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Abstract. In the information age, health misinformation remains a
notable challenge to public welfare. Integral to addressing this issue is
the development of search systems adept at identifying and filtering out
misleading content. This paper presents the automation of Vera, a state-
of-the-art consumer health search system. While Vera can discern arti-
cles containing misinformation, it requires expert ground truth answers
and rule-based reformulations. We introduce an answer prediction mod-
ule that integrates GPTx with Vera and a GPT-based query reformu-
lator to yield high-quality stance reformulations and boost downstream
retrieval effectiveness. Further, we find that chain-of-thought reasoning is
paramount to higher effectiveness. When assessed in the TREC Health
Misinformation Track of 2022, our systems surpassed all competitors,
including human-in-the-loop configurations, underscoring their pivotal
role in the evolution towards a health misinformation-free search land-
scape. We provide all code necessary to reproduce our results at https://
github.com/castorini/pygaggle.
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1 Introduction

Individuals often resort to web search engines for acquiring health-related infor-
mation, motivated either by curiosity or the need for self-diagnosis. However,
the pervasive presence of false or misleading content complicates the distinc-
tion between accurate and inaccurate information or credible and non-credible
sources. Misinformation can lead to reliance on ineffective and potentially harm-
ful treatments, exacerbating health risks.

In recent years, the integration of information retrieval and deep learning has
been instrumental in enhancing the accuracy and reliability of search results,
highlighted by the advent of pretrained models like BERT [4]. These models
have eclipsed traditional IR methods such as BM25 [9] in effectiveness. A multi-
stage ranking approach has emerged, balancing model complexity and search
latency by progressively narrowing candidate sets, facilitating the application of
powerful yet slower rerankers [5].
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Pradeep et al. [7] pinpointed the pitfalls of training multi-stage ranking mod-
els on datasets primarily consisting of credible information, leading to an unin-
tended emphasis on harmful misinformation. In response, they introduced Vera,
a stance prediction strategy effective at discerning useful from harmful content.
Additionally, they advocated for the manual alignment of search questions to
the appropriate stances to enhance result quality. This approach, however, is not
without its flaws. The dependency on human-labeled stances and handcrafted
rules for question reformulation restricts its adaptability and comprehensive-
ness, prompting a need for automation and generalization to accommodate the
dynamic and diverse nature of information queries.

Through this paper, we attempt to tackle some drawbacks of Vera by
automating the labeling of answers by organizers and generating arbitrary refor-
mulations using large language models from the GPT class of models in combi-
nation with Vera [7].

More specifically, we build an answer prediction module using GPTx in a
zero-shot, in-context manner. We explore enhancing its capabilities by integrat-
ing it with evidence-aware Vera repurposed for the answer prediction task. Eval-
uating various prompting methods for GPTx, including chain-of-thought reason-
ing, we develop a system that rivals human experts without requiring additional
fine-tuning. Finally, we introduce a GPTx reformulator that, taking into account
these predicted answers, rephrases the question into a more naturally structured
sentence, yielding improved retrieval effectiveness. On evaluating our systems in
the TREC 2022 Health Misinformation Track, we find that our best systems
outperform competing systems involving humans in the loop.

2 Datasets

2.1 MS MARCO Passage Ranking

We leverage relevance ranking models trained on the MS MARCO passage rank-
ing dataset [1], which provides a corpus of 8.8M passages gathered from Bing
search engine results. The collection has a training set of 500K (query, relevant
passage) pairs, which helps finetune large language models, known to require a
lot of training data to avoid overfitting the training data distribution.

2.2 TREC Health Misinformation

The TREC Health Misinformation Track is a concerted effort to advance retrieval
methods that elevate accurate and credible health information while mitigating
the spread of misinformation. In our study, we meticulously assess our systems
utilizing the TREC 2022 Health Misinformation Track, drawing insights from
questions and their associated medical consensus-based stances from the 2021
iteration to enrich our answer prediction module. Documents in this track are
judged and categorized as “helpful” or “harmful”, contingent on the relevance
grade assigned, leading to the compilation of two distinct judgment sets.
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In evaluating retrieval effectiveness, organizers employed three primary met-
rics: helpful compatibility measure (COMPHelp), harmful compatibility measure
(COMPHarm), and the difference between these measures (COMPΔ) [2,3]. The
objective is to amplify helpful content and demote harmful documents, bench-
marked by the COMPΔ metric.

