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Abstract. While much recent work has demonstrated that hard neg-
ative mining can be used to train better bi-encoder models, few have
considered it in the context of cross-encoders, which are key ingredients
in modern retrieval pipelines due to their high effectiveness. One note-
worthy exception comes from Gao et al. [13], who propose to train cross-
encoders by adapting the well-known NCE loss and augmenting it with
a “localized” selection of hard negative examples from the first-stage
retriever, which they call the Localized Contrastive Estimation (LCE)
loss. In this work, we present a replication study of LCE on a different
task and combine it with several other “tricks” (e.g., replacing BERTBase

with ELECTRABase and replacing BM25 with TCT-ColBERTv2) to
substantially improve ranking effectiveness. We attempt to more system-
atically explore certain parts of the hyperparameter space, including the
choice of losses and the group size in the LCE loss. While our findings, for
the most part, align with those from the original paper, we observe that
for MS MARCO passage, orienting the retriever used for hard negative
mining with the first-stage retriever used for inference is not as critical for
improving effectiveness across all settings. Our code and documentation
can be found in: https://github.com/castorini/replicate-lce.

1 Introduction

After the introduction of BERT [6] in October 2018, a simple retrieve-then-
rerank approach quickly emerged in January 2019 as an effective method for
applying pretrained transformers to passage retrieval [34]. This model, called
monoBERT, represents the first instance of what has later become known as
cross-encoders for retrieval, a class of reranking models that includes MaxP [4],
CEDR [33], Birch [1], PARADE [25], and many others.
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Innovations in cross-encoder models have of late stagnated in comparison
to rapid developments in retrieval models based on learned dense represen-
tations [21,46] as well as learned sparse representations [5,8,12]. Part of this
excitement stems from the ability of these models to directly perform ranking,
as opposed to reranking based on some first-stage retrieval method to generate a
list of candidates. However, reranking remains important because the output of
even the best dense, sparse, or hybrid retrieval models can be further improved
via reranking—and state-of-the-art effectiveness on popular benchmark datasets
is achieved only by combining effective first-stage retrieval and reranking in a
multi-stage ranking architecture.

Thus, although the attention of most researchers today lies beyond cross-
encoders, there remain opportunities for further innovation with this class of
models. In this paper, we start with the basic monoBERT model, dating back
to January 2019 (which might as well be from the stone age in “neural network
time”), and through a series of replication and generalization experiments, are
able to improve its effectiveness by nearly 7 points absolute (20% relative) on
the popular MS MARCO passage ranking task. We are, in fact, quite surprised
that there is still this much effectiveness that could be squeezed out of such a
mature model. How did we accomplish this? We describe below:

1. Building on the observations of Zhang et al. [53], we switched the backbone
of the cross-encoder to ELECTRABase.

2. We replicated and then generalized the findings of Gao et al. [13], confirming
the effectiveness of the LCE loss compared to hinge and cross entropy (CE)
loss on MS MARCO passage ranking [2], a task not evaluated in the original
paper.

3. Leveraging advances in first-stage dense retrieval methods, we used TCT-
ColBERTv2 [29] to generate both the first-stage base retrieval runs for rerank-
ing and hard negatives for training our cross-encoders.

4. While Gao et al. [13] evaluated various LCE settings with up to 7 negative
passages for each positive example in the batch, we extended this to 31 neg-
atives and continued to see improvements in effectiveness.

5. Further generalizing, we noted a surprising result in our replication on MS
MARCO passage ranking: it does not seem as critical as described in the
original paper to train with negatives that are drawn from the first-stage
retriever used for inference. That is, training with BM25 negatives or TCT-
ColBERTv2 negatives both result in rerankers that perform comparably when
a fixed first-stage retriever is used for reranking, for certain LCE settings.
However, for inference, switching a BM25 first-stage retriever out for a TCT-
ColBERTv2 first-stage retriever still brings about a significant effectiveness
boost.

With the bag of tricks described above, we show that monoELECTRABase can
achieve an MRR@10 of 0.414 on the development set of the MS MARCO passage
ranking task and an MRR@10 of 0.404 on the (blind) evaluation set. Note that
this is accomplished with a standard “base” model size and without the use of any
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ensembles. While admittedly, none of these “tricks” in isolation are particularly
noteworthy, taken together, they show that there is still room for significant
improvements in a basic cross-encoder design that dates from January 2019.

