
Reproducible Experiments on Lexical

and Temporal Feedback for Tweet Search

Jinfeng Rao1, Jimmy Lin1, and Miles Efron2

1 University of Maryland, College Park
jinfeng@cs.umd.edu, jimmylin@umd.edu

2 University of Illinois, Urbana-Champaign
mefron@illinois.edu

Abstract. “Evaluation as a service” (EaaS) is a new methodology for
community-wide evaluations where an API provides the only point of
access to the collection for completing the evaluation task. Two impor-
tant advantages of this model are that it enables reproducible IR ex-
periments and encourages sharing of pluggable open-source components.
In this paper, we illustrate both advantages by providing open-source
implementations of lexical and temporal feedback techniques for tweet
search built on the TREC Microblog API. For the most part, we are
able to reproduce results reported in previous papers and confirm their
general findings. However, experiments on new test collections and addi-
tional analyses provide a more nuanced look at the results and highlight
issues not discussed in previous studies, particularly the large variances
in effectiveness associated with training/test splits.

Keywords: TREC Microblog, evaluation as a service, search API.

1 Introduction

“Evaluation as a service” (EaaS) [11] is a new methodology that enables commu-
nity-wide evaluations and the construction of test collections on documents that
cannot be distributed. The basic idea is that instead of providing the document
collection in a downloadable form, as is standard in most TREC, NTCIR, CLEF,
and other evaluations, the organizers provide a service API through which the
evaluation task can be completed [12]. Typically, the API would provide keyword
search capabilities, but it can be augmented with additional features customized
to the evaluation task at hand. The key point is, however, that the API provides
the sole access point to the document collection, and thus it can be engineered
to respect restrictions on the dissemination of content.

One important advantage of the evaluation-as-a-service model is that it en-
ables reproducible IR experiments. Modern search systems have become complex
collections of components for document ingestion, inverted indexing, query eval-
uation, document ranking, and machine learning. As a result, it can be difficult
to isolate and attribute differences in effectiveness to specific components, al-
gorithms, or techniques. Consider a baseline retrieval model such as BM25 or

A. Hanbury et al. (Eds.): ECIR 2015, LNCS 9022, pp. 755–767, 2015.
c© Springer International Publishing Switzerland 2015

756 J. Rao, J. Lin, and M. Efron

query-likelihood within the language modeling framework—alternative imple-
mentations may produce substantially different results due to small but conse-
quential decisions such as the tokenization strategy, stemming algorithm, method
for pruning the term space (e.g., discarding long or rare terms), minor scoring
variations, and other engineering issues [16,22]. In some cases, the effects that
we are hoping to study are masked by differences we are not interested in. The
evaluation-as-a-service model addresses many of these issues by deploying a com-
mon API that is used by all participants. This means that everything “below”
the API (e.g., indexing, tokenization, etc.) is exactly the same for everyone. Thus,
we can be confident that differences in effectiveness can be attributed to retrieval
techniques on top of the API, rather than “uninteresting” issues.

Additionally, we believe that this model is conducive to an open culture of
sharing pluggable system components. There is broad recognition that open-
source software advances the state of the art; a common API increases the
likelihood that code components inter-operate, thus increasing the likelihood
of adoption. Although there is already widespread availability of open-source
search engines, nearly all systems are monolithic in that they were not designed
for service decomposition along functional boundaries. This means that a par-
ticular algorithm developed for one system cannot be easily used by researchers
who have written their code on another system due to interface incompatibilities.
A common API begins to address these issues.

In this paper, we illustrate both advantages of the evaluation-as-a-service
model by reproducing lexical and temporal feedback techniques for searching
tweets in the context of the TREC Microblog tracks, which was the first to op-
erationalize this evaluation model. By lexical feedback we mean pseudo-relevance
feedback where an initial set of retrieved documents is exploited to refine the
query model. Since tweets are very short, a number of researchers have suggested
that the query expansion effects of pseudo-relevance feedback are beneficial to
search effectiveness. To rigorously test this insight, we have reimplemented the
popular RM3 approach [8] using the TREC Microblog API. We use the term lex-
ical feedback to distinguish RM3 (and related models) from techniques that take
advantage of the temporal information of documents, which is the focus of our
second set of experiments. We attempt to reproduce the techniques proposed in a
recent SIGIR paper by Efron et al. [5], reimplementing their proposed algorithms
based on kernel density estimation (KDE) as well as two other temporal-ranking
techniques. Finally, we combine both lexical and temporal feedback to explore
the question of whether the effectiveness gains are cumulative. All of the source
code for experiments conducted in this paper can be found in our open-source
code repository.1

Our reproducibility efforts were largely successful and our experimental results
are consistent with previous studies for the most part. However, through more
extensive experiments on new test collections and additional analyses, we provide
a more nuanced look at previous results. In particular, we note the large variances
in effectiveness associated with training/test splits of test collections.

