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Abstract. Text retrieval using learned dense representations has
recently emerged as a promising alternative to “traditional” text retrieval
using sparse bag-of-words representations. One foundational work that
has garnered much attention is the dense passage retriever (DPR) pro-
posed by Karpukhin et al. for end-to-end open-domain question answer-
ing. This work presents a reproduction and replication study of DPR. We
first verify the reproducibility of the DPR model checkpoints by training
passage and query encoders from scratch using two different implemen-
tations: the original code released by the authors and another indepen-
dent codebase. After that, we conduct a detailed replication study of the
retrieval stage, starting with model checkpoints provided by the authors
but with an independent implementation from our group’s Pyserini IR
toolkit and PyGaggle neural text ranking library. Although our exper-
imental results largely verify the claims of the original DPR paper, we
arrive at two important additional findings: First, it appears that the
original authors under-report the effectiveness of the BM25 baseline and
hence also dense–sparse hybrid retrieval results. Second, by incorporat-
ing evidence from the retriever and improved answer span scoring, we
manage to improve end-to-end question answering effectiveness using the
same DPR models.
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1 Introduction

Reproducibility and replicability form the foundation of the scientific enterprise.
Through such studies, the community gains confidence about the veracity of
previously published results. These investigations are often under-valued, espe-
cially compared to work that proposes novel models, but they nevertheless make
important contributions to advancing science. To be precise, throughout this
paper we use the term reproducibility and replicability in the sense articulated
by the ACM,1 characterized as “different team, same experimental setup” and
“different team, different experimental setup”, respectively.
1 ACM Artifact Review and Badging (Version 2.0).
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This paper focuses on a reproducibility and replicability study of the dense
passage retriever (DPR) model proposed by Karpukhin et al. [8], as the authors
have laid important cornerstones for end-to-end vector-based dense retrieval and
open-domain question answering (QA). Specifically, we first conduct a repro-
duction of model training, verifying that we can obtain models with comparable
levels of effectiveness using the released code from the authors as well as another
implementation. Then, we conduct a replication of the retrieval pipeline, analyz-
ing end-to-end retrieval effectiveness with our independent implementation. For
a fair comparison and to reduce conflated factors, our replication study starts
with the released checkpoints, as we have confirmed the reproducibility of model
training during the first step.

DPR is worthy of detailed study because it represents an important exem-
plar of text retrieval using learned dense representations, which has emerged
as a promising alternative to “traditional” text retrieval using sparse bag-of-
words representations [5,11,16,19]. Our experiments largely verify the claims of
Karpukhin et al. regarding the effectiveness of their proposed techniques. More-
over, we arrive at two important additional findings, one of which is inconsistent
with the original work, the other of which presents an enhancement:

1. Focusing on retrieval, we find that the effectiveness of the sparse retrieval
(BM25) baseline is higher than numbers reported in the original paper.
Whereas they report that dense–sparse hybrid results do not meaningfully
improve over dense retrieval alone, we arrive at the opposite conclusion, where
hybrid techniques yield statistically significant gains. We are able to achieve
on average a four-point improvement in top-20 accuracy over the best DPR
results across five standard QA test collections.

2. Focusing on end-to-end QA effectiveness, we explore different techniques for
evidence combination to extract the final answer span. Whereas the original
DPR paper only uses scores from the reader to identify the final answer span,
we investigate combining retriever scores and further experiment with the
answer span selection technique described by Mao et al. [12]. In our best con-
dition, we are able to achieve statistically significant improvements of around
three points on exact match scores over the original DPR implementation
while using the same exact DPR models.

To summarize, the main contribution of this work is the reproduction of DPR
training and the replication of end-to-end retrieval experiments, where our exper-
imental results add a number of important refinements to the original work.
Code associated with our retrieval experiments is packaged in the Pyserini IR
toolkit2 [10] and code associated with our end-to-end QA experiments is part of
the PyGaggle toolkit3 for neural text ranking.

2 http://pyserini.io/.
3 http://pygaggle.ai/.

http://pyserini.io/
http://pygaggle.ai/
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2 Methods

DPR [8] adopts a retriever–reader pipeline proposed by Chen et al. [2] for open-
domain QA tasks. Both the formulation and the pipeline architecture for tackling
the problem dates from at least the late 1990s [14], which means that this general
approach has a long history that predates neural networks. The open-source
code associated with the paper is available on GitHub (which we refer to as “the
DPR repo”),4 but it does not appear to contain code and models necessary to
reproduce all results reported in the paper (more detailed discussions below).

