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ABSTRACT
We provide a reproducible, end-to-end demonstration of vector
search with OpenAI embeddings using Lucene on the popular MS
MARCO passage ranking test collection. The main goal of our
work is to challenge the prevailing narrative that a dedicated vector
store is necessary to take advantage of recent advances in deep
neural networks as applied to search. Quite the contrary, we show
that hierarchical navigable small-world network (HNSW) indexes
in Lucene are adequate to provide vector search capabilities in a
standard bi-encoder architecture. This suggests that, from a simple
cost–benefit analysis, there does not appear to be a compelling
reason to introduce a dedicated vector store into a modern “AI
stack” for search, since such applications have already received
substantial investments in existing, widely deployed infrastructure.
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1 INTRODUCTION
Recent advances in the application of deep neural networks to
search have focused on representation learning in the context of the
so-called bi-encoder architecture, where content (queries, passages,
and even images and other multimedia content) is represented by
dense vectors (so-called “embeddings”). Dense retrieval models
using this architecture form the foundation of retrieval augmen-
tation in large language models (LLMs), a popular and productive
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approach to improving LLM capabilities in the broader context of
generative AI [1, 23].

The dominant narrative today is that since dense retrieval re-
quires the management of a potentially large number of dense
vectors, enterprises require a dedicated “vector store” or “vector
database” as part of their “AI stack”. There exists a cottage industry
of startups pitching vector stores as novel, must-have components
in a modern enterprise architecture; examples include Pinecone,
Weaviate, Chroma, Milvus, Qdrant, just to name a few.

We articulate a counterpoint to this narrative (cf. [3]). Our argu-
ments center around a simple cost–benefit analysis: since search is
a brownfield application, many organizations have already made
substantial investments in these capabilities. Today, production in-
frastructure is dominated by the broad ecosystem centered around
the open-source Lucene search library, most notably driven by
platforms such as Elasticsearch, OpenSearch, and Solr. While the
Lucene ecosystem has admittedly been slow to adapt to recent
trends in representation learning, there are strong signals that se-
rious investments are being made in this space. Thus, we see no
compelling reason why separate, dedicated vector stores are neces-
sary in a modern enterprise. In short, the benefits do not appear to
justify the cost of additional architectural complexity.

It is important to separate capabilities from distinct software com-
ponents. While hierarchical navigable small-world network (HNSW)
indexes [22] represent the state of the art today in approximate
nearest neighbor search—the most important operation for vector
search using embeddings—it is not clear that providing operations
around HNSW indexes requires a separate and distinct vector store.
Indeed, the most recent major release of Lucene (version 9, from
Dec 2021) includes HNSW indexing and vector search, and these ca-
pabilities have steadily improved over time. The open-source nature
of the Lucene ecosystem means that advances in the core library
itself will be rapidly adopted and integrated into other software
platforms within the broader ecosystem.

The growing popularity of embedding APIs [11] further strength-
ens our arguments. These APIs encapsulate perhaps the most com-
plex and resource-intensive aspect of vector search—the generation
of dense vectors themselves. Embedding APIs hide model train-
ing, deployment, and inference behind the well-known benefits of
service-based computing, much to the delight of practitioners. To
support our arguments, we demonstrate vector search with OpenAI
embeddings [24] using the popular MS MARCO passage test col-
lection [2]: we have encoded the entire corpus and indexed the
embedding vectors using Lucene. Evaluation on the MS MARCO
development set queries and queries from the TRECDL Tracks [4, 5]
show that OpenAI embeddings are able to achieve a respectable
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level of effectiveness. And as Devins et al. [6] have shown, any-
thing doable in Lucene is relatively straightforward to replicate in
Elasticsearch (and any other platform built on Lucene). Thus, we
expect the ideas behind our demonstration to become pervasive in
the near future. To facilitate broader adoption, we make available
everything needed to reproduce our experiments, including the
actual OpenAI embeddings.

2 ARCHITECTURE TO IMPLEMENTATION
The central idea behind the bi-encoder architecture is to encode
queries and passages into dense vectors—commonly referred to
as “embeddings”—such that relevant query–passage pairs receive
high scores, computed as the dot product of their embeddings. In
this manner, search can be formulated as a nearest neighbor search
problem in vector space: given the query embedding, the system’s
task is to efficiently retrieve the top-𝑘 passage embeddings with the
largest dot products [13]. Typically, “encoders” for generating the
vector representations are implemented using transformers, which
are usually fine-tuned in a supervised manner using a large dataset
of relevant query–passage pairs [12, 28].