1 http://twittertools.cc/

http://twittertools.cc/

Reproducible Experiments on Lexical and Temporal Feedback 757

2 Background

The context for our study is the recent Microblog tracks at TREC [17,21,11],
which have been running since 2011. Although the task has remained essentially
the same, the evaluation methodology has changed over the years, and so it is
worth providing an overview.

The TRECMicroblog tracks in 2013 and 2014 used the evaluation-as-a-service
model described in the introduction. The API served the Tweets2013 collection,
which consists of 243 million tweets crawled from Twitter’s public sample stream
between February 1 and March 31, 2013 (inclusive). Although the “official” col-
lection is not available for download, participants could acquire substantively
similar data by also crawling the public stream during the same time (which
was coordinated on the track mailing list and indeed, many participants did ac-
quire tweets in this manner). In contrast, the 2011 and 2012 evaluations used the
Tweets2011 corpus, which consists of an approximately 1% sample (after some
spam removal) of tweets from January 23, 2011 to February 7, 2011 (inclusive),
totaling approximately 16 million tweets. For those evaluations, the TREC or-
ganizers made the list of tweet ids that comprise the collection available, and
together with a distributed crawler (also supplied by the organizers), partici-
pants could download the actual tweets from Twitter itself (this approach does
not scale to the much larger Tweets2013 collection). Note, however, that the col-
lection acquired by each participant might be slightly different due to transient
network glitches, message deletions, removal of spam accounts, and a whole host
of other factors. Nevertheless, a study in 2012 [13] found that these artifacts did
not impact the stability of the test collection. These methodological differences
add an extra dimension of interest in our studies, as we would like to examine
the impact of having a local collection vs. using the service API.

The formulation of the tweet search problem for the TREC Microblog track is
as follows: at time t, a user expresses an information need in the form of a query
Q. The system’s task is to return topically-relevant documents (tweets) posted
before the query time. Thus, each topic consists of a query and an associated
timestamp, which indicates when the query was issued. There are 50 topics
for TREC 2011, 60 topics for TREC 2012, 60 topics for TREC 2013, and 55
topics for TREC 2014. NIST assessors used a standard pooling strategy for
evaluation, assigning one of three judgments to each tweet in the pool: “not
relevant”, “relevant”, and “highly relevant”. For the purpose of our experiments,
we considered both “relevant” and “highly relevant” tweets to be relevant.

In addition to the official API used for TREC 2013 and 2014 (which served
the Tweets2013 collection), the organizers also provided an API that serves
the smaller Tweets2011 collection so that participants could runs experiments
using topics from TREC 2011 and 2012. Both APIs were identical except for
the underlying document collection, and were implemented in Java using service
definitions provided by Thrift2 and Lucene3 as the underlying search engine.

2 http://thrift.apache.org/
3 http://lucene.apache.org/

http://thrift.apache.org/
http://lucene.apache.org/

758 J. Rao, J. Lin, and M. Efron

Ranking was provided using Lucene’s implementation of query-likelihood in the
language modeling framework [18]. The API returned up to 10000 hits, and
each hit contained the full text of the tweet and associated metadata (statistics
about the user, the source tweet if the tweet was a retweet or a reply, etc.). There
is one implementation detail worth mentioning—for efficiency reasons, Lucene
implements a rank-equivalent scoring model to query-likelihood,4 which cannot
be used in more complex ranking models that depend on valid log probabilities.
To get around this issue, a patch was made to the service API whereby the
client could (optionally) request that the system compute valid query-likelihood
probabilities in a second pass after the initial retrieval. In all our experiments,
we enabled this option.

Code for all experiments reported in this paper, implemented in Java, has
been open sourced and integrates directly with the TREC Microblog API. Re-
producing our results is as simple as executing the command-line invocations
included in our documentation—the evaluation-as-a-service model obviates the
need to download the document collection, build inverted indexes, etc.