2 Related Work

2.1 Cross-Encoders

As discussed, the first cross-encoder for reranking, monoBERT [34], quickly
emerged after the introduction of BERT [6] itself. It followed the approach rec-
ommended by the BERT authors to handle (query, passage) input pairs, and
demonstrated a huge leap in terms of effectiveness on the MS MARCO pas-
sage ranking [2] and TREC CAR [7] datasets. While vanilla monoBERT showed
great improvement on the passage retrieval task, it was not designed to handle
long input sequences as required for document retrieval. A lot of the follow-up
BERT-based cross-encoder work [1,4,25,33] attempted to address this issue by
either performing multiple inferences on different segments of the document or
making additional architectural changes on top of BERT to better handle the
longer document text.

In addition to cross-encoders relying on BERT-based pretrained Language
Models (pLMs), another genre of cross-encoders takes advantage of the sequence-
to-sequence pLM paradigm. Examples of these are monoT5 [35] and duoT5 [40],
which use T5 [42], an extensively pretrained encoder-decoder language model.
As we mostly focus on BERT-based cross-encoders in this work, we will skip the
details and refer interested readers to the original papers.

There exists a strong need for better cross-encoders, which demonstrate state-
of-the-art effectiveness in information retrieval tasks in various domains, even in
a zero-shot setting [38,39,43,52]. They also form a vital backbone in a wide
range of natural language processing tasks, including fact verification [20,37]
and question answering [48].

2.2 Bi-Encoders

The success of DPR [21] and ANCE [46] revitalized bi-encoders in the new era
of BERT. The goal of a bi-encoder is to learn a transformer-based mapping from
queries and documents into dense fixed-width vectors wherein the inner product
between the query vector and the relevant document vector is maximized. A lot
of work has gone into understanding and better learning such a mapping [9,10,
17,29]. A more thorough survey can be found in Lin et al. [27].

Lin et al. [28] train a bi-encoder by using on-the-fly knowledge distillation
from a ColBERT [22] teacher model that computes soft-labels for in-batch neg-
atives. This is captured by using the KL-divergence between the score distribu-
tions of the student and teacher models for all examples in the batch. They show
that using this loss in addition to the standard cross entropy loss over relevance
labels results in better scores.
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In their follow-up work [29], a “HN+” hard-negative mining strategy is incor-
porated to further improve their bi-encoder, dubbed “TCT-ColBERTv2”. Here,
a trained TCT-ColBERT is used to first mine hard negatives to replace the
BM25-based negatives. Then, the ColBERT teacher is fine-tuned using these
hard negatives and the improved teacher is distilled into the bi-encoder to give
TCT-ColBERTv2.

2.3 Hard Negatives

Prior work shows that the selection of negative examples is critical in training
bi-encoders. Karpukhin et al. [21] compare the training effectiveness of random
negatives, BM25 negatives, and in-batch negatives, and find that a mixture of
BM25 and in-batch negatives yields optimal results. Xiong et al. [46] prove theo-
retically that local negatives are sub-optimal for dense retrieval learning. Then,
they propose to prepare global negatives using the current dense retrieval model
in parallel with training, which requires periodically re-indexing the corpus and
retrieval. Qu et al. [41] also propose to prepare the hard negatives using the
current dense retrieval model, but after the training is finished instead of on the
fly. However, the paper reports that the hard negatives prepared in this way
alone could degrade training and are only effective after being filtered accord-
ing to an independently trained cross-encoder model. Zhan et al. [51] find that
such instability caused by hard negatives could be alleviated by adding random
negatives. Additionally, they periodically re-prepare the hard negatives in the
ANCE [46] manner, but only update the query encoder to save the re-indexing
time. All the above works confirm the importance of hard negatives and show
various degrees of effectiveness.

In addition to the work described above, which focuses on hard negative
training strategies for DPR-like bi-encoder fine-tuning, other works show similar
observations in different methods that aid bi-encoders. Gao et al. [9] find that
hard negatives are still crucial when the model is further pretrained in a way to
enrich the representation of the [CLS] token, which they named Condenser. Its
successor, the coCondenser [10] behaves the same after the model is additionally
pre–fine-tuned on another corpus-aware unsupervised task. Hard negative mining
has also been shown to be important when knowledge distillation is applied on
the bi-encoders [17,29].

