
Compressing and Decoding Term Statistics
Time Series

Jinfeng Rao1, Xing Niu1, and Jimmy Lin2(B)

1 University of Maryland, College Park, USA
{jinfeng,xingniu}@cs.umd.edu

2 University of Waterloo, Waterloo, Canada
jimmylin@uwaterloo.ca

Abstract. There is growing recognition that temporality plays an impor-
tant role in information retrieval, particularly for timestamped document
collections such as tweets. This paper examines the problem of compress-
ing and decoding term statistics time series, or counts of terms within a
particular time window across a large document collection. Such data are
large—essentially the cross product of the vocabulary and the number
of time intervals—but are also sparse, which makes them amenable to
compression. We explore various integer compression techniques, starting
with a number of coding schemes that are well-known in the informa-
tion retrieval literature, and build toward a novel compression approach
based on Huffman codes over blocks of term counts. We show that our
Huffman-based methods are able to substantially reduce storage require-
ments compared to state-of-the-art compression techniques while still
maintaining good decoding performance.

Keywords: Integer compression techniques · Huffman coding

1 Introduction

There is increasing awareness that time plays an important role in many retrieval
tasks, for example, searching newswire articles [5], web pages [3], and tweets [2].
It is clear that effective retrieval systems need to model the temporal characteris-
tics of the query, retrieved documents, and the collection as a whole. This paper
focuses on the problem of efficiently storing and accessing term statistics time
series—specifically, counts of unigrams and bigrams across a moving window
over a potentially large text collection. These retrospective term statistics are
useful for modeling the temporal dynamics of document collections. On Twitter,
for example, term statistics can change rapidly in response to external events
(disasters, celebrity deaths, etc.) [6]. Being able to store and access such data is
useful for the development of temporal ranking models.

Term statistics time series are large—essentially the cross product of the
vocabulary and the number of time intervals—but are also sparse, which makes
them amenable to compression. Naturally, we would like to achieve as much

c© Springer International Publishing Switzerland 2016
N. Ferro et al. (Eds.): ECIR 2016, LNCS 9626, pp. 675–681, 2016.
DOI: 10.1007/978-3-319-30671-1 53



676 J. Rao et al.

compression as possible to minimize the storage requirements, but this needs to
be balanced with decoding latencies, as the two desiderata are often in tension.1

Our work explores this tradeoff.
The contribution of this paper is an exploration of compression techniques

for term statistics time series. We begin with a number of well-known integer
compression techniques and build toward a novel approach based on Huffman
codes over blocks of term counts. We show that our Huffman-based techniques
are able to substantially reduce storage requirements compared to state-of-the-
art compression techniques while still maintaining good decoding performance.
Our contribution enables retrieval systems to load large amounts of time series
data into main memory and access term statistics with low latency.

2 Background and Related Work

We adopt the standard definition of a time series as a finite sequence of n real
numbers, typically generated by some underlying process for a duration of n
time units: x = {x0, x1, x2, . . . , xn}, where each xn corresponds to the value of
some attribute at a point in time. In our case, these time series data correspond
to counts on a stream of timestamped documents (tweets in our case) at fixed
intervals (e.g., hourly). To be precise, these term statistics represent collection
frequencies of unigrams and bigrams from a “temporal slice” of the document
collection consisting of documents whose timestamps fall within the interval.

There has been much previous work, primarily in the database and data
mining communities, on analyzing and searching time series data. We, however,
focus on the much narrower problem of compressing and decoding time series
data for information retrieval applications. There are a number of well-known
integer coding techniques for compressing postings lists in inverted indexes: these
include variable-byte encoding, γ codes, interpolative coding, the Simple-9 fam-
ily [1], and PForDelta [9]. Various compression techniques represent different
tradeoffs between degree of compression and decoding speed, which have been
well studied in the indexing context. Note that our problem is different from
that of postings compression: postings lists only keep track of documents that
contain the term, and hence differ in length, whereas in our case we are also
interested in intervals where a term does not appear.