3 Lexical Feedback with Relevance Models

A longstanding challenge in information retrieval is the issue of vocabulary mis-
match, where queries are expressed using terms not present in relevant docu-
ments. Query expansion techniques, particularly those based on pseudo-relevance
feedback, are often used to address this problem; there is a long history of re-
search in this area dating back many decades [19]. The brevity of tweets exac-
erbates vocabulary mismatch, and thus query expansion techniques are likely
to improve the effectiveness of tweet search. This is an insight shared by many
researchers—for example, many of the most effective runs from TREC 2011 take
advantage of such techniques in various guises [2,10,14]. In our first set of ex-
periments, we wished to verify the effectiveness of pseudo-relevance feedback
for tweet search, and to that end, we implemented relevance models [8] using
the TREC Microblog API. Relevance models have specifically been explored for
tweet search in a few previous studies [3,15], which provides a point of reference
for our reproducibility efforts.

Given a query Q consisting of n query terms {q1, q2, ...qn}, its relevance model
P (w|RQ) is simply a weighted average of the terms in all documents, where the
weights are the query likelihood scores:

P (w|RQ) =
∑

D∈D
P (D)P (w|D)

n∏

i=1

P (qi|D). (1)

In the RM3 variant [1], the above model is interpolated with the observed query
model according to a mixing parameter γ. In our experiments, we set γ = 0.5,
which is the default value in the Indri implementation. In practice, RM3 is typ-
ically implemented using query expansion (e.g., augmenting the original query

4 See equation (4) in [24] for more details.

Reproducible Experiments on Lexical and Temporal Feedback 759

Table 1. Results comparing query-likelihood (QL) against RM3, where the relevance
models are estimated with retweets included (+retweets) or discarded (−retweets)

2011/12 2013/14
Method MAP P30 MAP P30

QL 0.2692 0.3552 0.3266 0.5156
RM3 (+retweets) 0.3005∗ 0.3778∗ 0.3629∗ 0.5351∗

RM3 (−retweets) 0.3003∗ 0.3787∗ 0.3597∗ 0.5357∗

using Indri query operators); our implementation follows this approach as well.
Following common parameter settings, we estimated the relevance models from
k = 50 pseudo-relevant documents and selected n = 20 feedback terms.

Experimental results are shown in Table 1 for TREC 2011/12 and 2013/14,
reporting mean average precision (MAP) to 1000 hits and precision at rank
30 (P30) computed with trec eval. There is no training/test split because we
are not tuning parameters, but simply using “best practice” defaults from the
literature. Query-likelihood provides a baseline for comparison. The symbol ∗

indicates that the difference with respect to the baseline is statistically signif-
icant (p < 0.01) based on Fisher’s two-sided, paired randomization test [20].
Our experiments also examined the impact of one detail we have not seen much
discussion about in the literature: the effect of retweets. According to the assess-
ment guidelines, retweets that provide no additional information are considered
not relevant. Thus, it makes sense to remove all retweets from the final results
(which we did here and for all subsequent runs). However, it is unclear if the
retweets should be included or discarded when estimating relevance models—
thus, we tried both conditions.

Results show that RM3 yields significant and consistent improvements over
the query-likelihood baseline in terms of MAP and P30. Furthermore, it does
not appear to matter whether or not retweets are included in the estimation of
the relevance model. To summarize, we have successfully reproduced previous
results and confirmed that the benefits of pseudo-relevance feedback are robust.

4 Temporal Feedback with Kernel Density Estimation

4.1 Overview

Relevance models represent a popular approach to lexical feedback, taking ad-
vantage of an initial set of search results to refine the system’s estimate of the
term distribution of relevant documents. We can extend this idea to temporal
feedback by estimating the temporal density of relevance—which characterizes
where along a timeline we would expect relevant documents to appear. For in-
formation needs where temporality plays an important factor (as is common in
tweet search), we would expect a non-uniform distribution of documents over
time, and hence there might be a temporal relevance signal that can be ex-
ploited. In the same way that an initial set of search results can be used to
estimate relevance models, we can estimate the temporal density of relevance

760 J. Rao, J. Lin, and M. Efron

from an initial list of retrieved documents. These are the ideas behind the work
of Efron et al. [5], which we reproduce here. Below, we briefly summarize the
relevant techniques.