In contrast to the plenteous studies of hard negatives aiding bi-encoders,
we only find Gao et al. [13] successfully incorporating hard negatives in cross-
encoder training. To demonstrate the effectiveness of the proposed Localized
Contrastive Estimation (LCE) loss, they show that training cross-encoders incor-
porated with the loss and harder negatives1 can significantly improve reranking
effectiveness, especially when training instances follow the same distribution as
the results returned by the first-stage retrievers. Details will be introduced in
Sect. 5.2.

1 Here the “easy” negatives refer to the negatives sampled from BM25 results and the
“hard” negatives refer to the ones sampled from HDCT [5] results.
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2.4 Pretrained Transformers for Cross-Encoders

Various pretrained models have been proposed after BERT [6]. Most of the
works aim at improving the general language representation ability or lowering
the pretraining cost [3,24,30]. A few pretrained language models under this line
have been compared in Zhang et al. [53] in ad hoc retrieval tasks.

Another line of work focuses on improving pLMs with IR-specific pretraining
objectives. PROP [32] and B-PROP [31] propose to add a representative words
prediction (ROP) task along with MLM in the pretraining stage. To prepare
the training data for ROP, a document language model is used to sample a
list of “pseudo queries” and their likelihoods. Then the queries are paired as
(q+, q−) such that q+ has a higher likelihood than q−, and the BERT model is
further pretrained to score the q+ higher than the q−. PROP uses a unigram
language model as the document language model while its successor B-PROP
uses BERT. Both are tested on a downstream retrieval task by fine-tuning a
cross-encoder initialized with the ROP-pretrained BERT instead of BERT with
standard pretraining. While Gao et al. [9] also propose an IR-specific pretraining
task, it focuses on enriching LMs for the bi-encoder setting.

3 Loss Functions

In this section, we review common loss functions (cross entropy and hinge loss)
used in cross-encoder fine-tuning and then describe the Localized Contrastive
Estimation (LCE) loss function proposed by Gao et al. [13].

3.1 Cross Entropy and Hinge Loss

We begin with a quick review of how cross-encoders typically compute the rele-
vance score given a query q and a document d, borrowing the formulation from
Lin et al. [27]:

zq,d = T[CLS]W + b (1)

where zq,d is the relevance score of the (query, document) pair, T[CLS] stands
for the representation of the [CLS] token in the final layer, and W and b are the
weight and the bias in the final classification layer. The dimensions of W and b
might change according to the loss function—when the model is fine-tuned with
the cross entropy loss, W ∈ R

D×2 and b ∈ R
2, whereas when it is fine-tuned

with the hinge or the LCE loss, W ∈ R
D and b ∈ R. That is, the output has two

dimensions with cross entropy loss, one each for the relevant and non-relevant
classes, while with the other two losses, the output has only one dimension, for
the relevant class only.

Early cross-encoders fine-tune BERT under a classification task, using the
cross entropy loss, as recommended in BERT:

sq,d = softmax(zq,d)1 (2)

LCE = −
∑

log(sq,d+) −
∑

log(1 − sq,d−) (3)
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where softmax(·)1 corresponds to the softmax score of the relevant label which
by convention is indexed by 1, d+ indicates a relevant document and d− indicates
a non-relevant document. We will use this notation from now on.

Later, MacAvaney et al. [33] fine-tune cross-encoders with the hinge loss
(sometimes called max margin loss), which is more commonly used in pre-BERT
neural reranker training [14,19,45]:

Lhinge = max(0, 1 − zq,d+ + zq,d−) (4)

In the literature, cross entropy loss and hinge loss represent the two “basic” ways
of training cross-encoders.

3.2 Localized Contrastive Estimation

Gao et al. [13] note that the above cross entropy loss computation considers
only one document per batch per query. While not discussed in the original
paper, hinge loss is similarly limited by not being able to use multiple negatives
per positive unless done in a pairwise independent fashion. They also note it is
important that negative examples be true negatives, especially on datasets like
MS MARCO passage where many relevant passages remain unlabelled for each
query. Gao et al. [13] propose the Localized Contrastive Estimation (LCE) loss
to address these issues:

LLCEq
:= − log

exp(zq,d+)∑
d∈Gq

exp(zq,d)
(5)

LLCE :=
1

|Q|
∑

q∈Q,Gq∼Rm
q

LLCEq
(6)

where Rm
q is the collection of documents top-ranked by a first-stage retriever for

query q, and Gq refers to a group of documents for query q, which consists of a
relevant document d+ and n− 1 non-relevant documents d− sampled from Rm

q ,
where n is the group size.