2.1 Retriever

During retrieval, given a corpus C = {D1,D2, ...,Dm}, the task is to return a
list of the k most relevant documents (i.e., most likely to contain the answer)
from C for each query q, where k << |C|. In the original DPR paper and also our
replication study, the corpus refers to the 2018-12-20 dump of English Wikipedia,
and the “documents” are non-overlapping 100-word splits of articles.

To be clear, in most text ranking applications, the “unit of indexing” (and
also retrieval) is usually referred to as a “document” Dj , although in this case
it is a passage (i.e., a split) from Wikipedia. For consistency with this parlance,
we use “document” and “passage” interchangeably throughout this paper. To
add to the potential confusion, results of the retriever are also referred to as
“contexts” that are fed to the reader.

Specifically, DPR contains a query encoder and a passage encoder, both using
BERT [3] as the backbone model. Queries and passages are encoded as dense
representation vectors separately as follows:

q∗ = BERTq(q),D∗
j = BERTD(Dj)

where q∗ and D∗
j are low dimensional vectors (768 dimensions by default). The

relevance score of a passage to a query is computed by their vector dot product:

Sim(q,Dj) = 〈q∗,D∗
j 〉

Thus, the retrieval problem is carried out as nearest neighbor search in dense
vector space. Operationally, this is accomplished via Facebook’s Faiss library [6].

During training, given a query q, a relevant passage D+ that contains the
answer, and n non-relevant passages D−

1 ,D−
2 , ...D−

n , the training objective is:

L(q,D+,D−
1 ,D−

2 , · · · ,D−
n )

= − log p(D = D+ | Q = q)

= − log
exp(Sim(q,D+))

exp(Sim(q,D+)) +
n∑

i=1

exp(Sim(q,D−
i ))

,

4 https://github.com/facebookresearch/DPR.

https://github.com/facebookresearch/DPR
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where p(D = D+ | Q = q) can be seen as a classifier given the query q evaluated
at passage D+.

Karpukhin et al. also investigated hybrid retrieval, combining results from
dense retrieval (DPR) and sparse retrieval (BM25) by computing the linear
combination of their respective scores to rerank the union of the two initial
retrieved sets: λ · Sim(q,Dj) + BM25(q,Dj), where λ = 1.1, an empirical value
tuned on the development set. BM25 retrieval was performed using Lucene with
parameters b = 0.4 and k1 = 0.9. However, the DPR repo does not appear to
contain code for reproducing the BM25 and hybrid fusion results.

We attempt to replicate the retriever results reported in the DPR paper with
Pyserini, an IR toolkit we have been developing since 2019 [10]. The toolkit
supports sparse retrieval (i.e., BM25) via integration with another toolkit called
Anserini [17] built on Lucene. Like in the original DPR work, Pyserini supports
dense retrieval via integration with Facebook’s Faiss library. Combining dense
and sparse retrieval, the Pyserini toolkit supports hybrid retrieval as well.

Our efforts are divided into two distinct steps: First, we verify that the model
checkpoints released by the DPR authors are reproducible by retraining the
query and passage encoders from scratch. Then, for a fair comparison between
our retrieval implementation and the original DPR work, we use the released
checkpoints as the starting point of our replication study. Our retrieval imple-
mentation does not share any code with the DPR repo, other than evaluation
scripts to ensure that results are comparable.

Similar to the original work, we calculate hybrid retrieval scores by linear
combination of dense and sparse scores: Sim(q,Dj)+α ·BM25(q,Dj). Note that,
contrary to the original work, we place the α weight on the BM25 score because
this yields a more natural way to answer the pertinent research question: Given
dense retrieval as a starting point, does adding BM25 as an additional relevance
signal provide any value? This question is answered by comparing with a setting
of α = 0, which is equivalent to discarding BM25 results.