As a starting point, consider the query-likelihood approach in the language
modeling framework [18]. Documents are ranked by P (D|Q) ∝ P (Q|D)P (D),
where P (Q|D) is the likelihood that the language model that generated docu-
ment D would also generate query Q, and P (D) is the prior distribution.

Recency Priors. Li and Croft [9] incorporate temporal information using a
prior that favors recent documents, modeling P (D) with an exponential P (D) =
λe−λTD , where TD is the timestamp of document D and λ ≥ 0 is the rate
parameter. We refer to this as a recency prior, or “Recency” for short.

Moving Window Approach. Recency priors are query-independent and un-
able to account for information needs with different temporal profiles [7]. Dakka
et al. [4] proposed a query-specific way to combine lexical and temporal evi-
dence in the language modeling framework by separating the lexical and tempo-
ral signals into two components: WD, the words in the document and TD, the
document’s timestamp. This leads to the following derivation:

P (D|Q) = P (WD, TD|Q) (2)

= P (TD|WD, Q)P (WD|Q) (3)

∼ P (WD|Q)P (TD|Q) (4)

where the last step follows if we assume independence between lexical and tem-
poral evidence. The result is similar to standard query-likelihood, but with the
addition of the probability of observing a time TD given the query Q.

Dakka et al. proposed several ways to estimate P (TD|Q). In the moving win-
dow approach (WIN for short), initial documents retrieved for Q are allocated
among b bins according to their timestamps. For each bin bt, we count n(bt), the
number of retrieved documents in bt. Next, bin counts are smoothed by averag-
ing x bins into the past and x bins into the future. Let n(btx) be the average
number of documents in the 2x bins surrounding bt and bt itself. Finally, bins are
arranged in decreasing order of n(btx). The quantity P (TD|Q) depends on the
bin associated with TD. If TD is in the nth ordered bin, then P (TD|Q) = φ(n, λ)
where φ is an exponential distribution with rate parameter λ.

Kernel Density Estimates. To estimate the temporal distribution of relevant
documents, Efron et al. proposed using kernel density estimation (KDE) [6]. Let
{x1, x2, . . . , xn} be i.i.d. samples drawn from some distribution with an unknown
density f . We are interested in estimating the shape of this function f . Its kernel
density estimator is:

f̂ω(x) =
1

nh

n∑

i=0

ωiK

(
x− xi

h

)
(5)

where K(·) is the kernel—a symmetric function that integrates to one (in our
case, a Gaussian)—and h > 0 is a smoothing parameter called the bandwidth.

Reproducible Experiments on Lexical and Temporal Feedback 761

For bandwidth selection we use what is known as the “robust rule of thumb” [23],
which yields a bandwidth automatically. KDE additionally has the ability to
handle weighted observations, given non-negative weights {ω1, ω2, . . . , ωn} such
that

∑
ωi = 1. Consider four different weighting schemes:

– Uniform weights. The simplest approach is to give all documents in the initial
results equal weights.

– Score-based weights. We can weight each document based on its query-
likelihood, i.e.,

ωs
i =

P (Q|Di)∑n
j=1 P (Q|Dj)

. (6)

– Rank-based weights. We can adopt a rank-based scheme that preserves or-
dering in the initial results, but not the actual score differences, via an ex-
ponential distribution:

ωr
i =

λe−λri

∑n
j=1 λe

−λri
(7)

where λ > 0 is the rate parameter of the exponential and ri is the rank
of document Di in R. Though we could leave λ as a tuneable parameter, a
simpler approach is to use the maximum likelihood estimate. If R contains
n documents, the MLE of λ is simply 1

r̄ , where r̄ is the mean of the ranks
1, 2, . . . , n.

– Oracle. An upper bound can be characterized by an oracle where the density
estimates are derived from documents marked relevant by human assessors.

To combine the temporal and lexical evidence, Efron et al. proposed a simple
log-linear model. For a parameter α ∈ [0, 1], we have

logPα(R|D,Q) = Zα +(1− α) logP (R|WD, Q) + α logP (R|TD, Q) (8)

where Zα is a normalization constant. Since Zα does not depend on D for rank-
ing, we can ignore it; α is a free parameter learned from data.