The LCE loss combines the Noise Contrastive Estimation (NCE) [15] loss
(used in, for example, Karpukhin et al. [21]) with “localized” selection of nega-
tive examples. The NCE loss scores the positive instance and multiple negative
instances, normalizes all of them into probabilities, passing them through the
softmax function, and encourages the model to score the positive higher than
the negatives. LCE “localizes” this loss by sampling negative training exam-
ples from the top-ranked documents produced by the first-stage retriever. In
combination, this loss should produce a reranker that succeeds at handling the
top-ranked documents specific to a first-stage retriever while also not collaps-
ing to match based on the confounding characteristics in the retriever’s hard
negative samples.
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4 Experimental Setup

In this section, we describe the data and experimental configurations used in
our replication. Note that replication indicates using a different experimental
setup (e.g., implementation, framework, dataset, etc.) to generalize findings from
the original paper, whereas reproduction indicates verifying the original paper’s
findings using the same experimental setup.2

4.1 Data

We use the MS MARCO passage ranking dataset [2] (MS MARCO for later ref-
erence), a large-scale ad hoc retrieval dataset constructed from the Bing search
log. It contains 8.8 million passages and around 800K queries for training, where
most of the queries have a single passage labelled relevant. These do not nec-
essarily represent all true relevant passages, as it is likely that many queries in
the dataset have more than one relevant passage. This setting is often called
“sparse labelling”. On the evaluation side, there is a small development set with
6980 queries and a blind test set with 6837 queries, both of which are similarly
sparsely labelled.

We report MRR@10, the official metric, and Recall@1K (R@1K) on the small
development set for all our experiments. Evaluating on the blind test set requires
the submission of runs to the organizers’ official leaderboard. To avoid probing
the test set across various settings, we chose to submit only the test set run
produced by the most effective system based on development set scores.

Note that the original work [13] uses the MS MARCO document ranking
dataset. Thus, our experiments generalize their findings to cover the MS MARCO
passage ranking dataset and additionally thoroughly explore certain parts in the
hyperparameter space.

First-stage rankings (runs) are generated for MS MARCO’s training, develop-
ment, and test query sets with two retrievers: BM25 and TCT-ColBERTv2 [29].
We use the Anserini IR toolkit [47], which is built on Lucene, to generate the
BM25 runs. The parameters k1 and b are found using grid search over the range
[0.6, 1.2] and [0.5, 0.9], respectively, both with step size 0.1. The tuning is based
on 5 different randomly prepared query subsets, optimizing Recall@1K, following
the reproduction documentation in Anserini.3 We use the Pyserini IR toolkit [26]
to generate the TCT-ColBERTv2 runs following the reproduction documenta-
tion in Pyserini.4 We leverage the model trained with the HN+ setting as it
optimizes the effectiveness of the primary metrics.

2 The terms replication and reproduction are used in the sense articulated by the
ACM Artifact Review and Badging (v1.1) policy; note that the definitions of the
two terms are swapped in Artifact Review and Badging (v1.0).

3 https://github.com/castorini/anserini/blob/master/docs/experiments-msmarco-
passage.md.

4 https://github.com/castorini/pyserini/blob/master/docs/experiments-tct colbert-
v2.md.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-badging
https://github.com/castorini/anserini/blob/master/docs/experiments-msmarco-passage.md
https://github.com/castorini/anserini/blob/master/docs/experiments-msmarco-passage.md
https://github.com/castorini/pyserini/blob/master/docs/experiments-tct_colbert-v2.md
https://github.com/castorini/pyserini/blob/master/docs/experiments-tct_colbert-v2.md
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We first retrieve the top-200 passages for each query in the training query
set, from which we randomly sample negative examples without replacement
following Gao et al. [13]. The method of creating the training set differs from the
general approach of cross-encoders which instead just relies on the official small
triples training file provided by the organizers.5 However, such an approach is
common in both bi-encoders and cross-encoders when they rely on hard negative
sampling.