The TREC 2022 Health Misinformation Track inaugurated the “Answer Pre-
diction” task that requires teams to submit predicted answers for all topics.
Unlike previous versions where the organizers supplied the medical consensus
answer, this new requirement augments the complexity of the tasks and adds a
layer to system evaluations. However, this addition is critical, given that end-
to-end systems capable of automatically determining the medical consensus and
leveraging them to improve retrieval effectiveness are crucial to dealing with the
evolving nature of health information.

3 Multi-stage Relevance Ranking

3.1 First-Stage Retrieval

The first stage receives as input the user query, q, and produces top-k0 candidates
R0 from the corpus. The intent is to curate a refined candidate set to be scored
by a sophisticated neural reranker.

The query is treated as a “bag of words” for ranking documents from the
corpus. We used a standard inverted index based on BM25 in the Anserini
IR toolkit [12,13], built on the popular open-source Lucene search engine with
default hyperparameters. In all experiments, we set k0 = 1000.

3.2 Neural Rerankers

In this stage, documents retrieved by first stage retrieval, R0, are reranked by a
pointwise reranker called monoT5 [6]. The model estimates a score si, quantify-
ing how relevant a candidate di ∈ R0 is to a query q.

monoT5 uses T5 [8], a popular pretrained sequence-to-sequence transformer
model. During training, the model takes in query–document pairs from MS
MARCO passage [1] and produces the words “true” or “false” depending on
whether the document is relevant to the query. Nogueira et al. [6] finetuned
monoT5-3B (around 2.8B model parameters) with a constant learning rate of
10−3 for 10k iterations with a batch size of 128. Following [6], we reranked the
documents according to the probabilities assigned to the “true” token.

We further refined our candidate set with duoT5-3B, which aims to predict
pi,j , the probability di is more relevant than dj to the query. To do so efficiently,
we used the representative segment of both di and dj based on the highest
monoT5 score. To account for the longer input length resulting from pairs of
document segments, we increased the maximum number of input tokens from
the default of 512 to 1024. At inference time, we aggregated the pairwise scores
pi,j so that each document received a single score si.
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Following Pradeep et al. [7], we evaluated pointwise and pairwise variants
that used the topic description as the query (monoT5base and duoT5base) and
also those that rephrased the query based on the predicted answer into a natural
language sentence form (monoT5NL and duoT5NL).

Fig. 1. The GPTx Prompt for the Answer Prediction module.

4 Stance and Answer Prediction Modules

In this section, stance prediction refers to the task where the model is given
a question and a relevant text snippet and returns a label corresponding to
the snippet’s stance to the question. The answer prediction task is more global,
where we aim to predict a single stance to a question that represents the medical
consensus.

4.1 Vera—Stance Prediction

Pradeep et al. [7] addressed the problem of discerning misinformation by leverag-
ing a stance prediction module called Vera. Given the topic q and a document di,
the model is tasked to predict a label ŷ(q, di) ∈ {true,weak, false}. They lever-
aged the same input template as monoT5. To train Vera, they utilized effective-
ness judgments from the TREC 2019 Decision (Medical Misinformation) Track
and finetuned the Vera-3B model using a constant learning rate of 10−3 for 500
iterations with batch sizes of 128.

During inference, for a particular document di, given ti and fi are the prob-
abilities assigned to the “true” and “false” tokens, respectively, they used the
scoring scheme:

sfinali = λ · sz
i + (1 − λ) ·

{
ti − fi, answer field is “yes”
fi − ti, answer field is “no”

(1)



82 R. Pradeep and J. Lin

which they denoted as Vera (λ, z), where z ∈ {mono,duo} is referred to as the
“relevance setting” and λ is the linear combination constant. The “weak” labels
do not factor into inference as we are only concerned with how “true” or “‘false”
the model believes the stance is.

4.2 GPTx—Answer Prediction

The success of Vera as a stance detection model relies on a single established
medical consensus stance. These are absent (by choice) before judging in the
2022 edition. To this end, we formulate two ways to deal with this issue, the first
of which leverages OpenAI’s large language models, GPTx.