Finally, there are a few more details of exactly how to combine BM25 and
DPR scores worth exploring. As a baseline, we use the raw scores directly in
the linear combination (exactly as above). However, we notice that the range of
scores from DPR and BM25 can be quite different. To potentially address this
issue, we apply the following normalization technique: If a document from sparse
retrieval is not in the dense retrieval results, we assign it the minimum dense
retrieval score among the retrieved documents, and vice versa for the sparse
retrieval score.

To arrive at a final top-k ranking, the original DPR paper generated top-k′

results from DPR and top-k′ results from BM25 (where k′ > k), before consid-
ering the union of the two result sets and combining the scores to arrive at the
final top-k. The original work set k′ = 2000, but after some preliminary exper-
imentation, we decided to fix k′ = 1000 in our experiments since it is a more
common setting in information retrieval experiments (for example, k = 1000 is
the default in most TREC evaluations).
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2.2 Reader

As is standard in a retriever–reader design, the retriever in the DPR paper
returns k candidate passages (i.e., splits from Wikipedia) for each query q. The
reader extracts the final answer span from the candidate contexts, where each
context Ci contains the Wikipedia article title Ctitle

i and its content Ctext
i .

The reader in DPR uses BERT-base and takes as input each candidate con-
text Ci concatenated to the question q. Answer extraction is treated as a labeling
task, and the reader identifies the answer by predicting the start and end tokens
of the answer span in the contexts. To do so, the DPR reader adds a linear layer
on top of BERT to predict the start logit (i.e., unnormalized probability) and
end logit for each token from the final hidden layer representations. The score
of an answer span is calculated by adding the start logit of the first token and
the end logit of the last token. The reader returns the m highest scoring answer
spans. In addition, the reader uses the learned representation of [CLS] to predict
the overall relevance of the context to the question.

Mathematically, the reader operates as follows:

ri,S = Reader([CLS] q [SEP] Ctitle
i [SEP] Ctext

i )

where ri is the overall relevance score for context Ci, and S comprises m potential
(answer span, span score) pairs extracted from context Ci:

{(Si,1, si,1), (Si,2, si,2), . . . (Si,m, si,m)}.

In the original paper, the final answer span is the candidate with the maximum
span score from the context with the highest relevance score.

We attempt to replicate exactly the DPR implementation of answer extrac-
tion using our open-source PyGaggle neural reranking library, which holds the
code to many of our other search-related projects. Once again, we begin with
reader checkpoints released in the DPR repo, but otherwise our implementation
is completely independent (other than, again, the evaluation code).

In addition to the answer extraction algorithm above, we also implement the
normalized answer span scoring technique described by Mao et al. [12]. Each
answer span in each candidate context Ci is re-scored according to:

s′
i,j = softmax(�r)i · softmax(�si)j

where �r = {r1, · · · , rk} is the set of relevance scores of all candidate contexts
and �si = {si,1, · · · , si,m} is the set of all span scores within context Ci. Dupli-
cate answer spans across all contexts are scored by accumulating their individual
scores. The answer span with the maximum score is selected as the final predic-
tion.

In summary, we compare two answer span scoring techniques in the reader:
the “original” answer span scoring technique described by Karpukhin et al. [8],
and the span scoring technique described by Mao et al. [12].
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2.3 Final Evidence Fusion

In the original DPR paper, the final answer span is only selected based on scores
from the reader. In our replication attempt, we additionally exploit scores from
the retriever to improve answer span selection. Our intuition is that predictions
from both the retriever and the reader should contribute to the final answer.
Concretely, instead of just using the relevance score ri from the reader to score
contexts, we fuse ri with the retriever score Ri, calculated by: β · ri + γ · Ri.
Depending on the retrieval method, Ri can be the sparse retrieval score, the dense
retrieval score, or the score after hybrid fusion. This final fused score replaces
ri as the relevance score for each context in the answer span scoring step. For
example, with fusion, the answer span scoring technique from GAR [12] becomes
softmax(β · �r + γ · �R)i · softmax(�si)j .

Thus, to summarize, we explore four settings in our end-to-end QA replica-
tion: the original DPR span scoring technique, with and without retriever score
fusion, and the answer span scoring technique of GAR [12], with and without
retriever score fusion.

3 Experimental Setup

In this section, we clarify the models, datasets, metrics, and hyperparameters
used in our experiments.

