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We have the following model:

Where each of C,Ai are binary variables taking on values 0 or 1. The parameters of this
model are

θc = P (C = 1)

θi1 = P (Ai = 1|C = 1)

θi0 = P (Ai = 1|C = 0)

collectively, we will call θi = {θi1, θi0} and θ = {θc, θ1, . . . θN}.
To make predictions with this model, we compute

P (C = 1|a1, a2, . . . , aN ) ∝ P (a1, a2, . . . , aN |C = 1)P (C = 1)

=

[
N∏
i=1

θaii1 (1− θi1)
1−ai

]
θc

Similarly, we compute P (C = 0|a1, a2, . . . , aN ) ∝
[∏N

i=1 θ
ai
i0 (1− θi0)1−ai

]
(1 − θc) and nor-

malise to find the actual probabilities.
To find the maximum likelihood values for the parameters given a set of M data d =

1



{d1, d2, . . . , dM}, where each dj = {aj1, aj2, . . . , ajN , cj}, we compute:

θML = argmax
θ
P (d|θ)

= argmax
θ

 M∏
j=1

P (dj |θ)


= argmax

θ

log M∏
j=1

P (dj |θ)


= argmax

θ

M∑
j=1

logP (dj |θ)

= argmax
θ

M∑
j=1

logP (aj1, aj2, . . . , ajN , cj |θ)

= argmax
θ

M∑
j=1

log

[(
N∏
i=1

θ
aji
icj

(1− θicj )1−aji
)
θ
cj
c (1− θc)1−cj

]

= argmax
θ

M∑
j=1

[
N∑
i=1

(
aji log θicj + (1− aji) log(1− θicj )

)
+ cj log θc + (1− cj) log(1− θc)

]
(1)

Taking derivatives we get

∂

∂θc

∑
j

logP (dj |θ) =
∑
j

cj
θc
− (1− cj)

(1− θc)

=
1

θc(1− θc)
∑
j

(−θc + cj)

setting to zero allows us to find θc =
∑

j cj
M . Simillary, taking the derivative with respect to θi1,

we find

∂

∂θi1

∑
j

logP (dj |θ) =
∑
j|cj=1

aji
θi1
− (1− aji)

(1− θi1)

=
1

θi1(1− θi1)
∑
j|cj=1

(aji − θi1)

again setting to zero allows us to find θi1 =

∑
j|cj=1 aji

M1
where M1 is the number of datapoints

with cj = 1. Similarly, we can find θi0 =
∑

j|cj=0 aji

M0
where M0 is the number of datapoints with

cj = 0.

Laplace correction:
There may be cases where the sums in the numerators are zero (so

∑
j|cj=1 aji = 0 or∑

j|cj=0 aji = 0). In such cases, we will find that θi1 or θi0 are identically zero. This is a case
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where a certain feature is always zero in the dataset. When this happens, the predictions of C
will be identically zero for any test data where that feature does occur. However, the absence
of the feature from the dataset may not be all that significant (e.g. all the other features may
be predicting a certain class C, but the addition of this one feature that never happened in the
training set will make the probability go to zero). To correct for this, we can use the Laplace
correction, which essentially ensures that no probability is identically zero. We do this by
adding 1 to numerator and d to the denominator, where d is the number of values the variable
can take on (d = 2 in this case).

θi1 =

∑
j|cj=1 aji + 1

M1 + 2

and

θi0 =

∑
j|cj=0 aji + 1

M0 + 2

essentially we are “imagining” one more datum for each class that has every feature present.
Of course, this is actually just placing a very weak prior (Beta distribution with a = b = 2) on
each feature parameter.

Hidden class variable
Now suppose the class variable C is hidden (i.e. not present in any of the data), so we now
have dj = {aj1, aj2, . . . , ajN}. We could “guess” at a set of values for θ, and then do the
following (super easy):

1. compute for each data point c∗j = argmaxcj P (cj |aj1, aj2, aj3, . . . , ajN )
2. fill in the data with these computed values,
3. compute θML using the equations derived above
4. set θ ← θML and goto step 1

Or, we could use Expectation Maximization in full. To do this, we note that, if we had a
guess for θ, say θg, we could maximize the following expression over θ and get a new, better
(always closer to the local maximum) value for θg:∑

j

∑
cj

P (cj |dj , θg) logP (dj , cj |θ)

That is, we can do
θ′g = argmax

θ

∑
j

∑
cj

P (cj |dj , θg) logP (dj , cj |θ)

and we are guaranteed that P (d|θ′g) ≥ P (d|θg).
Expanding the right side out, we have the equivalent of Equation (1):

θML = argmax
θ

M∑
j=1

∑
cj

P (cj |djθg)

[
N∑
i=1

(
aji log θicj + (1− aji) log(1− θicj )

)
+ cj log θc + (1− cj) log(1− θc)

]
So, if we take derivatives with respect to θc, we get

∂

∂θc

∑
j

∑
cj

P (cj |dj , θg) logP (dj , cj |θ) =
∑
j

∑
cj

P (cj |dj , θg)
(
cj
θc
− (1− cj)

(1− θc)

)
=
∑
j

∑
cj

P (cj |dj , θg)(−θc + cj)
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setting to zero and solving for θc gives

θc =

∑
j

∑
cj
cjP (cj |dj , θg)∑

j

∑
cj
P (cj |dj , θg)

which, since cj is Boolean, is:

θc =

∑
j P (cj = 1|dj , θg)∑
j

∑
cj
P (cj |dj , θg)

=

∑
j P (cj = 1|dj , θg)

M
(2)

The updated estimate is simply the average probability of C given the data! Note that if you
don’t calculate P (cj |dj , θg) exactly, but something proportional to it (so you dont’ normalise
first), then you can’t use the simplified Equation (2), and must sum the values you compute
to normalise.

The other parameters are similarly computed as

θi1 =

∑
j ajiP (cj = 1|dj , θg)∑
j P (cj = 1|dj , θg)

and

θi0 =

∑
j ajiP (cj = 0|dj , θg)∑
j P (cj = 0|dj , θg)
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