4.2 Experimental Results

Experiments in Efron et al. were conducted on topics from TREC 2011 and
2012 over a local copy of the Tweets2011 corpus. During corpus preparation,
all retweets were eliminated. Thus, the collection used in those experiments is
substantively different from the corpus behind the official TREC Microblog API,
which does include retweets. This is an additional factor that might affect the
reproducibility of their results. To be clear, however, retweets are removed in all
cases in the final ranked list prior to evaluation.

In our first set of experiments, we attempted to reproduce the experimental
conditions in Efron et al. as closely as possible. Even-numbered topics from
TREC 2011 and 2012 were used for training, and odd-numbered topics for

762 J. Rao, J. Lin, and M. Efron

Table 2. Results from attempting to reproduce experiments in Efron et al. [5] as closely
as possible. Metrics computed over odd-numbered topics from TREC 2011/12, training
on even-numbered topics. Columns marked “original” contain results copied from the
previous SIGIR paper; columns marked “reproduced” show reproduced results.

MAP P30
Condition original reproduced original reproduced

QL 0.2363 0.2705 0.3473 0.3582
Recency 0.2467◦ 0.2766 0.3642◦ 0.3607
WIN 0.2407 0.2548 0.3515 0.3449

KDE (uniform) 0.2457◦ 0.2685 0.3618◦ 0.3534

KDE (score-based) 0.2505•† 0.2719 0.3606◦ 0.3582
KDE (rank-based) 0.2546•�† 0.2724 0.3709•‡ 0.3649

KDE (oracle) 0.2843•�‡ 0.3045•�‡ 0.4024•�‡ 0.3922•�‡

Table 3. Symbols indicating statistically significant change for data reporting

Symbol Description

◦, • improvements over the QL baseline (p < 0.05, p < 0.01)
�, � improvements over the recency prior (p < 0.05, p < 0.01)
†, ‡ improvements over the WIN method (p < 0.05, p < 0.01)

testing. These results are shown in Table 2, with QL representing the query-
likelihood baseline; we characterize effectiveness in terms of MAP (to rank 1000)
and precision at rank 30 (P30). The free parameters for each technique were
tuned via grid search to optimize MAP and P30 (separately).5 Results are an-
notated with symbols indicating the statistical significance of improvements as
shown in Table 3. Following Efron et al., we applied one-sided paired t-tests for
significance testing.

These results are somewhat different from those reported in Efron et al. We
immediately noticed the differences between the two versions of the QL base-
line (Indri for the SIGIR paper and Lucene + QL recomputation for the TREC
Microblog API). Although both are putatively implementing the same rank-
ing function (Dirichlet scores), there is a fairly large difference in MAP. There
are many possible sources for these differences, including the fact that the two
experiments are actually on different collections, as well as issues related to cor-
pus preparation such as removal of retweets, stemming, tokenization, etc. This
further affirms the arguments behind the evaluation-as-a-service model in pro-
viding a common starting point for everyone—otherwise, relatively uninteresting
differences could easily mask the effects of the techniques we are studying.

Consistent with the original work, we find that the KDE oracle condition is
highly effective, which indicates that there is a strong temporal relevance signal.
We observe improvements for rank-based KDE in terms of MAP and P30, albeit

5 Note that in these experiments we did not compute metrics using trec eval to
facilitate tighter training/test coupling, and thus there are small differences between
our values and those reported using trec eval due to how scoring ties are handled.

Reproducible Experiments on Lexical and Temporal Feedback 763

Table 4. Results from TREC 2011/12. “Cross” represents training using all TREC
2013/14 topics; “Even-Odd” represents training on even-numbered topics and testing
on odd-numbered topics; “Odd-Even” represents switching train/test.

Cross Even-Odd Odd-Even
Metric MAP P30 MAP P30 MAP P30

QL 0.2689 0.3562 0.2705 0.3582 0.2673 0.3541
Recency 0.2748 0.3578 0.2766 0.3607 0.2721 0.3509
WIN 0.2689 0.3578 0.2548 0.3449 0.2673 0.3541

KDE (uniform) 0.2699 0.3568 0.2685 0.3534 0.2702 0.3553
KDE (score-based) 0.2711 0.3673 0.2719 0.3582 0.2697 0.3698
KDE (rank-based) 0.2707 0.3655 0.2724 0.3649 0.2716 0.3616

KDE (oracle) 0.3032•�‡ 0.3988•�‡ 0.3045•�‡ 0.3922•�‡ 0.3001•�‡ 0.4069•�†

not statistically significant. Furthermore, the WIN approach does not seem to be
effective. We suspect that these findings may be attributed to the much improved
QL baseline in our experiments.

