Lecture 9b - Supervised Machine Learning Il

Jesse Hoey
School of Computer Science
University of Waterloo

June 27, 2022

Readings: Poole & Mackworth (2nd ed.)Chapt. 7.3.2,7.5-7.6



Linear Regression

Linear regression is a model in which the output is a linear
function of the input features.

<>

“(e) = wo + wiXi(e) + - + waXa(e)
Y7(e) = wiXi(e)
i=0

where w = (wp, wi, wa....w,). We invent a new feature Xp =1,
to make it not a special case.



Linear Regression

Linear regression is a model in which the output is a linear
function of the input features.

<>

“(e) = wo + wiXi(e) + - + waXa(e)
Y7(e) = wiXi(e)
i=0

where w = (wp, wi, wa....w,). We invent a new feature Xp =1,
to make it not a special case.
The sum of squares error on examples E for output Y is:

Error(E,w) = Z(Y(e) — Y¥(e))?

ecE

= 3 (Y(e) = Y wiXi(e))?
i=0

ecE

Goal: find weights that minimize Error(E, w).



Finding weights that minimize Error(E, w)

Find the minimum analytically .
Effective when it can be done (e.g., for linear regression). If

e y=[Y(e1),Y(e2),...Y(em)] is a vector of the output
features for the M examples
@ X is a matrix where the jt column is the values of the input

features for the j* example

e w = [wp,wi,...,w,| is a vector of the weights

then,

I
s

yTXT(XXT)—l

(XXT)~1 is the pseudo-inverse



Finding weights that minimize Errorg(w)

Find the minimum iteratively .
Works for larger classes of problems (not just linear).
Gradient descent :

OError(E, W)
G
w;

Wi < wW; —

7 is the gradient descent step size, the learning rate.
If

n 2
Error(E,w) =Y (Y(e)-Y"(e)>=>_ <Y(e) -3 W,-x,-(e))
ecE ecE i

then update rule:

Wi witn (Y(e) - Wfo(e)> Xi(e)

ecE i=0

where we have set 7 — 2n (arbitrary scale)



Incremental Gradient Descent for Linear Regression

1:
2
3
4
b:
6
7
8
9

10:
11:
12:
13:

procedure LinearLearner(X,Y, E,n)

Inputs X: set of input features, X = {Xi,..., Xy}
Y': output feature
E: set of examples from which to learn
n: learning rate
initialize wy, ..., w, randomly
repeat
for each example e in E do
¢+ Y(e) = X wiXi(e)
for each / € [0, n] do
Wi < w; + 775X,'(€)
until some stopping criteria is true
return wyp, ..., w,



Stochastic and Batched Gradient Descent

@ Algorithm on the last slide is incremental gradient descent
o If examples are chosen randomly at line 8 then its
stochastic gradient descent .

@ Batched gradient descent :

P process a batch of size n before updating the weights
» if nis all the data, then its gradient descent

» if n=1, its incremental gradient descent

@ Incremental can be more efficient than batch, but convergence
not guaranteed



Linear Classifier

@ Assume we are doing binary classification , with classes {0, 1}

@ There is no point in making a prediction of less than 0 or
greater than 1.

@ A squashed linear function is of the form:
YY(e) = f(wo + wiXi(e) + - - - + wpXy(e))
= f(>_wiXi(e))
i=0

where f is an activation function .

@ A simple activation function is the step function :

1 ifx>0
f(x)_{ 0 ifx<0



Gradient Descent for Linear Classifiers

If the activation function is differentiable , we can use
gradient descent to update the weights. The sum of squares error:

; 2
Error(E, w) = Z <Y(e) —f (Z wi * X;(e)))
i=0

ecE

The partial derivative with respect to weight w; is:

OError(E, w)
= 2% xf (Z W * X;(e)) * Xi(e)

1

where § = (Y(e) — F(D_7_o wiXi(e))).
Thus, each example e updates each weight w; by

wp W;+n*5*f'(ZWi*Xi(e))*Xi(e)



The sigmoid or logistic activation function

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

T
—
1

14+e~

-10 -5 0 5 10

f(x) =

1—|—e—X



The sigmoid or logistic activation function

1 T
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

T
—
1

14+e~

O &
-10 -5 0 5 10

1

Fix) = 1+ e

e—X

0= v ey

= ()1 = f(x))

so f'(x) can be computed from f(x)



Discussion Board Example

thread

new, ollow up

author

known, \w\knnwn

I@(e) = sigmoid(—8+T7xShort(e)+3xNew(e)+3xKnown(e))

Using the 18 training examples from lecture 4, this can be found in
about 3000 iterations with a learning rate of n = 0.05



Linearly Separable

@ A dataset is linearly separable if there is a hyperplane where
the classification is true on one side of the hyperplane and
false on the other side.

@ The hyperplane is defined by where the predicted value,
FO(X1,. .., Xn) = F(wo + wi X1(€) + - + wyXy(e)) is 0.5.
For the sigmoid function, the hyperplane is defined by
wo + W1X1(e) + o4 W,,X,,(e) =0.