Reproduction of Training. We attempt to reproduce the DPR model checkpoints
by training DPR from scratch, following the same settings in the original work
as close as possible, with two different implementations. The first is the authors’
released code in the DPR repo; experiments reported in the original paper used
8 × Nvidia V100 (32 GB) GPUs, as model quality depends on a large batch
size (i.e., 128). The second is code from Gao et al. [4], which is based on the
original implementation but exploits gradient caching to make a large batch fit
on single GPU.5 In our reproduction, we train models on 4 × V100 GPUs (the
largest machine we have access to) using the authors’ original code, and a single
V100 GPU using the other implementation; hyperparameters are all identical to
the original DPR work. The reproduced checkpoints are evaluated based on the
original DPR repo’s retrieval and evaluation code.

Replication of Retrieval. Our replication efforts begin with model checkpoints
provided in the DPR repo. However, the authors did not release all models
and datasets used in their experiments at the time of our work. Therefore, our
replication experiments only use the models with released checkpoints:

– RetrieverNQ: DPR encoders trained using just the NQ dataset.
– RetrieverMulti: DPR encoders trained using a combination of datasets.

5 https://github.com/luyug/GC-DPR.

https://github.com/luyug/GC-DPR
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– ReaderNQ-Single: the DPR reader trained on NQ with negative passages from
retrieval results by RetrieverNQ.

– ReaderTQA-Multi: the DPR reader trained on TriviaQA with negative passages
from retrieval results by RetrieverMulti.

Datasets. We evaluate retrieval effectiveness on five standard benchmark QA
datasets (NQ [9], TriviaQA [7], WQ [1], CuratedTREC [14], SQuAD [13]),
exactly the same as the original paper. For end-to-end QA, we evaluate on
NQ and TriviaQA with the available models. More precisely, we use the
ReaderNQ-Single model to process the retrieved contexts from RetrieverNQ for
NQ and use the ReaderTQA-Multi model to process the retrieved contexts from
RetrieverMulti for TriviaQA.

Metrics. For retrieval, we measure effectiveness in terms of top-k retrieval accu-
racy, defined as the fraction of questions that have a correct answer span in the
top-k retrieved contexts at least once. End-to-end QA effectiveness is measured
in terms of the exact match (EM) metric, defined as the fraction of questions
that have an extracted answer span exactly matching the ground truth answer.
Missing from the original DPR paper, we perform significance testing to assess
the statistical significance of metric differences. In all cases, we apply paired
t-tests at p < 0.01; the Bonferroni correction is applied to correct for multiple
hypothesis testing as appropriate.

Hyperparameters. In the hybrid retrieval technique described in the DPR paper,
the λ weight for combining dense and sparse retrieval scores is fixed to 1.1.
However, our implementation replaces λ with α (see Sect. 2.1). We tune the α
values on different datasets by optimizing top-20 retrieval accuracy: For datasets
where we can obtain exactly same train/dev/test splits as the original DPR
paper (NQ and TriviaQA), we tune the weight on the development set. For the
remaining datasets, where splits are not available or the original DPR paper does
not provide specific guidance, we tune the weights on a subset of the training
data. We obtain the optimal weight by performing grid search in the range [0, 2]
with step size 0.05.

Similarly, for final evidence fusion, we tune β (i.e., the weight for the relevance
score) and γ (i.e., the weight for the retriever score) on the development set of
NQ and TriviaQA using grid search. For greater computational efficiency, we
perform tuning in multiple passes by interweaving a coarser step size with a
finer step size. For the original DPR answer span scoring technique, we fix β to
one and perform a two-step grid search on γ. We start with step size 0.05 and
find the optimal γ1. Then, we use step size 0.01 in the range [γ1 − 0.04, γ1+0.04]
to find the optimal γ.

For the answer span scoring technique of GAR [12], we define δ = γ
β and

perform a three-step grid search on β and δ (i.e., the weight for the retriever
score becomes γ = β · δ). We start with step size 0.2 for both β and δ to find the
optimal pair of values β1, δ1. We then repeat this process with step size 0.05 and
0.01 in a smaller range around the optimal βi and δi from the previous pass.
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Table 1. Retrieval effectiveness comparing results from the original DPR paper
(“orig”) and our reproduction attempt (“repro”). The symbol ∗ on an “orig” result
indicates that the corresponding checkpoint was released.

