Linear Regression

Linear regression is a model in which the output is a linear
function of the input features.

Lecture 9b - Supervised Machine Learning Il V9(e) = wo + wiXa(e) + -+ waXa(e)
wiX;(e)

Jesse Hoey Y*(e) =
School of Computer Science =0
University of Waterloo where W = (wo, w1, wo....w,). We invent a new feature Xp =1,
to make it not a special case.

June 27, 2022

Readings: Poole & Mackworth (2nd ed.)Chapt. 7.3.2,7.5-7.6

Finding weights that minimize Error(E

Linear Regressi

Linear regression is a model in which the output is a linear

function of the input features. Find the minimum analytically .
\A/W(e) = wo + wiXg(e) + - + wpXn(e) Effective when it can be done (e.g., for linear regression). If
o y=[Y(e),Y(e),... Y(em)] is a vector of the output
features for the M examples
@ X is a matrix where the j* column is the values of the input

features for the j™ example

V7(e) = > wiXi(e)
i=0

where W = (wo, wi, wo....w,). We invent a new feature Xp =1, . .
to make it not a special case. © W = [wp, w1, ..., w,] is a vector of the weights
The sum of squares error on examples E for output Y is: then,

Error(E,w) = Z(Y(e) — V(e))? yT =wX

ecE FIXT(XXTy 1= w
n
_ 2
= Z(Y(e) - Z w;iXi(e)) (XXT)1is the pseudo-inverse
ecE i=0

Goal: find weights that minimize Error(E, w).

Finding weights that minimize Errorg(w) Incremental Gradient Descent for Linear Regression

Find the minimum iteratively .
Works for larger classes of problems (not just linear).

e — 1: procedure LinearLearner(X,Y,E,n)
2 Inputs X: set of input features, X = {X1,...,X,}
Wi — wj — T,w 3 Y: output feature
ow; 4; E: set of examples from which to learn
1) is the gradient descent step size, the learning rate. 5 7: learning rate
If 6 initialize wy, ..., w, randomly
n 2 7 repeat
Error(E. W) = Y(e)—V¥(e))? = Y(e) — wiX(e 8 for each example e in E do
(.9 = L(Y(9-Y () ZE((0= 3w)) " R e
10: for each i € [0, n] do
then update rule: 11: w; < w; +ndXi(e)
n 12: until some stopping criteria is true
Wi — W+ 172 (Y(e) - Z W,X,(e)) Xi(e) 13: return wo, ..., w,
ecE =0

where we have set 1) — 2 (arbitrary scale)

Stochastic and Batched Gradient Descent Linear Classifier

@ Assume we are doing binary classification , with classes {0, 1}
@ There is no point in making a prediction of less than 0 or
greater than 1.

@ Algorithm on the last slide is incremental gradient descent
@ A squashed linear function is of the form:

o If examples are chosen randomly at line 8 then its
stochastic gradient descent . o
Y"Y(e) = f(wy + wiXi(e) + -+ + wpXs(e
o Batched gradient descent : (@ (n (© nn(€))
> process a batch of size n before updating the weights - f(z wiXi(e))
» if nis all the data, then its gradient descent pard
» if n=1, its incremental gradient descent
@ Incremental can be more efficient than batch, but convergence
not guaranteed

where f is an activation function .

@ A simple activation function is the step function :

f(x):{ 1 ifx>0

0 ifx<O0

Gradient Descent for Linear Classifiers The sigmoid or logistic activation function

If the activation function is differentiable , we can use 1 .
gradient descent to update the weights. The sum of squares error: 0.9} 1 1
0.8F = 1
n 2 0.7k I+e 1
Error(E, w) = Z (Y(e) —f <Z w; X;(e))) 0.6 1
ecE par gﬁ: 1
The partial derivative with respect to weight w; is: 0.3 1
0.2r 4
- 0.1F 4
OError(E, w) ,
gemonE W) _ % X ! 0 .
o =—2%0%f ZW,*X,(e) * Xi(e))10 5 0 5 20
n f(x) = _1
where § = (Y(e) — f(3-7_o wiXi(e))). Trex

Thus, each example e updates each weight w; by

Wi witnxskf (Z w; *X;(e)) * X;(e)

The sigmoid or logistic activation function Discussion Board Example
1 T
0.9+ 1 q
0.8 T 4
07p T+e i s
0.6 4
0.5f 4
0.4f 1
0.3 4
0.2F 4
0.1F 4
0 L .
10 5 0 5 10 Reads(e) = sigmoid(—8+T7xShort(e)+3+New(e)+3+Known(e))
f(x) = T+ex Using the 18 training examples from lecture 4, this can be found in
about 3000 iterations with a learning rate of 1 = 0.05
ex
fl(x) = ———5 = f(x)(1 - fi
(0= gy = F0A = F0)

so f'(x) can be computed from f(x)

Linearly Separable Kernel Trick

@ A dataset is linearly separable if there is a hyperplane where
the classification is true on one side of the hyperplane and Some arbitrary data:
false on the other side.
@ The hyperplane is defined by where the predicted value,
(X, ..., Xn) = f(wo + wiXi(e) + - + waXy(e)) is 0.5.
For the sigmoid function, the hyperplane is defined by
wo + wiXi(e) + -+ + wpXa(e) = 0.