3 Methods

In this work, we assume that counts are aggregated at five minute intervals,
so each unigram or bigram is associated with 24 × 60/5 = 288 values per day.
Previous work [7] suggests that smaller windows are not necessary for most appli-
cations, and coarser-grained statistics can always be derived via aggregation.

We compared five basic integer compression techniques: variable-byte encod-
ing (VB) [8], Simple16 [1], PForDelta (P4D) [9], discrete wavelet transform

1 We set aside compression speed since we are working with retrospective collections.



Compressing and Decoding Term Statistics Time Series 677

(DWT) with Haar wavelets, and variants of Huffman codes [4]. The first three
are commonly used in IR applications, and therefore we simply refer readers to
previous papers for more details. We discuss the last two in more detail.

Discrete Wavelet Transform (DWT). The discrete wavelet transform
enables time-frequency localization to capture both frequency information and
when (in time) those frequencies are observed. In this work, we use Haar wavelets.
To illustrate how DWT with Haar wavelets work, we start with a simple example.
Suppose we have a time series with four values: X = {7, 9, 5, 3}. We first perform
pairwise averaging to obtain a lower resolution signal with the values: {8, 4}. The
first value is obtained by averaging {7, 9} and the second by averaging {5, 3}. To
account for information lost in the averaging, we store detail coefficients equal
to pairwise differences of {7, 9} and {5, 3}, divided by two. This yields {−1, 1},
which allows us to reconstruct the original signal perfectly. Assuming a signal
with 2n values, we can recursively apply this transformation until we end up
with an average of all values. The final representation of the signal is the final
average and all the detail coefficients. This transformation potentially yields a
more compact representation since the detail coefficients are often smaller than
the original values. We further compress the coefficients using either variable-
byte encoding or PForDelta. Since the coefficients may be negative, we need to
store the signs (in a separate bit array).

Huffman Coding. A nice property of Huffman coding [4] is that it can find
the optimal prefix code for each symbol when the frequency information of all
symbols are given. In our case, given a list of counts, we first partition the list into
several blocks, with each block consisting of eight consecutive integers. After we
calculate the frequency counts of all blocks, we are able to construct a Huffman
tree over the blocks and obtain a code for each block. We then concatenate the
binary Huffman codes of all blocks and convert this long binary representation
into a sequence of 32-bit integers. Finally, we can apply any compression method
on top of these integer sequences. To decode, we first decompress the integer
array into its binary representation. Then, this binary code is checked bit by bit
to determine the boundaries of the original Huffman codes. Once the boundary
positions are obtained, we can recover the original integer counts by looking
up the Huffman code mapping. The decoding time is linear with respect to the
length of Huffman codes after concatenation.
Beyond integer compression techniques, we can exploit the sparseness of unigram
counts to reduce storage for bigram counts. There is no need to store the bigram
count if any unigram of that bigram has a count of zero at that specific interval.
For example, suppose we have count arrays for unigram A, B and bigram AB
below: A: 00300523, B: 45200103, and AB: 00100002. In this case, we only need
to store the 3rd, 6th, and 8th counts for bigram AB (that is, 102), while the
other counts can be dropped since at least one of its unigrams has count zero
in those intervals. To keep track of these positions we allocate a bit vector 288
bits long (per day) and store this bit vector alongside the compressed data. This



678 J. Rao et al.

truncation technique saves space but at the cost of an additional step during
decoding. When recovering the bigram counts, we need to consult the bit vector,
which is used to pad zeros in the truncated count array accordingly.

In terms of physical storage, we maintain a global array by concatenating
the compressed representations for all terms across all days. To access the com-
pressed array for a term on a specific day, we need its offset and length in the
global array. Thus, we keep a separate table of the mapping from (term id, day)
to this information. Although in our experiments we assume that all data are
held in main memory, our approach can be easily extended to disk-based storage.

As an alternative, instead of placing data for all unigrams and bigrams for
all days together, we could partition the global array into several shards with
each shard containing term statistics for a particular day. The advantage of this
design is apparent: we can select which data to load into memory when the global
array is larger than the amount of memory available.