Training NQ TriviaQA WQ Curated SQuAD

top20 top100 top20 top100 top20 top100 top20 top100 top20 top100

DPR-Single (orig) 78.4∗ 85.4∗ 79.4 85.0 73.2 81.4 79.8 89.1 63.2 77.2

DPR-Single (repro) 79.1 85.9 78.9 84.5 71.0 80.2 85.1 92.2 62.1 76.8

DPR-Multi (orig) 79.4∗ 86.0∗ 78.8∗ 84.7∗ 75.0∗ 82.9∗ 89.1∗ 93.9∗ 51.6∗ 67.6∗

DPR-Multi (repro) 79.4 87.0 78.5 84.5 75.3 83.0 88.2 94.4 58.3 72.4

For final evidence fusion, we tune the weight parameters together with the
number of retrieval results (k) up to 500 with a step size of 20. Optimal param-
eters are selected based on the highest exact match score.

4 Results

4.1 Reproduction of Training

In Table 1, we report retrieval accuracy from our reproduced model checkpoints.
DPR-Single refers to the query encoder and passage encoder trained on a single
dataset only and DPR-Multi refers to the model trained on the union of NQ,
TriviaQA, WQ, and CuratedTREC (with WQ and CuratedTREC up-sampled
by four times given their smaller sizes). To be clear, at the time of our study,
the DPR repo only released training data for NQ, TriviaQA, and SQuAD. We
follow the DPR paper to prepare training data for WQ and CuratedTREC, but
we prepare BM25 hard negative passages by using the Pyserini toolkit because
the original repo does not contain BM25 retrieval code. The DPR-Single (repro)
results are from training using the authors’ original code. The DPR-Multi (repro)
results are from training using the code of Gao et al. [4].

The models we train from scratch arrive at a comparable level of effectiveness
to the numbers reported in the original paper. Most of the differences are rela-
tively small, within the variability commonly seen when training neural models.
Interestingly, for the DPR-Multi setting, our model appears to be quite a bit
better than the original model for SQuAD.

Overall, we would consider our reproduction attempt successful. In the fol-
lowing experiments, to reduce the number of conflated factors, we use the DPR
authors’ released model checkpoints.

4.2 Replication of Retrieval

Table 2 reports top-k = {20, 100} retrieval accuracy from our replication
attempt, compared to figures copied directly from the original DPR paper; here
we focus on results from RetrieverMulti. The hybrid retrieval results reported in
the original DPR paper is denoted Hybridorig, which is not directly comparable
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Table 2. Comparison between the original DPR paper (“orig”) and our replication
attempt (“repl”). The symbol † on a BM25 result indicates effectiveness that is sig-
nificantly different from DPR. The symbol ‡ indicates that the hybrid technique is
significantly better than BM25 (for SQuAD) or DPR (for all remaining collections).

Condition top20 top100

orig repl orig repl

NQ

DPR 79.4 79.5 86.0 86.1

BM25 59.1 62.9† 73.7 78.3†

Hybridorig (λ = 1.1) 78.0 - 83.9 -

Hybridnorm (α = 1.30) - 82.6‡ - 88.6‡

Hybrid (α = 0.55) - 82.7‡ - 88.1‡

TriviaQA

DPR 78.8 78.9 84.7 84.8

BM25 66.9 76.4† 76.7 83.2†

Hybridorig (λ = 1.1) 79.9 - 84.4 -

Hybridnorm (α = 0.95) - 82.6‡ - 86.5‡

Hybrid (α = 0.55) - 82.3‡ - 86.1‡

WQ

DPR 75.0 75.0 82.9 83.0

BM25 55.0 62.4† 71.1 75.5†

Hybridorig (λ = 1.1) 74.7 - 82.3 -

Hybridnorm (α = 0.95) - 77.1‡ - 84.4‡

Hybrid (α = 0.3) - 77.5‡ - 84.0‡

CuratedTREC

DPR 89.1 88.8 93.9 93.4

BM25 70.9 80.7† 84.1 89.9†

Hybridorig (λ = 1.1) 88.5 - 94.1 -

Hybridnorm (α = 1.05) - 90.1 - 95.0‡

Hybrid (α = 0.7) - 89.6 - 94.6‡

SQuAD

DPR 51.6 52.0 67.6 67.7

BM25 68.8 71.1† 80.0 81.8†

Hybridorig (λ = 1.1) 66.2 - 78.6 -

Hybridnorm (α = 2.00) - 75.1‡ - 84.4‡

Hybrid (α = 28) - 75.0‡ - 84.0‡
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to either of our two techniques: Hybridnorm (with minimum score normalization)
or Hybrid (without such normalization). We make the following observations:

First, our dense retrieval results are very close to those reported in the original
paper. We consider this a successful replication attempt and our efforts add
veracity to the effectiveness of the DPR technique.