We extended the experiments of Efron et al. in two ways. First, we evaluated
the techniques on test collections from TREC 2013 and 2014. This not only pro-
vides (roughly) double the number of topics, but also allows us to examine the
effects of a much larger corpus. An open question is whether the proposed tech-
niques would remain effective for a collection spanning a much longer duration
(about two weeks for Tweets2011 compared to two months for Tweets2013);
we now have an opportunity to answer this question. Second, during our ex-
periments we noticed large effectiveness differences that stemmed from different
training/test splits; we wanted to explore these effects in more detail.

In terms of training regimes, one simple approach is to arbitrarily divide
the test collection into halves; train on one half and test on the other half.
Splitting topics by topic number is a perfectly acceptable arbitrary division: we
can train on even-numbered topics and test on odd-numbered topics (as before),
and also flip the two halves (i.e., train on odd, test on even). Another reasonable
strategy might be to consider the TREC 2011/12 topics to be a unit, train on all
those topics, and test on TREC 2013/14 topics; and also the other way around,
i.e., train on TREC 2013/14 topics and test on all TREC 2011/12 topics. This
condition assesses whether it may be possible to generalize parameters across
different collections, i.e., a simple form of transfer learning.

Results from these experiments are shown in Table 4 for TREC 2011/12 and
Table 5 for TREC 2013/14. Note that the figures reported in Table 2 are the
same as those in the “Even-Odd” column in Table 4. In these experiments we
used Fisher’s two-sided, paired randomization test [20], reflecting better practice
than the one-sided paired t-tests used in the SIGIR experiments. Results appear
to show that the KDE techniques are more effective on the TREC 2013/2014
test collection. For rank-based weights, the differences are statistically significant
in most cases.

To further explore the train/test split issue, we conducted a series of trials
where we randomly divided the TREC 2011/12 and TREC 2013/14 topics in

764 J. Rao, J. Lin, and M. Efron

Table 5. Results from TREC 2013/14. “Cross” represents training using all TREC
2011/12 topics; other conditions have the same meaning as in Table 4.

Cross Even-Odd Odd-Even
Metric MAP P30 MAP P30 MAP P30

QL 0.3139 0.5197 0.3559 0.5638 0.2712 0.4749
Recency 0.3129 0.5336 0.3593 0.5736 0.2773 0.4994
WIN 0.3139 0.5197 0.3559 0.5638 0.2712 0.4749

KDE (uniform) 0.3121 0.5177 0.3490 0.5603 0.2737 0.4795
KDE (score-based) 0.3140 0.5206 0.3516 0.5747 0.2753 0.4795

KDE (rank-based) 0.3267 •‡ 0.5542•‡ 0.3600 0.5983•�‡ 0.2949 •�‡ 0.5228 •‡

KDE (oracle) 0.3492•�‡ 0.5829•�‡ 0.3816•�† 0.6328•�‡ 0.3135•�‡ 0.5363•�‡

-0.02

 0

 0.02

 0.04

 0.06

 0.08

TREC11/12 MAP TREC13/14 MAP TREC11/12 P30 TREC13/14 P30

R
el

at
iv

e
Im

pr
ov

em
en

t o
ve

r
Q

L

KDE(score)
KDE(rank)

Fig. 1. Box-and-whiskers plots summarizing effectiveness differences (with respect to
QL baseline) of score-based and rank-based weights for KDE, across 50 random trials
where the topics are split in half for training/test.

half. For each trial, we trained on half the topics and tested on the other half.
We then computed the effectiveness differences between each technique and the
QL baseline. These differences, collected over 50 trials, are summarized in box-
and-whiskers plots in Figure 1 for KDE with score-based weights and KDE
with rank-based weights. We show the distribution of effectiveness differences
in terms of MAP and P30 on TREC 2011/12 and TREC 2013/14. Following
convention: Each box represents the span between the first and third quartiles,
with a horizontal line at the median value. Whiskers extend from the ends of each
box to the most distant point whose value lies within 1.5 times the interquartile
range. Points that lie outside these limits are drawn individually. These results
capture the overall effectiveness of the techniques better than metrics from any
single arbitrary split. Here, we clearly see that rank-based weights are more
effective than score-based weights.

