Lecture 9b - Supervised Machine Learning II

Jesse Hoey
School of Computer Science
University of Waterloo
March 10, 2020

Readings: Poole & Mackworth (2nd ed.) Chapt. 7.3.2, 7.5-7.6

Linear Regression

Linear regression is where the output is a linear function of the input features.

\[
\hat{Y}(e) = w_0 + w_1 X_1(e) + \cdots + w_n X_n(e)
\]

\[
\hat{Y}(e) = \sum_{i=0}^{n} w_i X_i(e)
\]

where \(\mathbf{w} = \langle w_0, w_1, w_2, \ldots, w_n \rangle \). We invent a new feature \(X_0 \) that has value 1, to make it not a special case.

Finding weights that minimize Error \(E, \mathbf{w} \)

Find the minimum analytically. Effective when it can be done (e.g., for linear regression). If

- \(\hat{Y} = [Y(e_1), Y(e_2), \ldots, Y(e_M)] \) is a vector of the output features for the \(M \) examples
- \(X \) is a matrix where the \(j \)th column is the values of the input features for the \(j \)th example
- \(\mathbf{w} = [w_0, w_1, \ldots, w_n] \) is a vector of the weights

then,

\[
\hat{Y}^T X (X^T X)^{-1} = \mathbf{w}
\]

Finding weights that minimize \(\text{Error}_E(\mathbf{w}) \)

Find the minimum iteratively. Works for larger classes of problems (not just linear).

Gradient descent:

\[
w_i \leftarrow w_i - \eta \frac{\partial \text{Error}(E, \mathbf{w})}{\partial w_i}
\]

\(\eta \) is the gradient descent step size, the learning rate.

If

\[
\text{Error}(E, \mathbf{w}) = \sum_{e \in E} (Y(e) - \hat{Y}(e))^2 = \sum_{e \in E} \left(Y(e) - \sum_{i=0}^{n} w_i X_i(e) \right)^2
\]

then

\[
w_i \leftarrow w_i + \eta \sum_{e \in E} \left(Y(e) - \sum_{i=0}^{n} w_i X_i(e) \right) X_i(e)
\]

where we have set \(\eta \to 2\eta \) (arbitrary scale)

Incremental Gradient Descent for Linear Regression

1: \ procedure LinearLearner(\(X, Y, E, \eta \))
2: Inputs \(X \): set of input features, \(X = \{X_1, \ldots, X_n\} \)
3: \(Y \): output feature
4: \(E \): set of examples from which to learn
5: \(\eta \): learning rate
6: initialize \(w_0, \ldots, w_n \) randomly
7: repeat
8: for each example \(e \) in \(E \) do
9: \(\delta \leftarrow Y(e) - \sum_{i=0}^{n} w_i X_i(e) \)
10: for each \(i \in [0, n] \) do
11: \(w_i \leftarrow w_i + \eta \delta X_i(e) \)
12: until some stopping criteria is true
13: return \(w_0, \ldots, w_n \)
Algorithm on the last slide is **incremental** gradient descent.

If examples are chosen randomly at line 8 then its **stochastic gradient descent**.

Batched gradient descent:
- process a batch of size \(n \) before updating the weights
- if \(n \) is all the data, then its **gradient descent**
- if \(n = 1 \), its **incremental gradient descent**

Incremental can be more efficient than batch, but convergence not guaranteed.

Gradient Descent for Linear Classifiers

If the activation is differentiable, we can use gradient descent to update the weights. The sum of squares error is:

\[
Error(E, \overline{w}) = \sum_{e \in E} \left(Y(e) - f \left(\sum_{i=0}^{n} w_i \cdot X_i(e) \right) \right)^2
\]

The partial derivative with respect to weight \(w_i \) is:

\[
\frac{\partial Error(E, \overline{w})}{\partial w_i} = -2 \cdot \delta \cdot f'(\sum_{i} w_i \cdot X_i(e)) \cdot X_i(e)
\]

where \(\delta = (Y(e) - f(\sum_{i=0}^{n} w_i \cdot X_i(e))) \).

Thus, each example \(e \) updates each weight \(w_i \) by

\[
w_i \leftarrow w_i + \eta \cdot \delta \cdot f'(\sum_{i} w_i \cdot X_i(e)) \cdot X_i(e)
\]

The sigmoid or logistic activation function

\[
f(x) = \frac{1}{1 + e^{-x}}
\]

\[
f'(x) = \frac{e^{-x}}{(1 + e^{-x})^2} = f(x)(1 - f(x))
\]

Assume we are doing binary classification, with classes \(\{0, 1\} \).

There is no point in making a prediction of less than 0 or greater than 1.

A **squashed linear function** is of the form:

\[
\hat{Y}(\overline{w})(e) = f(w_0 + w_1 X_1(e) + \cdots + w_n X_n(e))
\]

\[
= f\left(\sum_{i=0}^{n} w_i X_i(e) \right)
\]

where \(f \) is an **activation function**.

A simple activation function is the step function:

\[
f(x) = \begin{cases} 1 & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases}
\]

Discussion Board Example

\[
\hat{Y}(\overline{w})(e) = \text{sigmoid}(\sum_{i} w_i \cdot X_i(e))
\]

Can be found in about 3000 iterations with a learning rate of \(\eta = 0.05 \).
A classification is **linearly separable** if there is a hyperplane where the classification is true on one side of the hyperplane and false on the other side.

The hyperplane is defined by where the predicted value, \(f^w(X_1, \ldots, X_n) = f(w_0 + w_1X_1(e) + \cdots + w_nX_n(e)) = 0.5 \). For the sigmoid function, the hyperplane is defined by \(w_0 + w_1X_1(e) + \cdots + w_nX_n(e) = 0 \).