@ Some data are not linearly separable

and xor




Kernel Trick

Some arbitrary data:

O e O e -
1 2 3 X

4



Kernel Trick

Data is not linearly separable:

-
-
,

-~ /

. ~
4
’ N .
’ \
L ) i | &
o l‘ 11 I
] 1
\ X
71 2,
! \

! 3 4
1
1 \ ]
1 \ 4
1 ~_7



Kernel Trick

Add another dimension, data is now linearly separable:

y

y = rem(x/2)



Kernel Trick: another example




Mercer's Theorem

Key idea:
@ Mercer's Theorem

@ A dot product in the new “lifted” space = function ( kernel )
in old space

Means: never have to know what ¢ is!!

Only have to compute distances with the kernel .



d(x1, %) = (63, V2x1x2,%3)

dot product in old space:
< X, W >= X1 ¥ W1 + X2 % Wp
dot product in new space:

kernel K(x,w)

K(x, w) =< ¢(x), ¢(w) >

22 22
= X] W] + 2x1x0W1Wo + X5 W5

= (xawy + X2W2)2

= (< x,w >)?

Circle data is linearly separable if distance (dot product) is
computed using K(x, w)



Support Vector Machines

o)
o}
Iwl
find the classification boundary with the widest margin
o:¢=-1
x: ¢ =+1

minimize ||w]||? subject to cj(w - x; — b) > 1
Quadratic Programming problem
Also: use Kernel trick



Neural Networks

e inspired by biological networks (brain)

@ connect up many simple units
@ simple neuron: threshold and fire

@ can help gain understanding of how biological intelligence
works

Axonal arborization

\ Axon from another cell

Synapse

\/

Synapses

Cell body or Soma



Neural Networks

@ can learn the same things reads
— O output
that a decision tree can
. o sigmoid
@ imposes different tayer

learning bias (way of
making new predictions) Q/ \< fayer

@ back-propagation learning: hidden

sigmoid
errors made are propagated units layer
backwards to change the
We|ghts linear

layer

@ often the linear and sigmoid
. input
layers are treated as a single Q layer

| aye r known new short home



Neural Networks Basics

Each node j has a set of weights wjo, wj1,..., wjn

Each node j receives inputs vy, v, ... vy

number of weights = number of parents + 1
(vo = 1 constant bias term)

output is the activation function output

0j = f <Z Wj,'V,')

necessarily non-linear because
A linear function of a linear function is a ...
linear function



Neural Networks Basics

@ activation functions:

» step function = integrate-and-fire (biological)

f@={5 i 220
» sigmoid function f(z) =1/(14 e ?)
» rectified linear (ReLU) : g(z) = max{0, z}
@ output of entire network is the classification result



Deep Neural Networks

output features
complete linear function
hidden layer

activation function
hidden layer

complete linear function
hidden layer

activation function
hidden layer

complete linear function

input features

Figure 7.16: A deep neural network



Learning weights

back-propagation implements stochastic gradient descent
Recall:

OError(E, w)
K
w;

Wi < w; —

7n: learning rate.
Linear unit:
Jd(aw + b)
ow

Sigmoid unit (chain rule):

of(g(w))
“ow !

(s(w)) )



Learning weights

Using the chain rule, this can be extended throughout the network
e.g. taking a derivative of the L layer w.r.t a weight in the R
layer:

Qoutput,  Of (output;_1)
owR OwR

L-1:
0 ; wj;input 1
OwR

Of (output; _»)
= f/(outputL_l) Z WJ,T

1

= f'(output, 1)

0> wRinputg
owR

= f'(output, _1) Z WJ-,-f'(output/__g) .

1

= f'(output; 1) Z w;if'(output;_5) ... inputg

1



Backpropagation

back-propagation implements stochastic gradient descent

@ each layer i =1...L has:
» N; input units with input[j],j =1...N;
> M; output units with output[j],j =1... M;
e Y|[j] is the data output/labels (output[L])
e X|i] is the data input (input[1])
@ error on output layer unit j: error[j] = (Y[j] — output[j])
o for each other layer:
1. weight update (linear layer) wji <— wj; + 1 * input[i] * error|j]
2. back-propagated error (linear layer)
input_error[i] = 3. wjierror[j]
3. back-propagated error (activation layer)
input_error[i] = f'(output[i]) * error][i]



Backpropagation

1: repeat

2 for each example e in E in random order do

3 for each layer i =1...L do (forwards)
4 output; = f(input;)

5: for each layer j = L...1 do (backwards)
6 compute back-propagated error

7 update weights

8: until some stopping criteria is reached



Regularization

Regularized Neural nets: prevent overfitting , increased bias for

reduced variance

parameter norm penalties added to objective function
dataset augmentation

early stopping

dropout

parameter tying

» Convolutional Neural nets: used for images
» Recurrent Neural nets: used for sequences



Composite models

@ Random Forests

» Each decision tree in the forest is different
» different features, splitting criteria, training sets
P average or majority vote determines output

@ Ensemble Learning : combination of base-level algorithms

e Boosting

» sequence of learners

» each learner is trained to fit the examples the previous learner
did not fit well

P |earners progressively biased towards higher precision

» early learners: lots of false positives, but reject all the clear
negatives

P later learners: problem is more difficult, but the set of
examples is more focussed around the challenging boundary



@ Unsupervised Learning with Uncertainty (Poole & Mackworth
(2nd ed.)chapter 10.2,10.3,10.5)