We retrieve 1K passages for each query in the development set and test set.
These form the base first-stage retriever runs which are later reranked by the
cross-encoders.

4.2 Training and Inference

Our cross-encoder training and inference experiments are run on Capreo-
lus [49,50], a toolkit for end-to-end neural ad hoc retrieval. We take advantage
of its support for the MS MARCO passage ranking task, the monoBERT cross-
encoder, and the training, reranking, and inference pipeline. We use the provided
hinge and cross entropy loss functions, and incorporate the LCE loss into the
toolkit.

The maximum numbers of tokens for the query and the entire input sequence
(“[CLS] query [SEP] passage [SEP]”) are set to 50 and 256, respectively. For all
experiments, we initialize monoBERT with ELECTRABase, using the checkpoint
released on HuggingFace [44].6 We choose ELECTRABase as the starting point
for fine-tuning as it appears to be the most stable and effective pLM overall
among those considered by Zhang et al. [53].

In all our experiments, we train monoBERT for 300K steps with a batch size
of 16. We use the Adam optimizer [23] with a learning rate of 1e−5, apply linear
warm-up for the first 30K steps, and apply linear decay following warm-up. All
experiments are run on Quadro RTX 8000 GPUs with TensorFlow 2.3.0. We use
mixed-precision training in all the experiments.

5 Results and Discussion

In this section, we first compare the results of the three loss functions (hinge,
cross entropy, and LCE) when using BM25 and TCT-ColBERTv2 first-stage
retrievers. Here, we aim to show that the cross-encoders trained with the LCE
loss outperform those with the other two losses on the MS MARCO passage
ranking task. Then we compare their effectiveness as we vary both the source of
negatives during training and the first-stage retriever during inference. Finally,
we show the effect of the group size to confirm the finding that the effectiveness
of cross-encoders trained with the LCE loss increases with group size, which also
means it increases with more negative samples.

5 https://msmarco.blob.core.windows.net/msmarcoranking/triples.train.small.tar.gz.
6 google/electra-base-discriminator.

https://msmarco.blob.core.windows.net/msmarcoranking/triples.train.small.tar.gz
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5.1 Loss Functions

Table 1 reports results with different loss functions and first-stage retrievers used
during training and inference. In the first block, we report the scores of BM25
and TCT-ColBERTv2, which form the two baseline first-stage retrieval runs we
consider for all the Capreolus rerankers.

Table 1. MRR@10 and Recall@1K with different loss functions when using
BM25/TCT-ColBERTv2 as the source of hard negative and first-stage runfile. The
n in the table indicates the group size. For hinge and LCE, each group always contains
a positive example and n − 1 negative examples. For CE, each group only contains
one data point, which could be either a positive or negative example. “–” indicates not
applicable or the score was not reported in the original papers. Superscripts indicate
significantly higher results (p < 0.01 with paired t-tests) after Bonferroni correction,
e.g., a indicates the entry is significantly higher than the results in row (a).

HN+ First Stage Loss n MRR@10 R@1K

Baselines

(a) BM25 – – 0.187 0.857

(b) TCT-ColBERTv2 – – 0.359 0.969

Prior cross-encoder work

(c) monoBERTBase [34] BM25 CE 1 0.347 –

(d) monoBERTBase [36] BM25 CE 1 0.348 –

(e) monoBERTBase [11] BM25 CE 1 0.353 –

(f) monoBERTBase [18] BM25 CE 1 0.376 –

(g) monoBERTBase [34] BM25 CE 1 0.365 –

(h) monoBERTLarge [18] BM25 CE 1 0.366 –

(i) monoBERTLarge [35] BM25 CE 1 0.372 –

(j) monoT5Base [35] BM25 CE 1 0.381 –

Capreolus cross-encoders

(1) monoELECTRABase BM25 CE 1 0.378ab 0.857

(2) monoELECTRABase Hinge 2 0.379ab5

(3) monoELECTRABase LCE 2 0.378ab5

(4) monoELECTRABase LCE 8 0.391ab12356

(5) monoELECTRABase TCT-ColBERTv2 CE 1 0.365a 0.969

(6) monoELECTRABase Hinge 2 0.375ab

(7) monoELECTRABase LCE 2 0.393ab12356

(8) monoELECTRABase LCE 8 0.401ab123456

The second block reports the scores of various comparable cross-encoders
from various groups reported in the literature. We copy over the monoBERT
and monoT5 scores from their original papers, rows (c), (g), and (j), respectively.
We additionally include other monoBERT results reported by different groups
because we observe a large variance of reported scores. This could be due to one
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of many reasons: different BM25 implementations, number of passages reranked,
and monoBERT training hyperparameters, to name a few.