We experimented with one completion model, GPT3 (text-davinci-002)
and two chat models, GPT3.5 (gpt-3.5-turbo) and GPT4 (gpt-4) using the
prompt seen in Fig. 1. The prompt begins with a preamble of what we ideally
strive for when we have access to labor and resources, a consensus among experts.

Providing such information in the prompt helps in grounding the model.
Then, we included eight examples of questions from the TREC 2020 Health
Misinformation Track, followed by an explanation leading to the answer inspired
by chain-of-thought (CoT) reasoning [11].reasoning [11]. We handcrafted a short
and simple explanation based on a quick skim of the “PubMED” article the deci-
sion makers cite. Finally, we added to the prompt a query from the TREC 2022
Health Misinformation Track and appended with the “E:” tag that signifies what
comes next is the explanation. Note that this method does not include informa-
tion on any documents in the prompt. Finally, we generated a single token, took
the scores corresponding to the “yes” and “no” tokens, and normalized over
these two scores when both were available.

We experimented with self-consistency checks [10] with multiple (5) target
sequences but found the results are always consistent, especially with larger
models. We crafted the prompt before submissions and stuck with it for post-
hoc analysis and ablations, albeit introducing and removing components.

The costs of querying the GPT3, GPT3.5, and GPT4 API are at most 0.002
USD, 0.001 USD, and 0.03 USD, respectively. Computationally, we can get
answer predictions in less than a minute for the entire test query set, with
GPT3.5 being considerably faster.

4.3 Vera—Answer Prediction

To extend Vera [7] to the task of answer prediction, we first calculated the prob-
abilities Vera assigns to the true and false tokens for the top 50 monoT5 docu-
ments. With these probabilities, we calculated the means of “true” and “false”
scores over all documents and predicted the answer “yes” if that of the “true”
token is higher and “no” otherwise. This approach essentially forms a consensus
based on the top-retrieved documents; employing more effective retrieval sys-
tems could enhance the precision of answer predictions. Given the corpus-aware
consensus from Vera and corpus-free prediction from GPTx, we also evaluated
the effectiveness of the mean prediction from Vera and GPTx.
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4.4 GPTx Reformulation

Pradeep et al. [7] found that reformulating health questions to a natural lan-
guage sentence based on the predicted answer results in better relevance ranking
results. However, they handcrafted rules to solve this task, which does not gen-
eralize to arbitrary questions. To avoid this complication, we leveraged GPT3,
which can easily handle this natural language reformulation task. We used the
following prompt: “Rephrase the questions to sentence-long answers based on
the stance. Question: Will wearing an ankle brace help heal achilles tendonitis?
Stance: no Answer: Wearing ankle brace does not help heal achilles tendonitis
. . . ”, with eight in-context examples followed by the question and stance from
the topic set. Variants with and without the reformulator are denoted by ∗NL

and ∗base, respectively.

Table 1. Model Effectiveness on the TREC 2022 Health Misinformation Answer Pre-
diction task.

Model AUC Accuracy TPR FPR

(a) Median 70.7 64.0 80.0 48.0

(b) Humans 94.0 94.0 88.0 0.0

(c) GPT3 95.2 86.0 76.0 4.0

(d) Vera 82.1 68.0 84.0 48.0

(e) Hyb(GPT3, Vera) 93.4 88.0 80.0 4.0

(f) GPT3.5 86.0 86.0 80.0 8.0

(g) + CoT 94.0 94.0 88.0 0.0

(h) GPT4 + CoT 94.0 94.0 96.0 8.0

5 Results

Table 1 reports the results on the Answer Prediction task from the TREC 2022
Health Misinformation Track. The reported metrics are Area Under the Curve
(AUC), Accuracy, True Positive Rate (TPR), and False Positive Rate (FPR).
For reference, row (a) provides the median TREC evaluation score, and row (b)
provides the score from a human-in-the-loop submission. Rows (c)–(e) present
our official submissions and (f)–(h) our post-hoc experiments.