This formulation of search, in terms of comparisons between
dense vectors, differs from “traditional” bag-of-words sparse rep-
resentations that rely on inverted indexes for low-latency query
evaluation. Instead, nearest neighbor search in vector space re-
quires entirely different techniques: indexes based on hierarchi-
cal navigable small-world networks (HNSW) [22] are commonly
acknowledged as representing the state of the art. The Faiss li-
brary [10] provides a popular implementation of HNSW indexes
that is broadly adopted today and serves as a standard baseline. De-
spite conceptual similarities [13], it is clear that top-𝑘 retrieval on
sparse vectors and dense vectors require quite different and distinct
“software stacks”. Since hybrid approaches that combine both dense
and sparse representations have been shown to be more effective
than either alone [18, 19], many modern systems combine separate
retrieval components to achieve hybrid retrieval. For example, the
Pyserini IR toolkit [15] integrates Lucene and Faiss for sparse and
dense retrieval, respectively. Recognizing the need for managing
both sparse and dense retrieval models, the dominant narrative
today is that the modern enterprise “AI stack” requires a dedicated
vector store or vector database, alongside existing fixtures such as
relational databases, NoSQL stores, event stores, etc. This is the
narrative that our work challenges.

Modern enterprise architectures are already exceedingly com-
plex, and the addition of another software component (i.e., a distinct
vector store) requires carefully weighing costs as well as benefits.
The cost is obvious: increased complexity, not only from the in-
troduction of a new component, but also from interactions with
existing components. What about the benefits? While vector stores
no doubt introduce new capabilities, the critical question is whether
these capabilities can be provided via alternative means.

Search is a brownfield application. Wikipedia defines this as “a
term commonly used in the information technology industry to
describe problem spaces needing the development and deployment
of new software systems in the immediate presence of existing
(legacy) software applications/systems.” Additionally, “this implies
that any new software architecture must take into account and

coexist with live software already in situ.” Specifically, many or-
ganizations have already made substantial investments in search
within the Lucene ecosystem. While most organizations do not
directly use the open-source Lucene search library in production,
the search application landscape is dominated by platforms that
are built on top of Lucene such as Elasticsearch, OpenSearch, and
Solr. For example, Elastic, the publicly traded company behind Elas-
ticsearch, reports approximately 20,000 subscriptions to its cloud
service as of Q4 FY2023.1 Similarly, in the category of search en-
gines, Lucene dominates DB-Engines Ranking, a site that tracks the
popularity of various database management systems.2 There’s a
paucity of concrete usage data, but it would not be an exaggeration
to say that Lucene has an immense install base.

The most recent major release of Lucene (version 9), dating back
to December 2021, includes HNSW indexing and search capabilities,
which have steadily improved over the past couple of years. This
means that differences in capabilities between Lucene and dedi-
cated vector stores are primarily in terms of performance, not the
availability of critical features. Thus, from a simple cost–benefit
calculus, it is not clear that vector search requires introducing a
dedicated vector store into an already complex enterprise “AI stack”.
Our thesis: Lucene is all you need.

We empirically demonstrate our claims on the MS MARCO pas-
sage ranking test collection, a standard benchmark dataset used
by researchers today. We have encoded the entire corpus using
OpenAI’s ada2 embedding endpoint, and then indexed the dense
vectors with Lucene. Experimental results show that this combina-
tion achieves effectiveness comparable to the state of the art on the
development queries as well as queries from the TREC 2019 and
2020 Deep Learning Tracks.

Our experiments are conducted with Anserini [29], a Lucene-
based IR toolkit that aims to support reproducible information
retrieval research. By building on Lucene, Anserini aims to bridge
the gap between academic information retrieval research and the
practice of building real-world search applications. Devins et al. [6]
showed that capabilities implemented by researchers in Anserini
using Lucene can be straightforwardly translated into Elasticsearch
(or any other platform in the Lucene ecosystem), thus simplifying
the path from prototypes to production deployments.

Our demonstration further shows the ease with which state-
of-the-art vector search can be implemented by simply “plugging
together” readily available components. In the context of the bi-
encoder architecture, Lin [13] identified the logical scoring model
and the physical retrieval model as distinct conceptual components.
In our experiments, the logical scoring model maps to the OpenAI
embedding API—whose operations are no different from any other
API endpoint. What Lin calls the physical retrieval model focuses
on the top-𝑘 retrieval capability, which is handled by Lucene. In
Anserini, vector indexing and search is exposed in a manner that
is analogous to indexing and retrieval using bag-of-words mod-
els such as BM25. Thus, the implementation of the state of the
art in vector search using generative AI does not require any AI-
specific implementations, which increases the accessibility of these
technologies to a wider audience.