@ Some data are not linearly separable _‘_._‘_._‘_"_._’

1]+ + 1)-"

Kernel Trick Kernel Trick

Data is not linearly separable: Add another dimension, data is now linearly separable:

y = rem(x2)

Kernel Trick: another example Mercer's Theorem

Key idea:
@ Mercer's Theorem

o A dot product in the new “lifted” space = function (kernel)
in old space

@ Means: never have to know what ¢ is!!
@ Only have to compute distances with the kernel .

Pla,x2) = (), V2axe, x3)

ORCEEER S

Example Support Vector Machines
%

olx1,x2) = (4, Vaxix, x3)

dot product in old space:
<X, W >= X1 ¥ W1 + X2 x Wo
dot product in new space:

kernel K(x,w)

K(x,w) =< ¢(x), d(w) >

= x12 le + 2xxowiw + x22w22

Iwl
= (aws + xun)? find the classification boundary with the widest margin
= (< x,w>)? o:¢=-1
x: ¢ =+1
Circle data is linearly separable if distance (dot product) is minimize ||w|[? subject to ci(w - x; — b) > 1
computed using K(x, w) Quadratic Programming problem

Also: use Kernel trick

Neural Networks Neural Networks

o inspired by biological networks (brain) o can learn the [same things roads
@ connect up many simple units

output

that a decision tree can

@ simple neuron: threshold and fire o imposes different é igmela

@ can help gain understanding of how biological intelligence learning bias (way of
works

making new predictions)

o back-propagation learning:
errors made are propagated
backwards to change the
weights

sigmoid
tayer

tinear
layer
@ often the linear and sigmoid

layers are treated as a single

layer known new short home

input
layer

Neural Networks Basics Neural Networks Basics

o Each node j has a set of weights wjo, wj1,...,wn
o Each node j receives inputs vp, vi, ... vy
@ number of weights = number of parents + 1 o activation funcfions: . . L

(10 — 1 constant bias term) > step function = integrate-and-fire (biological)
@ output is the activation function output f(z) = {; :; i i 8

> sigmoid function f(z) =1/(1+ e %)
oj=f (Z w,;v;) > rectified linear (ReLU) : g(z) = max{0, 2z}
i

@ output of entire network is the classification result
necessarily non-linear because
A linear function of a linear function is a ...
linear function

Deep Neural Networks Learning weights

back-propagation implements stochastic gradient descent

output features Recall:
complets inear function OError(E, W)
hidden layer e
i

activation function
hidden layer 7: learning rate.
complete inear function Linear unit:
hidden layer

d(aw + b)
activation function ——=a

hidden layer ow

complete linear function Sigmoid unit (chain rule):

-
Fiqure 7.16: A deep neural network of(e(w)) _ 4
ow

Learning weights Backpropagation

Using the chain rule , this can be extended throughout the network
e.g. taking a derivative of the Lt layer w.r.t a weight in the R back-propagation implements stochastic gradient descent
layer:

(s(w) 22

@ each layer i =1...L has:

. > N; input units with inputlj].j = 1...N;
Qoutputy, _ Df (outputy 1) > M; output units with outputljl.j = 1...M;
owR owR

@ Y[j] is the data output/labels (output[L])
@ X[i] is the data input (input[1])

Y wﬁ’linputL,l
owR o . p p
Of (output,) @ error on output layer unit j: error[j] = (Y[j] — output]j])

owR o for each other layer:
‘ R: . weight update (linear layer) wj + wj; + 1 * input[i] * error(j]
0 Yk wiginputg . back-propagated error (linear layer)
owR input_error(i] = 3 wyerror[j]
. back-propagated error (activation layer)
= f'(output,_1) Y w;if (output, _2) ... inputr input_error(i] = f'(output]i]) * error[i]

i

= f'(output,_1)

= f/(OUfPUthl)Z wji

[

= f'(output; 1) Z w;if'(output;_5) ...

i

w

Backpropagation Regularization

Regularized Neural nets: prevent overfitting , increased bias for

1: repeat reduced variance
2 for each example e in E in random order do o parameter norm penalties added to objective function
3 for each layer i = 1...L do (forwards) E
4 output; = f(input;) o dataset augmentation
: i = i
5 for each layer j = L...1 do (backwards) @ early stopping
6 compute black—propagated error o dropout
7 update weights
8: until some stopping criteria is reached @ |parameter tying

» Convolutional Neural nets: used for images
» Recurrent Neural nets: used for sequences

Composite models Next:

o Random Forests

» Each decision tree in the forest is different

> different features, splitting criteria, training sets

> average or majority vote determines output
o Ensemble Learning : combination of base-level algorithms

§ o Unsupervised Learning with Uncertainty (Poole & Mackworth

o Boosting (2nd ed.)chapter 10.2,10.3,10.5)

> sequence of learners

» each learner is trained to fit the examples the previous learner

did not fit well
> learners progressively biased towards higher precision

> early learners: lots of false positives, but reject all the clear
negatives
> later learners: problem is more difficult, but the set of

examples is more focussed around the challenging boundary