Reproducible Experiments on Lexical and Temporal Feedback 765

Table 6. Results from attempting to reproduce lexical+temporal feedback experiments
in Efron et al. [5] as closely as possible. Metrics computed over odd-numbered topics
from TREC 2011/12.

MAP P30
Condition original reproduced original reproduced

RM3 0.2897 0.2847 0.3843 0.3684
KDE (score-based) 0.3014∗ 0.2834 0.4079∗ 0.3570
KDE (rank-based) 0.2703 0.3509∗

KDE (oracle) 0.3027∗ 0.3945∗

Taken as a whole, our findings are mostly consistent with the results of Efron
et al. We find that KDE with rank-based weights yields improvements over the
QL baseline, which affirms the overall effectiveness of the proposed approach.

5 Combining Lexical and Temporal Feedback

The final question explored in Efron et al. was whether lexical relevance sig-
nals are distinct from temporal relevance signals—in practical terms, are the
effectiveness gains from both techniques additive?

Results from applying KDE on top of an RM3 baseline are shown in Table 6,
reproducing the experiments in Efron et al. as closely as possible. In this case,
we used the parameter setting that optimized MAP from the experiments in
Table 2. The original SIGIR paper reported only score-based weights for KDE,
but here we include the rank-based weights and the oracle condition as well.
In this and the following experiments, relevance models were estimated with
retweets included. The symbol ∗ indicates that the difference with respect to
the RM3 baseline is statistically significant (p < 0.05). We find that the oracle
condition is significantly better than the RM3 baseline for both metrics; rank-
based weighting for P30 is significantly worse, but none of the other differences
are significant. This is not consistent with the findings in Efron et al., who
reported significant improvements for score-based weights.

To further examine these inconsistencies, we repeated the experiments on all
topics from TREC 2011/12 and TREC 2013/14. Here, we used the parameter
settings in the “cross” condition that optimizes MAP from Tables 4 and 5.
The symbol ∗ indicates that the difference with respect to RM3 is statistically
significant (p < 0.05). We see that neither score-based nor rank-based KDE is
able to improve upon RM3, although the oracle condition shows a significant
improvement in all cases. This confirms that a temporal relevance signal exists
independently of the lexical relevance signal, although it does not appear that
the proposed non-oracle techniques can exploit this signal. Note that in these
experiments, we simply used previous parameters; perhaps with retuning we
might more closely replicate previous results.

766 J. Rao, J. Lin, and M. Efron

Table 7. Applying temporal feedback on top of lexical feedback for TREC 2011/12
and TREC 2013/14 data

2011/12 2013/14
Method MAP P30 MAP P30

RM3 0.3005 0.3778 0.3629 0.5351
KDE (score-based) 0.2925∗ 0.3781 0.3543 0.5279
KDE (rank-based) 0.2769∗ 0.3642 0.3670 0.5423
KDE (oracle) 0.3197∗ 0.4191∗ 0.3964∗ 0.5952∗

6 Conclusions

In this paper, we have successfully reproduced experiments described in pre-
vious work involving lexical feedback and temporal feedback. A third set of
experiments on the combination of lexical and temporal feedback met with lim-
ited success. More in-depth analyses and extensions to new test collections add
more nuance to previous conclusions.

We feel that there are two important takeaway lessons: First, though it may
seem like an obvious point, meaningful comparisons depend on a proper baseline.
We suspect that improvements reported in previous studies disappeared or were
diminished to a large extent because the baseline became more competitive in our
experiments. IR researchers must continuously remain vigilant and be “honest”
with themselves in presenting a fair point of comparison.

Second, we found that effectiveness is highly dependent on the training/test
split. This is perhaps not surprising since TREC test collections are relatively
small—however, we see in the literature plenty of papers that base their con-
clusions on a single (arbitrary) training/test split. It is difficult to rule out that
those findings, even in the case of statistically significant improvements, are due
to fortuitous splits of the data. Running many randomized trials, as we have done
in this paper, provides a more complete characterization of effectiveness differ-
ences. Perhaps such practices should become more commonplace in information
retrieval evaluation.

Acknowledgments. This work was supported in part by the U.S. National
Science Foundation under grants 1217279 and 1218043. Any opinions, findings,
conclusions, or recommendations expressed are those of the authors and do not
necessarily reflect the views of the sponsor.