Second, our Pyserini BM25 implementation outperforms the BM25 results
reported in the original paper across all datasets. Furthermore, the gap is larger
for k = 20. On average, our results represent a nearly seven-point improvement
in top-20 accuracy and a nearly five-point improvement in top-100 accuracy.
Since the authors of DPR have not made available their code for generating the
BM25 results, we are unable to further diagnose these differences.

Nevertheless, the results do support the finding that dense retrieval using
DPR is (generally) more effective than sparse retrieval. We confirm that the
effectiveness differences between DPR and BM25 in our replication results are
statistically significant. In all datasets except for SQuAD, DPR outperforms
BM25; this is consistent with the original paper. We further confirm that for
SQuAD, DPR is significantly worse than BM25. As Karpukhin et al. noted,
RetrieverMulti is trained by combining training data from all datasets but exclud-
ing SQuAD; these poor results are expected, since SQuAD draws from a very
small set of Wikipedia articles.

Third, the effectiveness of hybrid dense–sparse fusion appears to be under-
stated in the original DPR paper. Karpukhin et al. found that hybrid retrieval
is less effective than dense retrieval in most settings, which is inconsistent with
our experimental results. Instead, we find that dense–sparse retrieval consis-
tently beats sparse retrieval across all settings. The gains from both hybrid
scoring techniques are statistically significant, with the exception of top-20 for
CuratedTREC. Our results might be due to better BM25 effectiveness, but we
are unable to further diagnose these differences because, once again, the hybrid
retrieval code is not provided in the DPR repo. Further testing also finds that
the differences between the two hybrid techniques are not significant. Thus, there
seems to be no strong basis to prefer one hybrid technique over the other.

Table 3. The Jaccard overlap between sparse retrieval and dense retrieval results.

Condition k = 20 100 500 1000

NQ 6.1 5.2 4.4 4.2

TriviaQA 9.2 6.6 5.0 4.6

WQ 5.9 5.9 5.8 5.7

CuratedTrec 6.9 7.2 6.3 5.9

SQuAD 4.5 4.1 4.0 4.0

In Table 3, we report overlap when taking different top-k results from dense
retrieval and sparse retrieval. Overlap is measured in terms of Jaccard overlap,
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which is computed by the intersection over the union. It is apparent that the
overlap between dense and sparse results is quite small, which suggests that
they are effective in different ways. This provides an explanation of why hybrid
retrieval is effective, i.e., it is exploiting different relevance signals. These results
also justify the DPR design choice of retrieving k′ > k results from dense and
sparse retrieval and then rescoring the union to arrive at the final top-k.

4.3 Replication of End-to-End QA

Table 4 presents results for our end-to-end question answering replication exper-
iments on the NQ and TriviaQA datasets in terms of the exact match score.
The original results are shown in the “orig” column. The “repl” column reports
our attempt to replicate exactly the span scoring technique described in the
original paper, whereas the “GAR” column shows results from using the tech-
nique proposed by Mao et al. [12]. The version of each technique that incorpo-
rates retriever scores (see Sect. 2.3) is denoted with a * symbol, i.e., “repl*” and
“GAR*”. For NQ, we used RetrieverNQ and ReaderNQ-Single; for TriviaQA, we
used RetrieverMulti and ReaderTQA-Multi.

Table 4. End-to-end QA effectiveness in terms of the exact match score, compar-
ing different answer span scoring techniques. The “orig” and “repl” columns are the
original and replicated results; “GAR” refers to the technique by Mao et al. [12]; “*”
represents fusion of retriever scores. The symbol † on a “repl*” result indicates sig.
improvement over “repl”; on “GAR”, over “repl”; on “GAR*”, over “GAR”. The sym-
bol ‡ on “GAR*” indicates sig. improvement over “repl”.