1https://ir.elastic.co/news/press-releases/default.aspx
2https://db-engines.com/en/ranking/search+engine
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3 EXPERIMENTS
Experiments in this paper used theMSMARCOpassage ranking test
collection [2], which is built on a corpus comprising approximately
8.8 million passages extracted from the web. Note that since the
embedding vectors are generated by OpenAI’s API endpoint, no
model training was performed. We used the 6980 development
(dev) queries as well as queries from the TREC 2019 and 2020 Deep
Learning (DL) Tracks.

Our experiments used the OpenAI ada2 model [24] for gener-
ating both query and passage embeddings. This model is charac-
terized by an input limit of 8191 tokens and an output embedding
size of 1536 dimensions. However, to maintain consistency with
the existing literature [20, 26], we truncated all passages in the
corpus to 512 tokens. It is unknown whether OpenAI leveraged
the MS MARCO passage corpus during model development, but in
general, accounting for data leakage is challenging for large models,
especially those from OpenAI that lack transparency.

Using tiktoken, OpenAI’s official tokenizer, we computed the
average token count per passage in our corpus to be 75.2, resulting
in a total of approximately 660 million tokens. In order to generate
the embeddings efficiently, we queried the API in parallel while
respecting the rate limit of 3500 calls per minute. We had to incor-
porate logic for error handling in our code, given the high-volume
nature of our API calls. Ultimately, we were able to encode both
the corpus and the queries, the latter of which were negligible in
comparison, in a span of two days.

As previously mentioned, all our retrieval experiments were
conducted with the Anserini IR toolkit [29]. The primary advantage
of Anserini is that it provides direct access to underlying Lucene
features in a “researcher-friendly” manner that better comports
with modern evaluation workflows, supporting easy reproducibility.
Our experiments were performed with Anserini 0.23.0, which is
based on Lucene 9.8.0. We used a Mac Studio with an M1 Ultra
processor containing 20 cores (16 performance, 4 efficiency) and 128
GB memory, running macOS Sonoma 14.1.2 and OpenJDK 11.0.13.
To better isolate retrieval performance, all our experiments were
performed with pre-encoded (cached) query vectors. That is, we
did not call the embedding API at query time.

Effectiveness results are shown in Table 1, where we report
ranking quality in terms of standard metrics: reciprocal rank at
10 (RR@10), nDCG at a rank cutoff of 10 (nDCG@10), and recall
at a rank cutoff of 1000 (R@1k). The effectiveness of the ada2
embeddings is shown in the last row of the table. Note that due
to the non-deterministic nature of HNSW indexing, effectiveness
figures may vary slightly from run to run.

For comparison, we present results from a few select points of
reference, classified according to the taxonomy proposed by Lin
[13]; OpenAI’s embedding models belong in the class of learned
dense representations. Notable omissions in the results table in-
clude the following: the original OpenAI paper that describes the
embedding model [24] does not report comparable results; neither
does Izacard et al. [9] for Contriever, another popular learned dense
representation model. Recently, Kamalloo et al. [11] also evalu-
ated OpenAI’s ada2 embeddings, but they did not examine any of
the test collections we do here. Looking at the results table, our
main point is that we can achieve effectiveness comparable to the

dev DL19 DL20
RR@10 R@1k nDCG@10 R@1k nDCG@10 R@1k

Unsupervised Sparse Representations
BM25 [20] 0.184 0.853 0.506 0.750 0.480 0.786
BM25+RM3 [20] 0.157 0.861 0.522 0.814 0.490 0.824
Learned Sparse Representations
uniCOIL [20] 0.352 0.958 0.702 0.829 0.675 0.843
SPLADE++ ED [7] 0.383 0.983 0.731 0.873 0.720 0.900
Learned Dense Representations
TAS-B [8] 0.344 0.977 0.721 0.841 0.685 0.873
TCT-ColBERTv2 [16] 0.358 0.970 0.720 0.826 0.688 0.843
Aggretriever [17] 0.362 0.974 0.684 0.808 0.697 0.856
OpenAI ada2 0.343 0.984 0.704 0.863 0.676 0.871

Table 1: Effectiveness of OpenAI ada2 embeddings on the MS
MARCO dev queries and queries from DL19/DL20, compared
to a selection of other models. All results are from Pyserini’s
two-click reproductions [14], which may differ slightly from
the original papers.

state of the art using a production-grade, completely off-the-shelf
embedding API coupled with Lucene for indexing and retrieval.