References

1. Abdul-Jaleel, N., Allan, J., Croft, W.B., Diaz, F., Larkey, L., Li, X., Metzler, D.,
Smucker, M.D., Strohman, T., Turtle, H., Wade, C.: UMass at TREC 2004: Novelty
and HARD. In: TREC (2004)

2. Amati, G., Amodeo, G., Bianchi, M., Celi, A., Nicola, C.D., Flammini, M.,
Gaibisso, C., Gambosi, G., Marcone, G.: FUB, IASI-CNR, UNIVAQ at TREC
2011 Microblog track. In: TREC (2011)

Reproducible Experiments on Lexical and Temporal Feedback 767

3. Choi, J., Croft, W.B.: Temporal models for microblog. In: CIKM, pp. 2491–2494
(2012)

4. Dakka, W., Gravano, L., Ipeirotis, P.G.: Answering general time-sensitive queries.
IEEE Transactions on Knowledge and Data Engineering 24(2), 220–235 (2012)

5. Efron, M., Lin, J., He, J., de Vries, A.: Temporal feedback for tweet search with
non-parametric density estimation. In: SIGIR, pp. 33–42 (2014)

6. Hall, P., Turlach, B.A.: Reducing bias in curve estimation by use of weights. Com-
putational Statistics & Data Analysis 30(1), 67–86 (1999)

7. Jones, R., Diaz, F.: Temporal profiles of queries. ACM Transactions on Information
Systems 25(3), Article 14 (2007)

8. Lavrenko, V., Croft, W.B.: Relevance based language models. In: SIGIR, pp. 120–
127 (2001)

9. Li, X., Croft, W.B.: Time-based language models. In: CIKM, pp. 469–475 (2003)
10. Li, Y., Zhang, Z., Lv, W., Xie, Q., Lin, Y., Xu, R., Xu, W., Chen, G., Guo, J.:

PRIS at TREC2011 Micro-blog track. In: TREC (2011)
11. Lin, J., Efron, M.: Overview of the TREC-2013 Microblog Track. In: TREC (2013)
12. Lin, J., Efron, M.: Infrastructure support for evaluation as a service. In: WWW

Companion, pp. 79–82 (2014)
13. McCreadie, R., Soboroff, I., Lin, J., Macdonald, C., Ounis, I., McCullough, D.: On

building a reusable Twitter corpus. In: SIGIR, pp. 1113–1114 (2012)
14. Metzler, D., Cai, C.: USC/ISI at TREC 2011: Microblog track. In: TREC (2011)
15. Miyanishi, T., Seki, K., Uehara, K.: Improving pseudo-relevance feedback via tweet

selection. In: CIKM, pp. 439–448 (2013)
16. Mühleisen, H., Samar, T., Lin, J., de Vries, A.: Old dogs are great at new tricks:

Column stores for IR prototyping. In: SIGIR, pp. 863–866 (2014)
17. Ounis, I., Macdonald, C., Lin, J., Soboroff, I.: Overview of the TREC-2011 Mi-

croblog Track. In: TREC (2011)
18. Ponte, J.M., Croft, W.: A language modeling approach to information retrieval.

In: SIGIR, pp. 275–281 (1998)
19. Rocchio, J.J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The

SMART Retrieval System—Experiments in Automatic Document Processing, pp.
313–323. Prentice-Hall, Englewood Cliffs, New Jersey (1971)

20. Smucker, M.D., Allan, J., Carterette, B.: A comparison of statistical significance
tests for information retrieval evaluation. In: CIKM, pp. 623–632 (2007)

21. Soboroff, I., McCullough, D., Lin, J., Macdonald, C., Ounis, I., McCreadie, R.:
Evaluating real-time search over tweets. In: ICWSM, pp. 579–582 (2012)

22. Trotman, A., Puurula, A., Burgess, B.: Improvements to BM25 and language mod-
els examined. In: ADCS (2014)

23. Turlach, B.A.: Bandwidth selection in kernel density estimation: A review (1993)
24. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computing Sur-

veys 38(6), 1–56 (2006)

	Reproducible Experiments on Lexical and Temporal Feedback for Tweet Search
	1
Introduction
	2
Background
	3
Lexical Feedback with Relevance Models
	4
Temporal Feedback with Kernel Density Estimation
	4.1
Overview
	4.2
Experimental Results

	5
Combining Lexical and Temporal Feedback
	6
Conclusions
	References