Some data are not linearly separable.

Kernel Trick

Some arbitrary data:

![Data](image1.png)

Data is not linearly separable:

![Data](image2.png)

Add another dimension, data is now linearly separable:

![Data](image3.png)

Kernel Trick: another example

\[
\phi(x_1, x_2) \rightarrow (x_1^2, \sqrt{2}x_1x_2, x_2^2)
\]

\[
\left(\frac{x_1}{a} \right)^2 + \left(\frac{x_2}{b} \right)^2 = 1 \rightarrow \frac{z_1}{a^2} + \frac{z_3}{b^2} = 1
\]

Mercer’s Theorem

Key idea:

- **Mercer’s Theorem**
- A dot product in the new space = function (kernel) in old space
- Means: never have to know what \(\phi \) is!!
- Only have to compute distances with the Kernel.
Example:

\[\phi(x_1, x_2) \rightarrow (x_1^2, \sqrt{2}x_1 x_2, x_2^2) \]

Dot product: \(<x, w> = x_1 w_1 + x_2 w_2 \]

\[K(x, w) = <\phi(x), \phi(w)> = x_1^2 w_1^2 + 2x_1 x_2 w_1 w_2 + x_2^2 w_2^2 \]
\[= (x_1 w_1 + x_2 w_2)^2 \]
\[= (\langle x, w \rangle)^2 \]

Circle data is linearly separable if distance (dot product) is computed using \(K(x, w) \)

Support Vector Machines

\[o : c_i = -1 \]
\[x : c_i = +1 \]

Minimize \(||w||^2 \) subject to \(c_i (w \cdot x_i - b) > 1 \)

Quadratic Programming problem

Also: use Kernel trick

Neural Networks

- Inspired by biological networks (brain)
- Connect up many simple units
- Simple neuron: threshold and fire
- Can help gain understanding of how biological intelligence works

Neural Networks Basics

- Each node \(j \) has a set of weights \(w_{j0}, w_{j1}, \ldots, w_{jN} \)
- Each node \(j \) receives inputs \(v_0, v_1, \ldots, v_N \)
- Number of weights = number of parents + 1 (\(v_0 = 1 \) constant bias term)
- Output is the activation function output
 \[o_j = f \left(\sum_i w_{ji} v_i \right) \]

Necessary!

A linear function of a linear function is a ...

Activation functions:

- Step function = integrate-and-fire (biological)
 \[f(z) = \begin{cases}
 c & \text{if } z \geq 0 \\
 1 & \text{if } z < 0
\end{cases} \]
- Sigmoid function \(f(z) = 1/(1 + e^{-z}) \)
- Rectified linear (ReLU): \(g(z) = \max\{0, z\} \)

Output of entire network is the classification result
Deep Neural Networks

Backpropagation

Backpropagation implements stochastic gradient descent. Recall:

\[
\text{w}_i \leftarrow \text{w}_i - \eta \frac{\partial \text{Error}(E, \hat{\text{w}})}{\partial \text{w}_i}
\]

\(\eta\): learning rate.

Linear unit:

\[
\frac{\partial (aw + b)}{\partial w} = a
\]

Sigmoid unit (chain rule):

\[
\frac{\partial f(g(w))}{\partial w} = f'(g(w)) \frac{\partial g(w)}{\partial w}
\]

Learning weights

Using the chain rule, this can be extended throughout the network e.g. taking a derivative of the \(L^{th}\) layer w.r.t a weight in the \(R^{th}\) layer:

\[
\frac{\partial \text{output}_L}{\partial \text{w}^R} = \frac{\partial f(\text{output}_{L-1})}{\partial \text{w}^R}
\]

\[
= f'(\text{output}_{L-1}) \frac{\partial \sum_i \text{w}_{ji} \text{input}_{L-1}}{\partial \text{w}^R}
\]

\[
= f'(\text{output}_{L-1}) \sum_i \text{w}_{ji} \frac{\partial f(\text{output}_{L-2})}{\partial \text{w}^R}
\]

\[
= f'(\text{output}_{L-1}) \sum_i \text{w}_{ji} f'(\text{output}_{L-2}) \sum_k \text{w}_{ki} \text{input}_R
\]

\[
= f'(\text{output}_{L-1}) \sum_i \text{w}_{ji} f'(\text{output}_{L-2}) \text{input}_R
\]

Regularization

Regularized Neural nets: prevent overfitting, increased bias for reduced variance

- parameter norm penalties added to objective function
- dataset augmentation
- early stopping
- dropout
- parameter tying
 - Convolutional Neural nets: used for images
 - Recurrent Neural nets: used for sequences

1: repeat
2: for each example \(e\) in \(E\) in random order do
3: for each layer \(i = 1 \ldots L\) do (forwards)
4: \(\text{output}_i = f(\text{input}_i)\)
5: for each layer \(j = L \ldots 1\) do (backwards)
6: compute back-propagated error
7: update weights
8: until some stopping criteria is reached
Composite models

Random Forests
- Each decision tree in the forest is different
- different features, splitting criteria, training sets
- average or majority vote determines output

Ensemble Learning: combination of base-level algorithms

Boosting
- sequence of learners
- each learner is trained to fit the examples the previous learner did not fit well
- learners progressively biased towards higher precision
- early learners: lots of false positives, but reject all the clear negatives
- later learners: problem is more difficult, but the set of examples is more focused around the challenging boundary

Next:
Unsupervised Learning with Uncertainty (Poole & Mackworth (2nd ed.) chapter 10.2, 10.3, 10.5)