The third block of the table, rows (1–4), shows the scores when our cross-
encoder is trained on BM25-sourced hard negatives and reranks the BM25 run-
file. The fourth block, rows (5–8), shows the scores when the cross-encoder
is trained on TCT-ColBERTv2-sourced hard negatives and reranks the TCT-
ColBERTv2 runfile.

Gao et al. [13] only compare the cross entropy loss to LCE loss with a group
size of 8. We generalize these results by additionally considering a group size of
2 with LCE loss and including hinge loss, which can also be viewed as having
a group size of 2 but has a different loss formulation. As negative examples are
sampled from the same groups of top-ranked passages, both losses benefit from
the “localized” effect and the formulation is the only difference.

The cross entropy loss performs on par with the hinge loss when BM25 is
used as the retriever, row (1) vs. (2). However, when using TCT-ColBERTv2 as
the retriever, the hinge loss demonstrates improved effectiveness over the cross
entropy loss by a slight margin, row (5) vs. (6). We suspect this is due to the
pairwise loss making better use of the harder negative examples provided by
TCT-ColBERTv2.

Another interesting observation is that monoBERT using LCE significantly
outperforms monoBERT using the other two losses when TCT-ColBERTv2
forms the first-stage retriever, even when the group size is 2, which hinge loss
uses too, row (5–7). However, LCE and hinge losses perform comparably when
using BM25 as the retriever, row (2) vs. (3), and fixing the group size at 2. This
indicates that the contrastive loss may itself serve as a better approach to distin-
guish the relevant passage from the negative ones in the ranking task, compared
to the hinge loss. It additionally gains from increasing the group size, rows (3)
and (7) vs. rows (4) and (8); this is more carefully examined in Sect. 5.3.

Table 2. MRR@10 and Recall@1K of all combinations of training hard negatives
retriever and inference first-stage retriever on the development set of the MS MARCO
passage dataset. HN refers to the source of Hard Negatives, i.e., the training retriever.
All table entries use LCE with group size 8 (one positive sample with seven negative
samples). Superscripts indicate significantly higher results (p < 0.01 with paired t-tests)
after Bonferroni correction.

HN First-stage MRR@10 R@1K

(a) BM25 BM25 0.391 0.8573

(b) TCT-ColBERTv2 0.389

(c) BM25 TCT-ColBERTv2 0.402ab 0.9690

(d) TCT-ColBERTv2 0.401ab
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5.2 In-distributional Training Example and Hard Negative

Table 2 presents the effectiveness of the reranker when we vary the retriever for
preparing training negatives and generating the development runfile. Rows (a)
and (d) here correspond to rows (4) and (8) in Table 1, respectively. To obtain
row (b), we use the checkpoint of row (d) to rerank the BM25 runfile. Similarly,
we use the checkpoint of row (a) to rerank the TCT-ColBERTv2 runfile for
row (c).

It is clear that swapping out the BM25 first-stage retriever with the dense
retriever, TCT-ColBERTv2, results in significant improvement irrespective of
the retriever used to mine hard negatives, rows (a–b) vs. (c–d). This is reasonable
as there is a gap of around 11% in Recall@1K, meaning reranking the runfile
produced by TCT-ColBERTv2 would more likely pull up the relevant passages.

We, however, observe no improvement in aligning the retriever used for hard-
negative mining with that used for first-stage retrieval in evaluation. In our
experiments, changing only the retriever for generating the training data does
not yield significant differences in the score when we preserve the first-stage
retriever to be the same, row (b) vs. (a) and row (c) vs. (d). This does not
agree with the original finding of Gao et al. [13], where they find this alignment
critical to the best effectiveness in the MS MARCO document ranking task.
There are several differences in the experiments that could be responsible for this
disagreement. The first is the dataset itself. Although both MS MARCO passage
and MS MARCO document are from the same ad hoc domain, the document
length may impact training data quality. Other possible causes include the range
from where we sample the hard negatives, the choice of the first-stage retriever,
etc. Based on these results, for the rest of the paper, we use TCT-ColBERTv2
as the first-stage retriever during inference.