4 Experiments

We evaluated our compression techniques in terms of two metrics: size of the com-
pressed representation and decoding latency. For the decoding latency experi-
ments, we iterated over all unigrams or bigrams in the vocabulary, over all days,
and report the average time it takes to decode counts for a single day (i.e.,
288 integers). All our algorithms were implemented in Java and available open
source.2 Experiments were conducted on a server with dual Intel Xeon 4-core
processors (E5620 2.4 GHz) and 128 GB RAM.

Our algorithms were evaluated over the Tweets2011 and Tweets2013 collec-
tions. The Tweets2011 collection consists of an approximately 1 % sample of
tweets from January 23, 2011 to February 7, 2011 (inclusive), totaling approx-
imately 16 m tweets. This collection was used in the TREC 2011 and TREC
2012 microblog evaluations. The Tweets2013 collection consists of approximately
243 m tweets crawled from Twitter’s public sample stream between February 1
and March 31, 2013 (inclusive). This collection was used in the TREC 2013 and
TREC 2014 microblog track evaluations. All non-ASCII characters were removed
in the preprocessing phase. We set a threshold (by default, greater than one per
day) to filter out all low frequency terms (including unigrams and bigrams).
We extracted a total of 0.7 m unigrams and 7.3 m bigrams from the Tweets2011
collection; 2.3 m unigrams and 23.1 m bigrams from the Tweets2013 collection.

Results are shown in Table 1. Each row denotes a compression method. The
first row “Raw” is the collection without any compression (i.e., each count is
represented by a 32-bit integer). The row “VB” denotes variable-byte encoding;
row “P4D” denotes PForDelta. Next comes the wavelet and Huffman-based tech-
niques. The last row “Optimal” shows the optimal storage space with the lowest
entropy to represent all Huffman blocks. Given the frequency information of all
blocks, the optimal space can be computed by summing over the entropy bits
2 https://github.com/Jeffyrao/time-series-compression.

https://github.com/Jeffyrao/time-series-compression


Compressing and Decoding Term Statistics Time Series 679

consumed by each block (which is also the minimum bits to represent a block).
The column “size” represents the compressed size of all data (in base two). To
make comparisons fair, instead of comparing with the (uncompressed) raw data,
we compared each approach against PForDelta, which is considered state of the
art in information retrieval for coding sequences such as postings lists [9]. The
column “percentage” shows relative size differences with respect to PForDelta.
The column “time” denotes the decompression time for each count array (the
integer list for one term in one day).

Table 1. Results on the Tweets2011 (top) and Tweets2013 (bottom) collections.

Tweets2011 Unigrams Bigrams

Method size (MB) percentage time (µs) size (MB) percentage time (µs)

Raw 4760 12800

VB 1200 +442 % 1.9 3200 +318 % 1.1

Simple16 200 −9.50 % 1.1 653 −14.6 % 0.7

P4D 221 − 1.0 764 − 1.2

Wavelet+VB 1300 +488 % 2.3 3700 +384 % 2.3

Wavelet+P4D 352 +59.3 % 2.7 978 +28.0 % 2.3

Huffman 65 −70.6 % 7.8 396 −48.2 % 2.9

Huffman+VB 46 −79.2 % 8 180 −76.4 % 3.2

Optimal 32 −85.5 % − 108 −85.9 % -

Tweets2013 Unigrams Bigrams

Method size (GB) percentage time (µs) size (GB) percentage time (µs)

Raw 52.5 171.8

VB 13.1 +446 % 3.8 43.0 +347 % 1.3

Simple16 2.2 −8.33 % 2.2 8.3 −13.5 % 0.8

P4D 2.4 − 1.9 9.6 − 1.2

Wavelet+VB 14.8 +517 % 6.4 49.0 +410 % 2.6

Wavelet+P4D 3.8 +58.3 % 4.7 12.9 +34.4 % 6.2

Huffman 0.71 −70.4 % 14.7 4.9 −49.0 % 6.2

Huffman+VB 0.48 −80.0 % 15.6 3.0 −68.7 % 6.3

Optimal 0.33 −86.2 % - 0.95 −90.1 % −

Results show that both Simple16 and PForDelta are effective in compress-
ing the data. Simple16 achieves better compression, but for unigrams is slightly
slower to decode. Variable-byte encoding, on the other hand, does not work par-
ticularly well: the reason is that our count arrays are aggregated over a relative
small temporal window (five minutes) and therefore term counts are generally
small. This enables Simple16 and PForDelta to represent the values using very
few bits. In contrast, VB cannot represent an integer using fewer than eight bits.