Finally, we provide performance figures running on 16 threads.
With the default Anserini indexing configuration—the parameter M
set to 16 and efC set to 100, without final segment optimization—we
were able to achieve around 22 queries per second with efSearch
set to 1000 on the MS MARCO development queries, retrieving
1000 hits per query. The resulting index occupies 51 GB (with the
du -h command) with 25 index segments. Keep everything exactly
the same, but merging the index down into a single segment, we
are able to achieve around 395 queries per second. We note that
although this optimization greatly increases search performance, it
is only applicable for static collections.

4 DISCUSSION
Our demonstration shows that it is possible today to build a vector
search prototype using OpenAI embeddings directly with Lucene.
Nevertheless, there are a number of issues worth discussing, which
we cover below.

Pace of development. We concede that Lucene has been a relative
laggard in the development of support for dense retrieval, at least
compared to standalone vector stores. Despite this, we believe that
recent announcements point to substantial and sustained invest-
ments in the Lucene ecosystem moving forward. For example, in
its Q4 FY 2023 report, Elastic announced the Elasticsearch Rele-
vance Engine, “powered by built-in vector search and transformer
models, designed specifically to bring the power of AI innovation
to proprietary enterprise data.” A recent blog post3 from Amazon
Web Services explained vector database capabilities in OpenSearch,
providing many details and reference architectures. These are just
two examples of industry commitments that help bolster the case
for Lucene that we have articulated here. Already, Lucene has re-
leased version 9.9.1 (which we did not examine in this work), with
several new features such as int8 vector quantization. Overall, we
are optimistic about the future of the ecosystem.
3https://aws.amazon.com/blogs/big-data/amazon-opensearch-services-vector-database-
capabilities-explained/
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Performance. Ma et al. [21] recently benchmarked Lucene 9.5.0
against Faiss [10] and concluded that Lucene still lags in terms of
indexing speed, query latency and throughput, and related met-
rics. Those experiments suggest that Lucene achieves only around
half the query throughput of Faiss under comparable settings, but
appears to scale better when using multiple threads. The results,
however, only capture a snapshot in time; here we report results
using Lucene 9.8.0, and Lucene 9.9.1 is already available. Neverthe-
less, it would be fair to say that there remains a performance gap
between Lucene and Faiss, at least along some dimensions of inter-
est. However, the latter is relatively mature and hence its headroom
for performance improvements is more limited. In contrast, we see
many more opportunities for gains in Lucene. Coupled with signs
of strong commitment from industry players (discussed above), we
believe that the performance gap between Lucene and Faiss (as well
as other dedicated vector stores) will decrease over time.

Alternatives. We acknowledge a number of competing alterna-
tives that deserve consideration. Note that the core argument we
forward is about cost–benefit tradeoffs: In our view, it is not clear
that the benefits offered by a dedicated vector store outweigh the
increased architectural complexity of introducing a new software
component within an enterprise. From this perspective, we can
identify two potentially appealing alternatives:
• Fully managed services. One simple way to reduce architectural
complexity is to make it someone else’s problem. Vespa4 is per-
haps the best example of this solution, providing both dense
retrieval and sparse retrieval capabilities in a fully managed en-
vironment, eliminating the need for users to explicitly worry
about implementation details involving inverted indexes, HNSW
indexes, etc. Vepsa provides a query language that supports a
combination of vector search, full-text search, as well as search
over structured data. Our main question here concerns traction
and adoption: as a brownfield application, we’re not convinced
that enterprises will make the (single, large) leap from an existing
solution to a fully managed service.

• Vector search capabilities in relational databases. In the same way
that vector search grows naturally out of an already deployed
and mature text search platform (e.g., Elasticsearch), we can see
similar arguments being made from the perspective of relational
databases. Despite numerous attempts (spanning decades) at
toppling its lofty perch [25, 27], relational databases remain a
permanent fixture in enterprise “data stacks”. This means that
by building vector search capabilities into relational databases,
enterprises gain entrée into the world of dense retrieval (essen-
tially) for free. A great example of this approach is pgvector,5
which provides open-source vector similarity search for Postgres.
We find the case compelling: if your enterprise is already running
Postgres, pgvector adds vector search capabilities with minimal
additional complexity. It’s basically a free lunch.

5 CONCLUSIONS
There is no doubt that manipulation of dense vectors forms an
important component of search today. The central debate we tackle
is how these capabilities should be implemented and deployed
4https://vespa.ai/
5https://github.com/pgvector/pgvector

in production systems. The dominant narrative is that you need
a new, distinct addition to your enterprise “AI stack”—a vector
store. The alternative we propose is to say: If you’ve built search
applications already, chances are you’re already invested in the
Lucene ecosystem. In this case, Lucene is all you need. Of course,
time will tell who’s right.
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