Table 3. MRR@10 on the development set of the MS MARCO passage dataset across
the choice of group size and retriever used to mine hard negatives. All entries use TCT-
ColBERTv2 as the first stage, which has a Recall@1K of 0.9690, as seen in Table 1.
Superscripts and subscripts indicate significantly higher results (p < 0.01 with paired
t-tests) after Bonferroni correction. (e.g., (·)a2,4,8

b2
indicates the entry is significantly

higher than the results in row (a) with group sizes 2, 4, and 8, and the result in row
(b) with group size 2.)

HN Group Size

2 4 8 16 32

(a) TCT-ColBERTv2 0.393b2 0.400b2 0.401b2 0.408
a2,4,8
b2,4

0.414
a2,4,8
b2,4,8,16

(b) BM25 0.381 0.397b2 0.402b2 0.403b2 0.407b2,4

5.3 LCE Group Size

We now examine the effect of the group size in the LCE loss, denoted by n,
on model effectiveness. This has been studied in the original paper [13] with
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n ∈ {2, 4, 6, 8}, where additional improvement can always be observed when the
group size is increased. We explore the effect of group size in the same manner
but increase the range to {2, 4, 8, 16, 32}. Additionally, we vary the retriever used
for hard negative mining. We examine the MRR@10 scores across these settings
in Table 3.

As noted by Gao et al. [13], we observe that the primary metric improves as
the group size increases. We do so for both choices of the retriever used for hard
negative mining. We surprisingly find that the metric does not seem to plateau
even when the group size increases to 32 (i.e., with 31 negative samples). We
did not experiment on larger group sizes due to hardware limitations,7 but this
suggests that there could be further improvements with improved hardware.

Table 2 does not note any improvements aligning the hard negative mining
retriever with that used for first-stage retrieval during inference in the case with
group size 8. However, we find that there do exist improvements, especially in
group sizes of 2 and 32. We leave further investigation of this unusual observation
as future work and use the best setting reported for the rest of the paper.

We submitted the test set run, produced from our most effective configura-
tion, to the MS MARCO passage leaderboard.8 Table 4 reports our scores and
the systems with higher scores on the test set (at the time of our work).9 The
table shows that our best results are quite competitive to the current top results,
which use ensembles of multiple cross-encoders, rows (a–c, f), or a multi-stage
reranking pipeline, row (e).10

Table 4. MRR@10 on the official MS MARCO passage leaderboard.

Method Dev Eval

MRR@10 MRR@10

(a) coCondenser [10] 0.443 0.428

(b) C-COIL + RoBERTa [12] 0.443 0.427

(c) RocketQA + ERNIE [41] 0.439 0.426

(d) DR-BERT 0.420 0.419

(e) expando-mono-duo-T5 [40] 0.420 0.408

(f) DeepCT + TF-Ranking Ensemble [16] 0.420 0.408

(g) monoELECTRA 0.414 0.404

7 The experiment involving a group size of 32 requires 4 Quadro RTX 8000 GPUs
(48G memory each) to train with a batch size of 16.

8 https://microsoft.github.io/MSMARCO-Passage-Ranking-Submissions/
leaderboard.

9 We copy the best results from each group and discard anonymous results.
10 We cannot compare with the DR-BERT system, as we do not find its resources

publicly available online.

https://microsoft.github.io/MSMARCO-Passage-Ranking-Submissions/leaderboard
https://microsoft.github.io/MSMARCO-Passage-Ranking-Submissions/leaderboard
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6 Conclusion

In this paper, we replicate the LCE loss proposed by Gao et al. [13] on a different
codebase and generalize their findings to the MS MARCO passage dataset. We
confirm the superiority of LCE loss to the cross entropy and hinge loss on the
passage ranking task, with improved effectiveness when using a better first-stage
retrieval method like TCT-ColBERTv2 during inference. However, we argue that
more exploration is necessary to conclude if the alignment between the training
and inference first-stage retriever is essential across group sizes. Finally, we con-
firm that the effectiveness can be further strengthened by increasing the number
of hard negatives in each group.
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