680 J. Rao et al.

We also noticed that the Wavelet+VB and Wavelet+P4D techniques require
more space than just VB and PForDelta alone, which suggests that the wavelet
transform is not effective. We believe this increase comes from: (1) DWT requires
an additional array to store the sign bits of the coefficients, and (2) since the
original counts were already sparse, DWT does not additionally help.

The decoding times for VB, Simple16, PForDelta, and the wavelet methods
are all quite small, and it is interesting to note that decoding bigrams can be
actually faster than decoding unigrams, which suggests that our masking mech-
anism is effective in reducing the length of the bigram count arrays.

Experiments show that we are able to achieve substantial compression with
the Huffman-based techniques, up to 80 % reduction over PForDelta. Overall,
our findings hold consistently over both the Tweets2011 and Tweets2013 collec-
tions. In fact, Huffman+VB is pretty close to the entropy lower bound. Entropy
coding techniques like Huffman coding prefer highly non-uniform frequency dis-
tributions, and thus are perfectly suited to our time series data. Although our
Huffman+VB technique also increases decoding time, we believe that this trade-
off is worthwhile, but of course, this is application dependent. We did not try
to combine Huffman coding with Simple16 or PForDelta as we found that the
integer lists transformed from Huffman codes were generally composed of large
values, which are not suitable for word-aligned compression methods.

5 Conclusion

The main contribution of our work is an exploration of integer compression
techniques for term statistics time series. We demonstrated the effectiveness of
our novel techniques based on Huffman codes, which exploit the sparse and
highly non-uniform distribution of blocks of counts. Our best technique can
reduce storage requirements by a factor of four to five compared to PForDelta
encoding. A small footprint means that it is practical to load large amounts of
term statistics time series into memory for efficient access.

Acknowledgments. This work was supported in part by the U.S. National Science
Foundation under IIS-1218043. Any opinions, findings, conclusions, or recommenda-
tions expressed are those of the authors and do not necessarily reflect the views of the
sponsor.

References

1. Anh, V.N., Moffat, A.: Inverted index compression using word-aligned binary
codes. Inf. Retrieval 8(1), 151–166 (2005)

2. Busch, M., Gade, K., Larson, B., Lok, P., Luckenbill, S., Lin, J.: Earlybird: real-
time search at Twitter. In: ICDE (2012)

3. Elsas, J.L., Dumais, S.T.: Leveraging temporal dynamics of document content in
relevance ranking. In: WSDM (2010)

4. Huffman, D.A., et al.: A method for the construction of minimum redundancy
codes. Proc. IRE 40(9), 1098–1101 (1952)



Compressing and Decoding Term Statistics Time Series 681

5. Jones, R., Diaz, F.: Temporal profiles of queries. ACM TOIS 25, Article no. 14
(2007)

6. Lin, J., Mishne, G.: A study of “churn” in tweets and real-time search queries. In:
ICWSM (2012)

7. Mishne, G., Dalton, J., Li, Z., Sharma, A., Lin, J.: Fast data in the era of big data:
Twitter’s real-time related query suggestion architecture. In: SIGMOD (2013)

8. Williams, H.E., Zobel, J.: Compressing integers for fast file access. Comput. J.
42(3), 193–201 (1999)

9. Zhang, J., Long, X., Suel, T.: Performance of compressed inverted list caching in
search engines. In: WWW (2008)


	Compressing and Decoding Term Statistics Time Series
	1 Introduction
	2 Background and Related Work
	3 Methods
	4 Experiments
	5 Conclusion
	References