Firstly, GPT3 and Vera answer prediction models, rows (c)–(d), are more
effective than the median. Among the submissions, GPT3, row (c), has the high-
est AUC that demonstrates the effectiveness of these large language models even
in a zero-shot setting. However, combining retrieval-based methods such as Vera
with GPT3, row (e), seems to improve the accuracy, the most critical for the
retrieval task.
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Moving from GPT3 to the chat variant GPT3.5 shows a similar accuracy but
better TPR, row (f) vs. (c). Models post GPT3 do not provide token probabil-
ities, forcing us to set probabilities of selected tokens as a 1. Hence, we do not
include hybrids with Vera, as they do not make sense anymore.

Finally, we find that chain-of-though prompting results in a considerable
effectiveness boost, rows (g) vs. (f). Switching the chat variant to GPT4, rows
(h) vs. (g), does not seem to have a considerable effect.

Table 2 looks at the effectiveness of the retrieval task of the TREC 2022
Health Misinformation Track. For reference, row (a) provides the median score
across all submissions in the track. Row (b) presents the second top-scoring sub-
mitted run, a manual submission. Rows (c)–(j) represent all our submitted runs,
and rows (k)–(l) represent our post-hoc runs. Rows (j)–(l) consider progressively
better answer prediction modules ending with an Oracle system.

With little surprise, pointwise reranking improves the helpful compatibility
scores over that of BM25, rows (d) and (f) vs. (c). While pairwise rerankers
generally improve over pointwise results, in this case, looking at rows (d) vs. (e)
and (f) vs. (g), we see a surprising drop in effectiveness.

Table 2. Compatibility scores on the TREC 2022 Health Misinformation Ad Hoc
Retrieval Task.

Retrieval Model Answer Model COMPHelp COMPHarm COMPΔ

(a) Median - 0.2455 0.1465 0.0990

(b) WatS Humans 0.287 0.140 0.147

(c) BM25 - 0.1928 0.1487 0.0441

(d) + monoT5base - 0.2838 0.1942 0.0896

(e) + duoT5base - 0.2780 0.1894 0.0886

(f) + monoT5NL GPT3 0.3276 0.1264 0.2012

(g) + duoT5NL GPT3 0.3216 0.1467 0.1749

(h) Vera (λ = 0.0) GPT3 0.2836 0.0971 0.1865

(i) Vera (0.95, mono) GPT3 0.3386 0.1168 0.2218

(j) Vera (0.95, mono) Hyb(GPT3, Vera) 0.3460 0.0894 0.2566

(k) Vera (0.95, mono) GPT4 + CoT 0.3528 0.0892 0.2636

(l) Vera (0.95, mono) Oracle 0.3602 0.0797 0.2805

When introducing the answer prediction model module and the query refor-
mulator, comparing rows (f) to (d) and (g) to (e), we notice it brings a con-
siderable increase in helpful compatibility scores and a similar drop in harmful
compatibility scores, as desired.

The introduction of Vera in the λ = 0 setting, i.e., label prediction alone,
results in a model with worse helpful compatibility but better harmful compat-
ibility score compared to monoT5NL, row (h) vs. (f). Linear combinations with
the neural relevance ranking system, as seen from row (i) onwards, bring an
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effectiveness boost, finding a spot with better helpful compatibility but slightly
worse harmful compatibility scores.

Improving the answer prediction model (based on accuracy) results in pro-
gressively better results, as evidenced in rows (i)–(l). Row (k) illustrates our most
effective automatic system, noting a 79% relative improvement over competing
systems by other teams based on the primary metric, COMPΔ. Compared to a
system with an oracle answer prediction module, i.e., with ground truth answer
predictions, row (l), this system demonstrates comparable effectiveness showcas-
ing its strength.

6 Conclusion

In this paper, we focus on automating the consumer health search pipeline—
building an end-to-end system capable of discerning helpful from harmful health
search results with experimentation in the TREC 2022 Health Misinformation
Track. We build an effective answer prediction module using GPTx in a zero-shot
in-context fashion and augment it with the evidence-aware Vera. We explore
various ways of prompting GPTx, incorporating chain-of-though reasoning to
build a system on par with human experts without finetuning. We incorporate
a reformulator that takes in these predicted answers and rephrases the question
in a natural language sentence, resulting in improved results. Coupled with a
state-of-the-art retrieval misinformation-free consumer health search pipeline,
our models outperform runs from other teams by over 79% based on COMPΔ.
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