraction latency with IDV

grows much faster. Since there are more long queries in the terabyte test set (see Fig. 5),

IDV is slower overall compared to FA–I(H). But this only begs the question: why does

Table 2 Average time to extract
features for each document
(in ls) for TREC web and tera-
byte queries (across 5 trials, with
95 % confidence intervals)

Web Terabyte

IDV 20.6 (±0.2) 40.8 (±4.7)

FA–I(H) 19.5 (±0.2) 28.1 (±0.1)

FA–I(PFor) 19.9 (±0.3) 29.0 (±0.1)

FA–I(VB) 68.6 (±0.1) 99.1 (±0.4)

FA–W(H) 138.5 (±0.2) 217.4 (±0.2)

FA–W(PFor) 139.6 (±0.2) 216.6 (±0.1)

FA–W(VB) 189.7 (±2.4) 286.4 (±0.3)

Fig. 6 Average time to generate 10,000 candidate documents and extract features for the web track queries
(left) and a subset of the terabyte track queries (right), broken down by query length
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IDV’s performance degrade so severely in this manner? The explanation lies in how much

PFor decoding needs to be performed in each of the techniques. For the flat array repre-

sentation, we need to decode the entire document, no matter what (as many PFor blocks as

is necessary to hold an array of integers whose size is the document length). For the IDV

technique, recall that the term ids are assigned in order of decreasing (global) frequency

and encoded in ascending term id order to take advantage of gap encoding. To perform

feature extraction, we decode as much of the document vector as is necessary to recon-

struct the term positions for all query terms. At the minimum we need to decode three PFor

blocks: one for the term id, one for the term frequencies, and one for the term positions.

Since shorter queries tend to have more frequently-occurring terms, their term ids are more

likely to be found in the earlier blocks, and so in many cases it is likely that no further

decompression is necessary. However, longer queries tend to involve more rare terms,

which require decoding additional blocks—and because the term ids, term frequencies, and

term positions are stored separately (they have to be), processing each ‘‘increment’’ of the

document vector requires at least decoding three PFor blocks (recall that positional

information can take up multiple blocks).

Put another way, the relevant comparison highlighted in Fig. 7 is between the amount of

time it takes to decode stored term positions (in multiple PFor blocks) versus the time

required to reconstruct term positions on the fly from the flat array representation. Results

show that for queries up to three terms in length, the speed of the two are comparable, but

for longer queries, it is actually faster to reconstruct the postings for the query terms as

needed (and pay the cost to decode the flat array of term ids every time).

The above analysis assumes extraction of all 22 fT, fO, and fU features (including dif-

ferent window sizes). However, it may be the case that a machine-learned ranking algo-

rithm only uses a subset of those features. What is the impact of computing different

individual features? This question is answered by Table 3, which shows per-document

feature extraction latency for different feature classes. In the first ‘‘block’’ of the table, we

show latencies for computing just the BM25 unigram feature, the BM25 unigram feature

and bigram features, and the BM25 unigram feature, bigram, and unordered bigram fea-

tures. The second ‘‘block’’ of the table shows the same, expect with the Dirichlet features.

In the third ‘‘block’’, both sets of features are computed (i.e., 2, 4, and 6 features,

respectively). In all cases, we only use one window width for fO and fU.

Comparing Table 2 with Table 3 reveals some interesting observations. For the IDV

approach and the FA–I(�) on-the-fly indexing approaches (see Table 3a), feature extraction

Fig. 7 Comparing IDV and FA–I(H), the per-document average time to extract features for the web track
queries (left) and the subset of the terabyte track queries (right), broken down by query length
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time is relatively insensitive with respect to the number of features computed. For example,

computing only BM25 unigram features takes 14.2 ls, whereas as computing all features

takes 20.6 ls. Looking at Table 3a, we see relatively few significant differences in running

times, despite the different number of features being computed. This is because the time

required to access the raw term data (from memory) necessary to compute any feature

dominates the marginal cost (in terms of floating point operations) of computing additional

features—this is consistent with what we know about modern processor architectures

(where memory latency is usually the biggest bottleneck). In contrast, the sliding window

FA–W(�) approaches (see Table 3b) appears to become slower with more features, since it

requires a pass through the document vector for each feature.

7.2 Index size

Having examined speed (latency), we now turn our attention to index size, which corre-

sponds to memory footprint since we hold all index structures in memory. These results are

shown in Fig. 8, for the first segment of ClueWeb09 (50.2 m documents). The rightmost

bar shows the size of the baseline condition, the PII, which takes up 75 GB. For the other

techniques, we require two separate data structures: the inverted index and the document

vector index. Note that the inverted index is optimized specifically for candidate genera-

tion, and is therefore very compact (14 GB) since it stores no positional information.