Condition orig repl repl* GAR GAR*

NQ

DPR 41.5 41.2 42.5† 41.5 43.5†‡

BM25 32.6 36.3 37.0 37.3† 38.4†‡

Hybrid 39.0 41.2 43.2† 41.9† 44.0†‡

TriviaQA

DPR 56.8 57.5 58.3† 58.9† 59.5†‡

BM25 52.4 58.8 59.2 61.1† 61.6†‡

Hybrid 57.9 59.1 60.0† 61.0† 61.7†‡

With retrieval using DPR only, the “orig” and “repl” scores on both datasets
are close (within a point), which suggests that we have successfully replicated
the results reported in the DPR paper. With retrieval using BM25 only, our
replicated results are quite a bit higher than the original DPR results; this
is not a surprise given that our BM25 results are also better. When combin-
ing DPR and BM25 results at the retriever stage, the end-to-end effectiveness
remains unchanged for NQ, but we observe a modest gain for TriviaQA. The
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gain for TriviaQA is statistically significant. So, it is not the case that better
top-k retrieval always leads to improvement in end-to-end effectiveness.

Comparing the “repl” and “repl*” columns, we observe that combining scores
from the retriever yields modest gains across all conditions. These gains are sig-
nificant for four out of the six conditions, which suggests that retriever scores con-
tribute to improving effectiveness. Comparing the “GAR” and “repl” columns,
we also observe modest gains when adopting the answer span selection technique
of Mao et al. [12]. These gains are significant for all except one condition. Com-
paring the “GAR” and “GAR*” columns, we find that in all cases, incorporating
retriever scores significantly increases effectiveness.

Finally, putting everything together—using both the answer span scoring
technique of Mao et al. [12] and incorporating retriever scores—we observe sta-
tistically significant gains across all retrieval conditions, as can be seen in the
“GAR*” vs. “repl” columns across all rows. Compared to the best replicated
results, we obtain an improvement of approximately three points in end-to-end
QA effectiveness compared to the best answer extraction approach described in
the original DPR paper. Note that we are able to obtain these improvements
using exactly the model checkpoints provided in the DPR repo—we have simply
added two relatively simple tricks to improve scoring and evidence combination.
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Fig. 1. End-to-end question answering effectiveness (exact match score) varying the
number of retrieval results (k) for NQ (left) and TriviaQA (right).

In Fig. 1, we plot exact match scores as a function of varying k retrieval
results for NQ (left) and TriviaQA (right). That is, we show how end-to-end QA
effectiveness changes as the reader is provided more contexts from the retriever
to consider. There are two factors here at play: On the one hand, top-k accuracy
increases monotonically, i.e., as k increases, so does the likelihood that the answer
appears in the contexts fed to the reader. On the other hand, the reader is asked
to consider more contexts, and thus needs to discriminate the correct answer
from a larger pool of candidate contexts, some of which might be low quality
and thus serve as “distractors” from the correct answer. How do these factors
balance out? Similar analyses in previous work with BM25 retrieval have shown
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that end-to-end QA effectiveness increases with increasing k [15,18]; that is, the
reader does not appear to be “confused” by the non-relevant material. Indeed,
in our BM25 results we also observe the same trend.

Interestingly, however, when we switch from BM25 results to DPR results,
the behavior appears to change. For TriviaQA, the effectiveness curve behaves as
expected, but for NQ, the exact match score trends up and then decreases after a
peak. This means that while the likelihood of the reader seeing a correct answer in
the candidate contexts increases with k, it is more likely to be negatively affected
by increasing amounts of non-relevant contexts as well. This general behavior
is also seen for the hybrid scoring techniques: as k increases, so does the exact
match score, but only up to a certain point. Beyond this point, feeding the reader
more candidate contexts leads to slight decreases in end-to-end effectiveness.

5 Conclusion

The breakneck pace at which NLP and IR are advancing, we argue, makes repro-
ducibility and replicability critical to advancing science—to ensure that we are
building on a firm foundation. Our study adds to the veracity of the claims made
by Karpukhin et al. [8], and our work indeed confirms that DPR is an effective
dense retrieval technique. Moreover, we arrive at two important findings, one
of which is inconsistent with the original work, the other of which presents an
enhancement. Together, they enrich our understanding of DPR.
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