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We have the following model:
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Where each of C, A; are binary variables taking on values 0 or 1. The parameters of this
model are
.=P(C=1)
01 = P(A; =1|1C =1)
0:0 = P(A; = 1|C = 0)

CO”GCtiVGly, we will call 9, = {91'1, 910} and 6 = {967 01,... 9]\[}.
To make predictions with this model, we compute

P(C =1|ay,as2,...,any) x P(ay,az,...,any|C =1)P(C =1)

N
[Tesa- 92'1)1'“] Oc
=1

Similarly, we compute P(C = 0lay,as,...,an) x [Hf\il 055 (1 — Gio)l—“i] (1 —6.) and nor-
malise to find the actual probabilities.
To find the maximum likelihood values for the parameters given a set of M data d =



{dl,dg, . ,dM}, where each dj = {ajl, a;j2,...,ajN, Cj}, we compute:

Oy, = arg max P(d|0)

M
= argmax 1:[ P(d;|0)

M
= argmax log 1_[1 P(d;]0)
]:

M
= arg mnglog P(d;10)
j=1
M
= arg meanglog P(aj1,aj2,...,a;N,c;|6)
j:

(H 0(132 _ 1 ajl-) 92](1 _ HC)I—CJ']

= arg maxz [Z ajilog Oic; + (1 — aj;) log(1 — HZ'C].)) +c¢jlogf. + (1 — ¢;)log(1 —6,)
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M
= 1
arg max jZl og

Taking derivatives we get
0 . G  (1-g)

Z (=0 + ¢;)
j
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setting to zero allows us to find 6. = z](f . Simillary, taking the derivative with respect to 6,
we find
0 aji (1 —aj)
_— log P(d;10) = A Y
901 Z o8 P(d;16) A~ O (1—0a)
J Jleg=1
1
= i — 0;
9“(1 — 911) Z (CL] 1)
Jlej=1
again setting to zero allows us to find 6;; = Z”M;lla] where M, is the number of datapoints
with ¢; = 1. Similarly, we can find 6, = 23‘1{47:00% where M is the number of datapoints with
Cj =0.

Laplace correction:
There may be cases where the sums in the numerators are zero (so ;. _;a;i = 0 or
Zﬂcj:o a;; = 0). In such cases, we will find that 6;; or 6,y are identically zero. This is a case
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where a certain feature is always zero in the dataset. When this happens, the predictions of C
will be identically zero for any test data where that feature does occur. However, the absence
of the feature from the dataset may not be all that significant (e.g. all the other features may
be predicting a certain class C, but the addition of this one feature that never happened in the
training set will make the probability go to zero). To correct for this, we can use the Laplace
correction, which essentially ensures that no probability is identically zero. We do this by
adding 1 to numerator and d to the denominator, where d is the number of values the variable
can take on (d = 2 in this case).

0. Zﬂc =1 a’]1+1
N VAN
and
2 jlej=0 @i +1
Oip = ——— (77—

My + 2
essentially we are “imagining” one more datum for each class that has every feature present.
Of course, this is actually just placing a very weak prior (Beta distribution with a = b = 2) on
each feature parameter.

Hidden class variable
Now suppose the class variable C is hidden (i.e. not present in any of the data), so we now
have d; = {aj1,aj2,...,a;n}. We could “guess” at a set of values for 6, and then do the
following (super easy):

1. compute for each data point ¢; = arg max.; P(c;jla;1,aj2,a53, ..., a;N)

2. fill in the data with these computed values,

3. compute 0, using the equations derived above

4. set 0 < 6)1, and goto step 1

Or, we could use Expectation Maximization in full. To do this, we note that, if we had a
guess for 0, say 6,, we could maximize the following expression over 6 and get a new, better
(always closer to the local maximum) value for 6,:

> Plejld;, b,) log P(dj, ¢;16)
J ¢
That is, we can do
0/ = arg meaxz > P(cjld;, 04) log P(d;, c;10)
J ¢
and we are guaranteed that P(d|¢;) > P(d|0,).
Expanding the right side out, we have the equivalent of Equation (1):
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Oy = arg meaXZ; Z P(cjld;by,) Z; (aji log Oic; + (1 — aj;) log(1 — Hicj)) +¢jlogf. + (1 — ¢;)log(1 —6,)
1= Cj 1=

So, if we take derivatives with respect to 6., we get

89 ZZPC]’dJ’Q)IOgPdJ’CJW ZZP (cjldj, 04) ( El—gjci)

Cj
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setting to zero and solving for 6. gives

0. — j ch CjP(cj’djveg)
X, Plelds, 0y)

J

which, since c¢; is Boolean, is:

5, Pes = 11d6y)

> ch P(cjld;, )
_ >_; Plej = 1]d;, 0y)
B M

Oc
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The updated estimate is simply the average probability of C' given the data! Note that if you
don’t calculate P(c;|d;,0,) exactly, but something proportional to it (so you dont’ normalise
first), then you can’t use the simplified Equation (2), and must sum the values you compute

to normalise.
The other parameters are similarly computed as

>_; a5iP(c; = 1|dj, 0y)

0 =
> Plej =1[d;,8y)

and

Zj ajl-P(cj = 0|dj, Hg)
Oio =

Zj P(cj = 0[d;,8)