Table 3 Average time per document in microseconds (ls) to extract different sets of features for the TREC
web track queries across 5 trials, with 95 % confidence intervals

IDV FA–I(H) FA–I(PFor) FA–I(VB)

(a) Indexed document vector versus ‘‘on the fly’’ indexing with flat arrays

fT,BM25 14.2 (±0.3) 16.4 (±0.2) 16.5 (±0.2) 66.3 (±1.5)

ffT;O1g;BM25 14.3 (±0.2) 16.5 (±0.2) 17.2 (±0.1) 65.6 (±0.3)

ffT;O1 ;U1g;BM25 14.8 (±0.2) 16.6 (±0.1) 17.0 (±0.3) 65.9 (±0.1)

fT,Dir 13.9 (±0.1) 16.5 (±0.2) 16.8 (±0.3) 65.6 (±0.1)

ffT;O1g;Dir 14.5 (±0.3) 16.3 (±0.2) 17.0 (±0.3) 65.6 (±0.3)

ffT;O1 ;U1g;Dir 14.9 (±0.2) 16.8 (±0.2) 17.2 (±0.3) 66.7 (±1.2)

fT,{BM25, Dir} 14.1 (±0.3) 16.5 (±0.1) 17.0 (±0.3) 65.7 (±0.1)

ffT;O1g;fBM25;Dirg 14.8 (±0.3) 16.8 (±0.1) 17.3 (±0.1) 66.1 (±0.1)

ffT;O1 ;U1g;fBM25;Dirg 16.0 (±0.4) 17.2 (±0.1) 17.7 (±0.1) 66.5 (±0.2)

IDV FA–W(H) FA–W(PFor) FA–W(VB)

(b) Indexed document vector versus sliding windows with flat array

fT, BM25 14.2 (±0.3) 15.1 (±0.1) 15.9 (±0.1) 64.9 (±0.6)

ffT;O1g;BM25 14.3 (±0.2) 18.7 (±0.1) 19.5 (±0.3) 68.8 (±0.5)

ffT;O1 ;U1g;BM25 14.8 (±0.2) 26.6 (±0.3) 27.3 (±0.3) 76.0 (±0.2)

fT, Dir 13.9 (±0.1) 15.2 (±0.1) 16.0 (±0.1) 64.8 (±0.1)

ffT;O1g;Dir 14.5 (±0.3) 18.8 (±0.1) 19.6 (±0.1) 69.4 (±0.1)

ffT;O1 ;U1g;Dir 14.9 (±0.2) 26.6 (±0.2) 27.4 (±0.4) 76.3 (±0.2)

fT, {BM25, Dir} 14.1 (±0.3) 18.4 (±0.2) 19.1 (±0.2) 67.7 (±0.1)

ffT;O1g;fBM25;Dirg 14.8 (±0.3) 27.3 (±0.1) 28.3 (±0.1) 77.3 (±0.1)

ffT;O1 ;U1g;fBM25;Dirg 16.0 (±0.4) 39.9 (±0.3) 40.7 (±0.1) 89.6 (±0.1)

Inf Retrieval (2013) 16:747–768 763

123



Different organizations of the document vector index translates into substantial size

differences. We see that the IDV and FA–I(VB) approaches result in the largest memory

footprints (67 and 72 GB, respectively). Examining FA–I(H) and FA–I(PFor), results in

the previous section show that both approaches are comparable in terms of speed; however,

our novel document-adaptive hashing scheme is preferred due to a smaller index footprint

(in fact, smallest overall). While IDV and FA–I(H) are comparable in terms of speed, the

latter is preferred due to smaller memory requirements. The smaller index size also con-

tributes to the speed of FA–I(H): the additional work of reconstructing term positions on

the fly is balanced against smaller data structures.

As expected, the flat array representation encoded with our document-adaptive hashing

scheme achieves the lowest compression ratio (i.e., compressed size over uncompressed

size). Recall that the algorithm breaks down into four separate cases; for our setting

(hx = 8 and scollisions = 20), statistics of the four different cases are shown in Table 4.

Nearly all documents (98.2 %) fall under case 2(b), with hashed term ids and B20 colli-

sions. In the third column of the table, we show compression ratio with respect to

uncompressed representations, and in the fourth column, with respect to compression using

PFor. In case 2(b), for example, our scheme saves 62.9 % space compared to an

uncompressed encoding and 25.9 % over PFor. Surprisingly, case 1 (masking low order

Fig. 8 Index size under various experimental conditions. Note that the decoupled architecture requires two
separate data structures: a (non-positional) inverted index and a document vector index, whereas the single-
pass approach requires only a positional inverted index (PII)

Table 4 For FA(H), hx = 8 and scollisions = 20: the percentage (p) of document vectors broken down by
various hash configurations, the mean compression ratio compared to an uncompressed array representation,
and the mean compression ratio compared to FA(PFor)

p (%) Versus raw Versus FA(PFor)

Case 1: xm B hx 0.9 0.715 0.812

Case 2(a): xm [ hx; xh\xm; jCj ¼ 0 0.6 0.348 0.655

Case 2(b): xm [ hx; xh\xm; 0\jCj � scollisions 98.2 0.371 0.741

Case 3: xm [ hx; xh�xm 0.3 0.579 0.986

100 0.374 0.742

|C| is the number of collisions
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bits of term id) does not work as well as expected: it rarely applies, and when it does, only

for short document vectors, in which case the overhead needed to store the hash config-

uration and bitmask information becomes significant in comparison. Note that the

parameter settings reported here reflect results of preliminary explorations of the parameter

space, but we made no attempt to find the optimal setting.

8 Discussion

Overall, how does the ‘‘traditional’’ PII, in which candidate generation and feature

extraction are performed simultaneously, compare to an architecture in which the two are

decoupled, e.g., FA–I(H), the best variant of the ones we examined? Empirical results give

FA–I(H) a slight edge: overall, it is about as fast as PII on a realistic query load, but

requires less memory. While it is true the PII is faster on shorter queries (especially single-

term queries), there are two additional factors to consider: shorter queries are likely to

occur more frequently, and therefore results are more likely to be cached. Shorter queries

are also more likely to be navigational in nature, and often benefit from special treatment

(i.e., akin to a separate vertical). In a production system, they may be handled in a

completely separate module, in which the tradeoffs are different than those factors con-

sidered here.

Beyond the directly measurable metrics, we argue that the decoupled architecture has

other advantages as well, the biggest of which is flexibility. Previous work (Sect. 2) has

shown that candidate generation only needs to be ‘‘good enough’’, as modern machine-

learned techniques are quite powerful; on the other hand, more and richer features improve

effectiveness. In our decoupled architecture, feature engineering does not need to involve

the first (candidate generation) stage, thus reducing system-level changes needed for

experimentation. Incorporating richer features, for example, named-entity tags, markup

attributes, multiple text fields, etc. is easier to accomplish in the document vector index

than in the inverted index. Augmenting the document vector representation is an embar-

rassingly parallel problem, whereas indexing requires document–term inversion. Further-

more, as the size of the inverted index increases from indexing richer features, it will

become slower due to decreased cache coherence, as noted in the experimental results.

Note that abstractly speaking, the document vector index is basically a key-value store (if

we treat the compressed document vectors as opaque blobs): although our current

implementation is simply a large hash table, we have plenty of choices for scalable

implementations in a production environment, ranging from well-known solutions such as

memcached to a new breed of so-called ‘‘NoSQL’’ datastores such as HBase [an open

source clone of Bigtable (Chang et al. 2006)], Cassandra [an open source clone of Dynamo

(DeCandia et al. 2007)], as well as a plethora of other offerings.

In an architecture where candidate generation and feature extraction are decoupled,

there is in principle no reason why both stages need to run in the same process space, or

even on the same machine, for that matter. This fits well with modern web architectures,

where each rendering of a page involves dozens or even hundreds of individual services.

From a management point of view, fine-grained service decomposition makes monitoring,

performance profiling, and load balancing easier.

Finally, we note that in production systems, there must be some service for snippet

generation (i.e., the keyword-in-context summary search results that are displayed to the

user). Our document vector indexes can be easily augmented to hold such information

without any architectural changes (e.g., as another field). In fact, without stemming, and
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using PFor for compression, the flat array document vector representation can be directly

used for snippet generation. With a positional inverted index, in contrast, some other

document-lookup service is required to generate snippets, further increasing the overall

memory footprint of the system.

9 Conclusion

Although the three-stage retrieval architecture explored in this work has been documented

in the literature, it has received relatively little attention. Much of the focus of IR research

in recent years has been on ranking models using machine learning techniques, and it

appears that the community has gained much experience in tackling this challenge (some

would go as far to say that ‘‘learning to rank’’ is a solved problem). However, we believe

that the architectural implications of learning to rank have not been thoroughly studied:

how to organize index structures and query evaluation algorithms in support of these

machine-learned rankers. This paper takes a first step, focusing on the problem of fast

feature extraction, but the broader design space for retrieval systems remains

underexplored.
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